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Stack buffer overflow vulnerability is a common software vulnerability that can overwrite function return addresses and hijack
program control flow, causing serious system problems. Existing automated exploit generation (AEG) solutions cannot bypass
position-independent executable (PIE) exploit mitigation and cannot cope with the situation where the standard output function
is not introduced into the program. In this paper, we propose a solution to alleviate the above difficulties: BofAEG, which is based
on symbolic execution and dynamic analysis to automatically detect stack buffer overflow vulnerability and generate exploit. We
used to capture the flag (CTF) and common vulnerabilities and exposures (CVE) programs for experiments. Results show that
BofAEG can not only detect and generate exploits effectively but also implement more exploit techniques and is faster than
existing AEG solutions.

1. Introduction

As a pervasive vulnerability in various applications and
operating systems, buffer overflow is easily exploited by
attackers because languages such as C/C++ do not have
instructions to automatically detect buffer overflow, and the
time cost of writing code to detect whether a buffer overflow
will occur in real time is too great. Stack is one of the most
common buffers. First described in detail in 1996, AlephOne
[1] described the architecture of the Linux stack and pro-
posed how to use stack-based buffer overflow to implant a
piece of code into a process to obtain a shell. Based on this
idea, an attacker can create malicious code anywhere in the
program’s memory, causing the operating system to crash
and reject the service, or even control the program’s entire
execution process, thus obtaining complete control of the
target host machine. *ere were 188 CVEs related to stack
buffer overflow in the last 5 years [2].

Since the return address of a function is stored in the
stack, an attacker can modify the return address to hijack the

control flow of the program by exploiting the stack buffer
overflow vulnerability. *erefore, program control flow
hijacking is the characteristic of stack overflow vulnerability.
CANARY [3] is a stack buffer overflow attack mitigation.
When it first enters the function, it places a random number
canary on the stack and then determines whether the ran-
dom number has been changed at the end of the function. If
it has been changed, it indicates that an attack has occurred.
CANARY effectively prevents attacks that only depend on
the stack buffer overflow vulnerability.

Traditional stack buffer overflow attack first arranges
malicious code in the controllable area and then hijacks the
program control flow to the area to execute malicious code.
However, with the implementation of the NX (Non-Exe-
cutable Memory) mitigation [4], the method is invalid.
Because NX makes these controllable areas unexecutable.
However, ROP (Return-oriented Programming) [5] attack
can effectively bypass NX. It is a new type of attack based on
code reuse technology, in which attackers extract instruction
fragments (gadgets) from existing libraries or executable files
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to build malicious code. *ese instructions themselves are
located in executable text segments, and they end with ret
instructions to realize the convergence of instruction seg-
ment execution flows. However, the ASLR (Address Space
Layout Randomization) [6] systemmitigation can effectively
prevent the attacker from getting the address of these in-
struction segments by randomizing the layout of linear areas
such as heap, stack, and shared library mapping. Further, the
PIE (position-independent executable) mitigation makes the
program change the load base address every time it is loaded
so that the gadgets located in the program itself are also
invalid. For programs without PIE protection, the base
address of each load is fixed, usually 0× 400000 on 64 bits.
On the contrary, the base address of programs protected by
PIE is different every time they are loaded.

*e existing automated vulnerability detection
methods, such as fuzzing [7–11], can detect a large number
of software vulnerabilities, but cannot verify the exploit-
ability of the generated vulnerabilities. *erefore, auto-
mated exploit generation of software vulnerabilities has
become a research hotspot in the field of software security.
In the field of automated exploit generation (AEG), the
accuracy and reliability of symbolic execution techniques
make it an important tool for automated program analysis.
Symbol execution [12] is a program analysis technology,
which can get the input for specific code areas to be exe-
cuted by analyzing programs. When using symbolic exe-
cution to analyze a program, the program will use symbolic
values as input, instead of the specific values used in general
program execution. When the target code is reached, the
analyzer can get the corresponding path constraints, and
then get the specific value that can trigger the target code
through the constraint solver. *rough this method, we can
get the input that triggers the stack buffer overflow
vulnerability.

In this paper, we propose an effective method BofAEG to
automatically detect and generate exploit of ELF x64 binaries
with stack buffer overflow vulnerabilities. Because the stack
buffer overflow vulnerability is characterized by overwriting
the return address and hijacking the program control flow,
BofAEG first checks whether there is a win function
(backdoor) in the program.*en if the program is protected
by PIE, BofAEG attempts to trigger the win function directly
or look for address leakage. Next BofAEG reaches the exact
location of the stack buffer overflow vulnerability through
symbolic execution and obtains all controllable symbolic
addresses. Finally, BofAEG applies different exploit tech-
niques according to whether the program contains win
functions and is protected by PIE. Because there is no real
memory information in symbol execution, dynamic analysis
is needed to determine whether the program memory state
meets the conditions when applying the exploit technology.

*e contributions of this paper are summarized as
follows:

(1) We study and summarize the characteristics and
difficulties of automated exploit generation of stack
buffer overflow vulnerability, and propose a solution,
BofAEG.

(2) We use CTF and CVE programs for experiments,
and the experiments show that BofAEG can effec-
tively perform automated detection and exploit
generation for stack buffer overflow vulnerability.
Compared with the existing solutions, BofAEG can
deal with more situations and generate exploits more
quickly.

(3) We implement six exploit techniques for the stack
buffer overflow vulnerability and prove that the stack
buffer overflow vulnerability is highly harmful and
can bypass most of the existing exploit mitigations.

*e remainder of this paper is structured as follows.
Section 2 covers related work. Section 3 describes methods
for automated stack buffer overflow vulnerability detection
and exploit generation, including stack buffer overflow
vulnerability and its characteristics, two ways of ROP attack,
and the method flow of BofAEG. Section 4 provides com-
parative experiments between BofAEG and existing AEG
solutions. Section 5 discusses the limitations of BofAEG and
our future work. Section 6 concludes the paper.

2. Related Work

In recent years, various AEG solutions for different objec-
tives have emerged. *e solutions related to heap vulnera-
bility are [13–17]. And [18–21] are solutions for format
string vulnerability. In addition to the software level, [22–25]
go deep into the Linux kernel. Similarly, AEG solutions exist
not only in Linux system, but also in Android system
[26–29].

In this paper, we take ELF x64 binary file under Linux
system as the target to automatically detect and generate
exploit for stack buffer overflow vulnerability. Heelan et al.
[30] use binary instrumentation to do taint propagation and
gather runtime information and generate exploits by
checking whether the EIP register is affected by the taint.
AEG [31] first preprocesses the source code to generate
bytecode. Based on bytecode, AEG uses conditional symbol
execution to find vulnerable functions, objects covered by
overflow, and paths that trigger bugs. At the same time,
dynamic binary analysis is used to extract runtime infor-
mation, and finally, exploits are generated. *ey extended
this method to Mayhem [32] to support binaries. CRAX [33]
also starts at the crash point, symbolically executing the
program to find exploitable states and generate exploits.
Padaryan et al. [34] overcome ASLR on this basis. Xu et al.
[35] then extended the method to overcome NX. Although
the solution considers NX, it cannot solve the problem that
ASLR and NX are turned on at the same time and relies on
the program to contain the “jmp esp” instruction to com-
plete the exploit. Under the condition that ASLR and NX are
turned on at the same time, Zeratool [36] achieves the
purpose of hijacking the program control flow to the win
function and using ROP attacks to execute commands.
However, it does not consider that the program is protected
by PIE and relies on the existence of standard output
functions (puts, printf, etc.) in the program when using ROP
attacks.
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3. Automated Stack Buffer Overflow
Vulnerability Detection and
Exploit Generation

3.1. Stack Buffer Overflow Vulnerability. Stack buffer over-
flow means that the number of bytes written by the program
to a variable in the stack exceeds the number of bytes applied
by the variable itself, resulting in the change of variables in its
adjacent stack. For the ELF x64 program compiled by C/C++
language, the execution process of the program is the calling
process of the function. *ere is a nested call relationship
between functions, and each unfinished function occupies a
section of stack space, which is called a stack frame.*e stack
frame is inserted and popped out of the stack with the call of
the function. Local variables and return addresses are stored
in the stack frame. A typical stack buffer overflow vulner-
ability is shown in Figure 1. *e local variable s only applies
for the size of 0× 40 bytes, but the program calls fgets to read
it up to 0×100 bytes, resulting in a stack buffer overflow. Its
stack frame is shown in Figure 2. Reading 0×100 bytes from
s will overwrite the local variable v2, the caller’s stack frame
address, and the return address of vuln. *is makes the
program control flow that should have returned the main
function hijacked.

3.2. Ret to Libc. Ret to libc is a exploit technique mainly
aimed at dynamically linked programs. Because the program
is dynamically linked, it will load libc.so at runtime. Libc.so
is a dynamically linked version of the runtime glibc in the C
language library under Linux. And it contains a large
number of functions that can be used, including system,
execve. *erefore, the attacker can gain control of the target
program by finding the addresses of these functions in
memory and using the stack buffer vulnerability to overwrite
the return addresse to these functions.

With ASLR and NX turned on, the load base address of
libc.so is random, and the attacker cannot directly execute
malicious code by using the controllable memory address in
the program. Take tamilctf2021_name as an example, the
memory address mapping of its runtime is shown in Fig-
ure 3. *e address selected by the blue box (0x7f11eb94f000)
is the load base address of libc.so, which is random every
time the program runs. *erefore, like the system function
and “/bin/sh” string in libc.so, their addresses are also
random. *e key to ret to libc is to first obtain the load base
address, and then hijack the control flow to the system
function located in libc.so.

*erefore, the stack frame layout of applying ret to libc to
tamilctf2021_name is shown in Figure 4. *e left is the first
time to exploit the stack buffer overflow vulnerability. It sets
plt_puts as the parameter and jumps to got_puts for exe-
cution through pop rdi; ret, a gadget located in the program
text segment. *e address of the libc.so function introduced
by the program is stored in the GOT table, and the PLT table
transfers the program control flow to the actual function by
referencing the function address in the GOT table. *e right
shows that after leaking the address, it places the “/bin/sh”
string and the address of system in the stack.

*e control flow graph of ret to libc is shown in
Figure 5. Red addresses represent known program code
addresses, and purple addresses represent random ad-
dresses in libc.so. It first leaks the address of puts in libc.so
by using the puts function introduced in the program, so
that the address of libc.so loaded in the program can be
obtained. *en it transfers control flow back to vuln_func
to trigger the stack buffer overflow vulnerability again.
Finally, after getting the load address of libc.so, it sets the
function parameter to the address of “/bin/sh”, and jumps
to the system for execution, where “/bin/sh” and system
are located in libc.so. *at is, the program control flow is
hijacked from the program code segment to libc.so for
execution.

Figure 1: vuln function of dctf2021_sanity.
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Figure 2: Stack frame of vuln function in dctf2021_sanity.

Figure 3: *e memory address mapping of tamilctf2021_name.
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3.3. Ret to Dl-Resolve. In the case that the standard output
function is not introduced into the program, how can the
attacker obtain the load address of libc.so?*e answer is that
there is no need to obtain it. Under dynamic linking, there
are a lot of function references between program modules,
and it will take a lot of time to dynamically link all functions
before the program starts to execute. *erefore, Linux
adopts the delayed binding mechanism, the basic idea of
which is that the function is bound (symbol search, relo-
cation, etc.) when it is first used, and it is not bound if it is not
used. *e address in the GOT table is obtained by relocation
through _dl_runtime_resolve when the function is used for
the first time. *erefore, the main idea of ret to dl-resolve is
to forge the relocation structure of the target function
(including function name, relocation table) in the readable
and writable memory. *en it uses _dl_runtime_resolve to
resolve the target function (such as system) and hijack the
program control flow to the target function. *is technique
is closely related to the ELF file structure [37]. Fortunately,
the ret2dl-resolve module of pwntools [38], a well-known
exploit framework, makes it easy for us to generate such
payloads. In summary, while this technique does not rely on
the standard output function, it relies on the standard input
function to store fake data into readable and writable
memory.

3.4. BofAEG. We use angr [39] for symbolic execution and
getting input that triggers the stack buffer overflow vul-
nerability, and radare2 [40] for dynamic execution and
analysis of binary programs. *e flow chart of the entire
method is shown in Figure 6. First, BofAEG takes a binary
program as input and then calls the find_win function to
check if there is a win function in the program. *e win
function refers to a hacker method that bypasses the security
control of software and obtains access rights to a program or
system from a secret channel. For CTF programs, there are
mainly two types of win functions. One is to read the
contents of the “flag” file into memory and print it through
standard output, as shown in Figure 7; the other is to execute
the system function and return an interactive shell, such as
Figure 8.

Secondly, BofAEG determines whether the binary is
protected by PIE, and makes a choice based on whether it
contains the win function. If a win function is included then
explore_to_win is called to use symbolic execution to get the
input to the win function. Figure 9 shows a program protected
by PIE with a flag win function. *e local variable s1 has a
stack buffer overflow vulnerability, but due to PIE, the at-
tacker cannot obtain the program load address and modify
the return address to the flag win function. Fortunately, the
flag win function can be executed when the value of the local
variable v6 is 0xDEADBEEF. Finally, explore_to_win can get
the payload that uses the s1 buffer overflow to modify the v6.
However, if the program is protected by PIE and there is no
win function, BofAEG calls find_leak to try to obtain the
program load address (text_addr) and libc.so load address
(libc_addr). Figure 10 shows the leakage of text_addr and
libc_addr in the program. Find_leak uses dynamic analysis to
identify the features of text_addr and libc_addr in the
standard output stream of the program (text_addr:
0× 555555, libc_addr: 0x7fff). *en, it is judged whether the
identified address is in the program or libc.so loadingmemory
address range. With this method, find_leak can get the
loading address of the program or libc.so to bypass PIE/ASLR.

*irdly, BofAEG calls the find_stack_bof function to
detect stack buffer overflow vulnerability. find_stack_bof
uses symbolic execution to explore paths, and because the
shorter the path that triggers the vulnerability, the easier it is
to analyze, it uses a breadth-first search strategy during
exploration. Since the stack buffer overflow vulnerability is
characterized by hijacking the program control flow (that is,
the rip register is modified), find_stack_bof checks whether
the rip is symbolized after each symbolic state transition. If
rip is symbolicated, the program triggers a stack buffer
overflow vulnerability. At the same time, find_stack_bof
records the controllable symbolic memory address, in
preparation for the final use of symbolic constraints to
generate exploit.

Finally, the goal of binary exploit is to get shell inter-
action and execute arbitrary commands (usually to make the
program execute system (”/bin/sh”)). *erefore, the get_-
shell function implements six exploit techniques based on
the stack buffer overflow vulnerability characteristics:

system

hijack program control flow
in vuln_func (0×400607)

rdi =
got_puts
(0×601018)

leak puts
(0×7f11eb9cf970)
in libc.so &
calculate the base
address of libc.so
(0×7f11eb94f000)

return to
vuln_func (0×400607) again

rdi -> "/bin/sh"
(0×7f11ebb02d88)

return to system (0×7f11eb99e420)
in libc.so

…
pop rdi

ret

…
pop rdi

ret
plt_puts

Figure 5: Control flow graph of ret to libc.
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(1) Explore to win. *is exploit technique uses symbol
execution technology to try to get the input that
triggers the win function when the program is
protected by PIE and there is a win function.

(2) Ret to win. *is exploit technique achieves the
purpose of hijacking the program control flow to the
win function by overwriting the return address with
the address of the win function when the program
has a win function and the address of the win
function is known.

(3) Ret to system.*is exploit technique is implemented
when the program is protected by PIE and there is a
libc.so address leak (that is, libc_addr is obtained).
Because the program loading address is unknown,

the functions introduced in the program cannot be
used, so it is necessary to directly use the gadgets and
functions in libc.so. Because libc.so contains the
“/bin/sh” string and the system function, ret to
system can directly use the ROP attack to execute
system (”/bin/sh”).

(4) Ret to one_gadget. one_gadget [41] is a tool used to
find the address in libc.so that can lead to execve

binary find_win
Yes

Yes

explore_to_win

text_addr
find_stack_bof

get_shell
Yes

Yes

No

ret_to_win

No

ret_to_system/one_gadget

ret_to_libc
Failed

ret_to_dl–resolve

libc_addr
find_leak

No

No

radare2–>dynamic analysis

angr–>symbolic executionBinary protected by PIE?

Exploit Technique

Binary has win?
Input file

Function

Variable

Figure 6: Method flow chart.

Figure 7: A flag win function in umdctf2021_jne.

Figure 8: A system win function in downunderctf2021_out.

Figure 9: main function fragment of lexingtonctf2021_gets.

Figure 10: *e leakage of ext_addr and libc_addr in the program.
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(”/bin/sh”, NULL, NULL) when the program reg-
isters and memory state meet certain conditions.
Figure 11 shows one_gadget. Ret to one_gadget uses
dynamic analysis to obtain the register and real
memory information of the program when the stack
buffer overflow vulnerability is triggered, and then
obtains the applicable one_gadget address according
to this information. Similar to ret to win, ret to
one_gadget modifies the return address to the ad-
dress of the applicable one_gadget.

(5) Ret to libc. As described in 3.2, this technique is one
of the most common ways of ROP attacks. When the
program load address is known (not protected by
PIE or text_addr is obtained) and the standard
output function is introduced, this technique first
calls the standard output function to leak the libc.so
load address. It then triggers the stack buffer over-
flow vulnerability again by hijacking the control flow
to the vulnerable function. Finally, the program
control flow is hijacked to the system function in
libc.so.

(6) Ret to dl-resolve. As described in 3.3, this technique
does not rely on the standard output function, but on
the standard input function to store fake data into
readable and writable memory. It uses _dl_runti-
me_resolve to resolve the fake target function into
the program and call the target function.

4. Evaluation

Based on the main idea of Section 3, we implemented this
method in 700 lines of python, specifically using angr
v9.1.11752 for symbolic execution and radare2 v5.6.4 for
dynamic analysis. *e experiments were carried out on an
Ubuntu 18.04 64 bit machine with Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz, 16G RAM, and 5.4.0 kernel version.

We use CTF and CVE programs with stack buffer
overflow vulnerabilities to perform experiments, most of
them can be found in CTFTIME [42]. A CTF program can
be thought of as a simplified version of a real-world pro-
gram, used to more concisely and demonstrate the principles
of the vulnerability. *e difference is that the CTF program
is used to test the relevant abilities of the players in the
competition, so the vulnerability can be exploited, while the
real-world program has higher complexity, and even if there
is a vulnerability, it may not be exploitable.

According to the method introduced in Figure 6, we use
whether the program is protected by PIE and whether it
contains win functions as the selection criteria to demon-
strate the effectiveness of BofAEG as much as possible,
which is divided into the following four types: 1. Not pro-
tected by PIE, but containing win functions. 2. Not protected
by PIE and does not contain win functions. 3. It is protected
by PIE but does not contain win functions. 4. It is protected
by PIE and has win functions. Besides, We assume that the
system has ASLR turned on and these programs are pro-
tected by NX. Table 1 shows the results of Zeratool [36] and
BofAEG on 24 CTF programs and 5 CVE program. BofAEG

can automatically detect stack buffer overflow vulnerabilities
and generate exploits for 22 of them, while Zeratool can only
successfully exploit 7 of them. And the total time for BofAEG
to complete detection and exploitation is less than Zeratool.
Among the 7 programs that BofAEG cannot exploit, 2
programs (blue) successfully detect stack buffer overflow
vulnerability, and the remaining 5 program (red) cannot
detect the vulnerability.

For programs containing win functions, Zeratool only
supports function-level win function calls, while BofAEG
supports function-level and block-level win function calls.
Figure 8 is a function-level win function, while Figure 12 is a
block-level win function. If the program control flow is
hijacked directly to the main function containing win
function, the conditional check of local variable v5 will not
be automatically bypassed. *erefore, BofAEG chooses a
more fine-grained block-level win function call and directly
hijacks the program control flow to address 0× 4011EF to
bypass the condition check.

For programs that do not contain win functions but
introduce standard output functions, both Zeratool and
BofAEG can better implement the ret to libc exploit tech-
nique. However, BofAEG can implement the ret to dl-re-
solve exploit technique even if the program does not
introduce a standard output function. In addition, for
programs protected by PIE, BofAEG can effectively find
address leaks and apply exploit techniques.

5. Discussion

BofAEG overcomes some of the difficulties faced by current
research on automated detection and exploit generation of
stack buffer overflow vulnerability. However, BofAEG still
has some limitations and issues to overcome, so we discuss
these limitations and future work.

5.1. Limitations. It can be known from the experiments that
BofAEG still has programs that cannot be successfully de-
tected and exploited, and these programs illustrate the
limitations of BofAEG.

(1) Limitations of symbolic execution. Since BofAEG
uses symbolic execution to automatically detect stack

Figure 11: one_gadget.
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buffer overflow vulnerability, obtain input that ac-
curately reaches the vulnerability point, and generate
the final exploit, it is impossible to avoid path ex-
plosion and constraint solving problems faced by
symbolic execution. For example, because the input
in lexingtonctf2021_madlibs is formatted and spliced
by multiple “%s” in sprintf, the symbol constraints
cannot be expressed correctly; the symbolic execu-
tion fails to explore the stack buffer overflow vul-
nerability in the more complex cve-2004-
1257_abc2mtex due to the path explosion problem.
*erefore, it is difficult for BofAEG to detect stack

buffer overflow vulnerabilities for CVE programs
with high complexity.

(2) Limitations of a single vulnerability type. Although
the stack buffer overflow vulnerability is highly
harmful, CANARY can effectively mitigate the
harmfulness of this vulnerability. However, since
CANARY has been randomized and stored in the
program memory when the program is started if the
value of CANARY can be leaked through other
vulnerabilities, the stack buffer overflow exploits can
also be completed. cyberctf2021_harvester contains
both stack buffer overflow and format string vul-
nerabilities. *e attacker needs to leak CANARY
through the format string vulnerability, and then use
the stack buffer overflow vulnerability to complete
the exploitation.

5.2. Future Work. In the future, we will conduct further
research on the above limitations to try to overcome them.

(1) Optimize symbolic execution. Use static analysis
techniques to guide symbolic execution to mitigate
the path explosion problem, while trying to optimize
the symbolic processing function so that it can
correctly generate symbolic constraints.

(2) Combine multiple vulnerability types. Attempt to
exploit in combination with other vulnerability

Table 1: Results of Zeratool and BofAEG on CTF and CVE programs.

Program NX CANARY PIE Win Zeratool BofAEG Exp Tech
redpwnctf2020_coffer ✓ ✕ ✕ ✓ N/A 6 s Ret to system win
csictf2020_pwn0x1 ✓ ✕ ✕ ✓ N/A 5 s Ret to system win
csictf2020_pwn0x2 ✓ ✕ ✕ ✓ N/A 6 s Ret to system win
csictf2020_pwn0x3 ✓ ✕ ✕ ✓ 7 s 6 s Ret to system win
dctf2021_sanity ✓ ✕ ✕ ✓ N/A 4 s Ret to system win
umdctf2021_jne ✓ ✕ ✕ ✓ 7 s 6 s Ret to flag win
csawctf2021_password ✓ ✕ ✕ ✓ N/A 60 s Ret to system win
h@cktivityctf2021_retcheck ✓ ✕ ✕ ✓ N/A 8 s Ret to flag win
downunderctf2021_deadcode ✓ ✕ ✕ ✓ N/A 6 s Ret to system win
downunderctf2021_out ✓ ✕ ✕ ✓ 6 s 5 s Ret to system win
csawctf2020_roppity ✓ ✕ ✕ ✕ 30 s 6 s Ret to libc
downunderctf2020_return ✓ ✕ ✕ ✕ 30 s 7 s Ret to libc
dctf2021_babybof ✓ ✕ ✕ ✕ 37 s 5 s Ret to libc
umdctf2021_jnw ✓ ✕ ✕ ✕ 27 s 6 s Ret to libc
tamilctf2021_name ✓ ✕ ✕ ✕ N/A 4 s Ret to libc
dicectf2021_babyrop ✓ ✕ ✕ ✕ N/A 6 s Ret to dl-resolve
utctf2021_resolve ✓ ✕ ✕ ✕ N/A 6 s Ret to dl-resolve
nahamconctf2021_smol ✓ ✕ ✕ ✕ N/A 4 s Ret to dl-resolve
sharkyctf2020_give ✓ ✕ ✓ ✕ N/A 4 s text_addr and ret to libc
wpictf2020_dorsia1 ✓ ✕ ✓ ✕ N/A 4 s libc_addr and ret to one_gadget
dctf2021_hotelrop ✓ ✕ ✓ ✕ N/A 5 s text_addr and ret to libc
lexingtonctf2021_gets ✓ ✕ ✓ ✓ N/A 11 s Explore to flag win
lexingtonctf2021_madlibs ✓ ✕ ✕ ✓ N/A N/A N/A
cyberctf2021_harvester ✓ ✓ ✓ ✕ N/A N/A N/A
Cve-2004-1257_abc2mtex ✓ ✕ ✕ ✕ N/A N/A N/A
Cve-2011-1938_php ✓ ✕ ✕ ✕ N/A N/A N/A
Cve-2012-4409_mcrypt ✓ ✕ ✕ ✕ N/A N/A N/A
Cve-2013-2028_nginx ✓ ✕ ✕ ✕ N/A N/A N/A
Cve-2017-13089_wget ✓ ✕ ✕ ✕ N/A N/A N/A

Figure 12: A block-level system win function in
downunderctf2021_deadcode.
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types, such as format string vulnerability. *is re-
quires detecting all of these vulnerabilities and using
some technology to manipulate them, which is not
simple.

6. Conclusion

In this paper, we introduced the stack buffer overflow
vulnerability, which is caused by a program writing more
bytes to the buffer variable on the stack than it requested for
the buffer size. *e stack buffer overflow vulnerability can
overwrite the return address of the function to achieve the
purpose of hijacking the control flow of the program. Based
on this feature, we implemented BofAEG, which uses
symbolic execution and dynamic analysis to automatically
detect stack buffer overflow vulnerability and generate ex-
ploit. *e results show that BofAEG can not only detect and
generate exploits effectively but also implements more ex-
ploit techniques and is faster than existing AEG solutions.
*e source code of BofAEG and the test cases used in the
experiments are available on github [43].
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*e source code of BofAEG and the test cases used in the
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