
Research Article
A Deep Learning Method for Android Application Classification
Using Semantic Features

Zhiqiang Wang ,1,2,3 Gefei Li ,2 Zihan Zhuo ,4 Xiaorui Ren ,1 Yuheng Lin ,1

and Jieming Gu 4

1Department of Cyberspace Security, Beijing Electronic Science & Technology Institute, Beijing 100070, China
2State Information Center, Beijing 100045, China
3Guangdong Provincial Key Laboratory of Information Security Technology, Shenzhen, Guangdong 510006, China
4National Internet Emergency Center, Beijing, 100029, China

Correspondence should be addressed to Zihan Zhuo; zzh@cert.org.cn

Received 8 December 2021; Accepted 1 February 2022; Published 24 February 2022

Academic Editor: Robertas Damaševičius

Copyright © 2022 Zhiqiang Wang et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Android has become the most popular mobile intelligent operating system with its open platform, diverse applications, and
excellent user experience. However, at the same time, more andmore attackers take Android as the primary target.(e application
store, which is the main download source for users, still does not have a complete security authentication mechanism. Given the
above problems, we designed an Android application classification model based on multiple semantic features. Firstly, we use
analysis tools to automatically extract the application’s dynamic and static features into the text document and use variance and
chi-square tests to optimize the features. Combined with natural language processing (NLP), we transform the feature file into a
two-dimensional matrix and use the convolution neural network (CNN) to learn features efficiently. Also, to make the model
satisfy more application scenarios, we design a dynamic adjustment method according to user requirements, the number of
features, and other indicators. (e experimental results demonstrate that the detection accuracy of malware is 99.3921%. We also
measure this model’s performance in detecting a malware family and benign application, with the classification accuracy of
99.5614% and 99.9046%, respectively.

1. Introduction

Android has many devices and users and rich applications as
the most popular mobile intelligent operating system,
bringing great convenience to people’s lives. (e open-
source Android platform has made more and more mobile
terminal manufacturers and developers join the Android
alliance. According to the International Data Corporation’s
global smartphone market data report [1], with the popu-
larization of 5G and the accelerated research and develop-
ment of 5G smart terminals by notable brands, global
smartphone shipments are expected to increase slightly by
1.6% next year. However, at the same time, the security
problem of the Android system is also increasingly prom-
inent, which contains more and more sensitive information

such as user identity information, location information, and
privacy data. At present, the security authentication
mechanism for Android application stores is still not
complete, and more and more attackers take the Android
system as the primary attack target.

(e Android platform provides some security mecha-
nisms to limit malware functions, especially Android’s
permission control mechanism. Android system defines
various permissions for developers to protect system re-
sources and provides the corresponding APIs for accessing
the above system resources. If an application wants to use
these APIs to access user data, system configuration, and
other resources, it must apply for the corresponding per-
missions and obtain the user’s consent. However, most users
usually blindly grant all permissions, thus destroying the

Hindawi
Security and Communication Networks
Volume 2022, Article ID 1289175, 16 pages
https://doi.org/10.1155/2022/1289175

mailto:zzh@cert.org.cn
https://orcid.org/0000-0002-1789-8414
https://orcid.org/0000-0002-6851-437X
https://orcid.org/0000-0002-1426-4803
https://orcid.org/0000-0001-7655-0525
https://orcid.org/0000-0002-6953-2385
https://orcid.org/0000-0002-2466-988X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1289175


permission mechanism’s effectiveness and failing to limit
malware functions. As the primary source for users to
download applications, various third-party application
stores need to keep malware out and quickly and accurately
classify benign applications automatically. Currently, ap-
plication stores generally classify applications according to
categories specified by developers or by analyzing descrip-
tions provided by developers. However, malware developers
can easily manipulate this process to evade detection, such as
adding unqualified financial applications to the information
application interface that is more easily approved. Addi-
tionally, as the number of applications explodes, it is be-
coming critical to classify applications quickly and
accurately to improve management efficiency.

At present, most malicious application detection
schemes use static or dynamic analysis methods to extract
features and then combine machine learning algorithms to
identify malicious applications. Some schemes directly vi-
sualize the application source code as a gray image or RGB
image and use deep learning technology to analyze image
features. Although the feature extraction step is omitted, it
still belongs to static analysis. MalNet [2] uses CNN and
LSTM networks to learn from the grayscale image and
opcode sequence and takes a stacking ensemble for malware
classification. Ganesh et al. [3] extracted 138 permission
features and converted them into 12×12 PNG images and
then used CNN to detect malicious applications. Xu et al. [4]
used the control flow graph, data flow graph, and their
possible combination as the Android application features,
then encoded the graph into a matrix, and used them to train
the classification model through CNN. Zegzhda et al. [5]
proposed an approach for representing an Android appli-
cation for a CNN, which consists of constructing an RGB
image, the pixels of which are formed from a sequence of
pairs of API calls and protection levels.

In the above detection method, CNN has two key
benefits: local invariance and compositionality. Local in-
variance allows us to classify an image as a process con-
taining a specific target, no matter where the target appears
in the image. Compositionality means that each filter
combines features to form a high-level representation, en-
abling the network to learn more precious features at a
deeper level. However, the above methods are static analysis,
which cannot wholly characterize the behavior of malicious
applications, and need to extract dynamic features. Yuan
et al. [6] proposed an online Android malware detection
engine that extracted 192 features using static and dynamic
analysis techniques and combined with Deep Belief Net-
works to detect malware, achieving high accuracy. However,
there are still some problems, such as low accuracy and long
training time for high dimensional feature detection. In
NLP, Kim [7] proposed applying CNNs to sentence-level
classification problems and achieved excellent results with
an uncomplicated model.

(is paper combines NLP and CNN to extract static and
dynamic features and adds their frequency to describe
features more accurately. (en, all the features contained in
each application are transformed into a two-dimensional
matrix. Finally, we use CNN to learn features efficiently to

classify applications quickly. (e main contributions of this
paper are as follows:

(1) Automated feature extraction: We use four dynamic
and static analysis tools to extract features and ex-
press the features in the form of “feature name-
+ frequency” to describe the features more
accurately and comprehensively. Each type of feature
set is independent, and users can flexibly choose
analysis tools according to their needs. (is paper
conveniently adds new feature set types to ensure the
long-term validity of the model.

(2) Feature vector generation: We transform the feature
file into a two-dimensional matrix using NLP and
combine it with CNN, which is excellent in image
recognition, to learn features efficiently.

(3) Dynamic adjustment of the model: We design a
dynamic adjustment method of parameters
according to the user’s requirements (binary clas-
sification/multiclassification), the number of appli-
cations, and the average number of features
contained in the feature files, to ensure that the
model can always maintain the best detection effect
as the applications and features change.

(4) Aiming at the problem of multiclassification of
malware families and benign applications, we design
a multiclassification method for Android applica-
tions based on CNN, which has higher detection
accuracy than other methods.

2. Related Work

(ere are numerous Android malware detection schemes,
mainly divided into static analysis methods and dynamic
analysis methods.(e static analysis method analyzes source
code files or executable files without running applications.

EveDroid [8] is an event-aware Android malware de-
tection system that exploits the behavioral patterns in dif-
ferent events to detect new malware based on the insight that
events can reflect applications’ possible running activities.
Kumar et al. [9] proposed an Android malware detection
framework based on machine learning and blockchain.
Machine learning automatically extracts the malware infor-
mation using clustering and classification techniques and
storing it into the blockchain. Hasegawa and Iyatomi [10]
proposed a light-weight Android malware detection method.
It treats a minimal part of the target’s raw APK file as a short
string and analyzes it with one-dimensional CNN. Zhang
et al. [11] proposed an Android malware detection method
based on the method-level correlation relationship of the
application’s abstracted API calls. It calculates the confidence
of association rules between the abstract API calls to form the
behavioral semantics that describes applications and then
build the detection system in combination with machine
learning. Fang et al. [12] proposed an Android malware fa-
milial classification method based on DEX file section fea-
tures. It first converts the DEX file into RGB image and plain
text, respectively, and then extracts the image’s and text’s

2 Security and Communication Networks



color and texture as features. Finally, a feature fusion algo-
rithm based on multiple kernel learning is used for classifi-
cation. Apposcopy [13] is a new semantics-based approach for
detecting Android malware. It incorporates a high-level
language for specifying malware signatures and a static
analysis for deciding if a given application matches a given
signature. TaeGuen et al. [14] proposed using the method
based on presence and similarity to extract features and using
a multimodal deep learning method to detect malware.
MADAM [15] is a host-based malware detection system for
Android devices. It simultaneously analyzes and correlates
features at four levels, kernel, application, user, and package,
to detect and stop malicious behaviors. Narayanan et al. [16]
proposed a method that uses control flow graphs as features
and uses online support vector machine algorithms to detect
malicious applications. Azad et al. [17] used particle swarm
optimization to perform feature selection, a set of features to
characterize the behavior of android applications and classify
them as legitimate and malicious. Nisa et al. [18] proposed a
feature fusion method that combines features extracted from
pretrained AlexNet and Inception-v3 deep neural networks
with features obtained from images representing malware
code using segmentation-based fractal texture analysis
(SFTA) and built a multimodal representation of malicious
code for classifying grayscale images. Hemalatha et al. [19]
describe malware binaries as 2D images and classify them
with a deep learning model. Feng et al. [20] analyze and
extract two types of features (i.e., manifest attributes and API
calls) directly from the Dalvik binary and further update the
feature input with matching results between text-based be-
havioral descriptions and code-level features.

(e above static analysis methods have the advantages
of fast detection speed and high efficiency and can detect
malware in large quantities. (e disadvantage is that they
cannot fight against code transformation technology and
dynamic malicious payload technology. (e dynamic
analysis method can overcome the above weakness [21]. It
can capture sensitive behaviors in real time dynamically.
Feng et al. [22] proposed EnDroid, which uses DroidBox
to extract behavioral features through a runtime monitor
and uses chi-square feature selection algorithms and
ensemble learning to detect malware. Enck et al. [23]
designed a Taint Droid detection tool, which marks a
variety of sensitive data with taints. It determines whether
the application has a privacy data leakage behavior by
monitoring the flow path of these contaminated sensitive
data in real time in a sandbox environment. Tam et al. [24]
proposed a dynamic system based on a virtual machine
called CopperDroid, directly detecting system calls to
determine the operating system’s actions, generating
detailed and semantic behavior information to identify
malicious applications. However, it can only identify the
interaction between the system and the application, not
the interaction between the applications. (e above
methods are not affected by the code transformation
technology and can analyze the application’s behavior in-
depth, but the time is expensive. To analyze Android
applications more comprehensively, we use dynamic and
static analysis methods to extract features.

3. Architecture

(e Android application classification model’s overall
architecture is shown in Figure 1. It is mainly divided into
five modules: feature extraction module, feature pre-
processing module, feature vector generation module,
deep learning module, and detection module. First, we
rename the collected applications with the file hash,
remove the duplicate applications, and then store the
applications’ file hashes with the label “benign” or
“malicious” in the database.

In the feature extraction module, we use static and
dynamic analysis to batch extract features of applications
into text documents. Each line represents a feature, and each
application corresponds to a feature file.

In the feature preprocessing module, we use feature se-
lection algorithms to optimize features further. Next, in the
feature vector generation module, we convert each feature file
into a two-dimensional matrix.

In the deep learning module, the model can flexibly
adjust the parameters of the CNN according to the user’s
need and detection conditions (high precision/high effi-
ciency), detection types (binary classification/multi-classi-
fication), the average number of features, and other
indicators and select the most appropriate model as the final
detection model through training.

Finally, the user submits the application to be tested
through the client. (e malware detection module firstly
checks whether the application already exists in the database
through file hash and, if so, directly returns the detection
result. If it does not exist, the optimal detection model
obtained by the deep learning module is used. Details of each
module are shown in Figure 1.

3.1. Feature Extraction Module. In the feature extraction
module, for each application to be tested, we use APKTool [25],
androguard [26] Drozer, and DroidBox [21] to analyze the
applications, obtain the corresponding files, and then extract
features from them. (e feature consists of two parts separated
by spaces, the feature’s name, and the frequency of the feature
occurrence. It will be omitted if the frequency is 1. If the fre-
quency is 0, this feature is not selected. For each tool, we
separately write Python scripts to extract features into text
documents automatically and then merge them into the final
feature files for each application. (e following introduces the
four tools and the extracted content.

3.1.1. APKTool. We use APKTool to decompile the ap-
plication to get AndroidManifest.xml. by parsing XML
tree nodes <uses-permission>, <intent-filter>, <uses-
feature> to extract permission features, component fea-
tures, and environmental features.

(1) Permission Features. When an application performs
specific operations or accesses certain data, it must apply for
corresponding permissions, which means that the permis-
sions defined in the manifest file can indicate the applica-
tion’s behavior. In the feature extraction process, we only
extract the permission name. We collect the system

Security and Communication Networks 3



permissions of the application by parsing the <uses-per-
mission> tags.

(2) Component Features. Application components are
the basic building blocks of Android applications, including
Activity, Service, Broadcast Receiver, and Content Provider.
Components are called Intents, which can register and re-
ceive messages. We can use them to start components or
pass some important data to components. We collect
component features by parsing the <action> and <category>
tags in the <intent-filter> tags.

(3) Environmental Features. It includes hardware or soft-
ware functions that applications depend on, such as GPS and
NFC. Devices lacking specific hardware or software functions
will not execute applications that require such special functions.
For example, Android devices that do not support wireless
charging cannot charge wirelessly. We collect environmental
features by parsing <uses-feature> tags.

3.1.2. Androguard. We use the androrisk.py file in andro-
guard to analyze the applications’ risk level, and the analysis
results and extracted contents are shown in Figure 2.

(e analysis results are mainly composed of three parts:
DEX, APK, and PERM. (e analysis contents of DEX and
APK are given in Table 1. PERM is the number of different
functional permissions.

3.1.3. Drozer. Drozer is an Android security testing
framework. We use “app. package. attacksurface” com-
mand to test the attackable points of the applications and
extract the attack surface features. (e results are shown
in Figure 3.

3.1.4. DroidBox. TaintDroid is a dynamic stain detection
technology, whose core idea is to mark sensitive data and
turn them into pollution sources. In the process of

program operation, when these pollution sources spread
through interprocess communication, file transfer, etc.,
TaintDroid will conduct tracking reviews and record in
the log to realize the tracking of sensitive data. DroidBox
builds on this by performing dynamic stain analysis at the
application framework level and redefines the types of
stain tags, adding functions such as file manipulation
monitoring, network sending and receiving data moni-
toring, encryption and decryption logging, and log
analysis. DroidBox provides two scripts, startemu.sh for
launching an emulator dedicated to dynamic analysis of
Android apps and droidbox.sh for performing specific
dynamic analysis tasks. (is paper extracts dynamic
behavior features from the operation logs of each ap-
plication by running the DroidBox for 30 seconds. (e
specific features are as follows:

(1) Cryptographic Operation. Malicious applications
usually use encryption to encrypt root vulnerabilities,
malicious payloads, key method identifiers, value-added
service SMS, and URLs to remote malicious servers to avoid
static detection. So, we count the frequency of encryption,
decryption, and key generation and record all encryption
algorithms used by the applications.

(2) Network Operation. Malicious applications may re-
ceive messages from malicious command and control (C &
C) servers through the network and obtain malicious pay-
loads from malicious websites, so that attackers can ma-
nipulate the applications to obtain users’ private
information. We count the frequency of sending and re-
ceiving network communication data.

(3) Information Leaks. Information leaks are mainly
through the network and files, so we count the number of
times dataleaks_operation_write, dataleaks_sink_File,
dataleaks_operation_read, dataleaks_-sink_Network oc-
curred. Simultaneously, the leakage of LOCATION, IMSI,
ICCID, IMEI, PHONE_NUMBER, LOCATION_GPS is
also calculated.

Feature Extraction Feature Vector
Generation

Two-dimensional matrix

Decompiling
Manifest files 

Extracting Permission /
Component /

Environmental
Features

Androrisk.py Extracting APK Risk
Features

Running in
DroidBox for

30s

Extracting Dynamic
Features

Removing features with
low variance & low

chi-square value

Feature Preprocessing

Obtaining
Vocabulary by

traversing Feature
Files

Sample X

1GET_TASKS
ACCESS_WIFI_STATE 3
RESTART_PACKAGES 5
MONEY 7

1 3 5 7

Cov 1 Cov 2 Cov 3

Pool 1 Pool 2 Pool 3

FC

CNN

Detection

Server

Upload
Applications

Classification
Results

Drozer Extracting Attack
Surface Features

Feature File
Unknowm
GET_TASKS
ACCESS_WIFI_STATE
RESTART_PACKAGES
MONEY
SMS 3
PRIVACY 4
algorithm_AES
dataleaks_sink_File 7 

Figure 1: (e overall architecture of the model.

4 Security and Communication Networks



(4) Sent SMS. Malicious applications usually cause fi-
nancial charges to infected users. (ey can secretly subscribe
to value-added services by sending several SMS messages
without the user’s consent. So, we count the frequency of
sending text messages.

(5) Service Start. Malicious applications usually perform
malicious behavior in background processing contained in
in-service components. So, we count the number of times
the service has started.

(6) Receiver Action. Malicious applications usually le-
verage system events to trigger malicious behaviors. Reg-
istered Broadcast Receivers can be a fair reflection of the
monitored system events. For example, registering the re-
ception of BOOT_COMPLETED intent in malware indi-
cates triggering malicious activity directly after the mobile
device’s startup.

3.2. Feature Preprocessing Module. To further reduce
overfitting and improve the model’s training speed and
generalization ability, we design a feature preprocessing
module. (e first step is to remove low-variance features.
(rough experimental tests, setting the removal rate to
99.95% and above can achieve better detection results.

(e second step is the chi-square test, which can express
the correlation between feature items and categories. (e
higher the CHI value, the more significant the correla-
tion. So, we remove the features with lower chi-square
values in the experiment.

3.3. Feature Vector Generation Module. According to ref-
erence [27], after the feature preprocessing module, we
traverse all the feature files and obtain all the features that
have appeared as the vocabulary. Each feature in the vo-
cabulary is labeled with consecutive numbers to obtain a
mapping from feature to label ID. Also, we add an “Un-
known” feature to match unknown features that are not in
the vocabulary during the detection phase.

Since CNN’s input is a vector in continuous space,
while NLP uses discrete characters, we need to use word
embedding technology to convert each feature file into a
two-dimensional matrix when classifying Android ap-
plications using CNN. First, we represent each feature in
the vocabulary with a vector and randomly initialize the
vectors. (en, we update the word vector continuously
with training. (e length of the word vector depends on
the specific situation of the feature set. 50–300 is a
common choice, and we set it to 200. We convert the
features contained in each feature file into corresponding
ID sequences according to the vocabulary, respectively.
(en, the feature file is transformed into a two-dimen-
sional matrix according to the ID sequences and the
vocabulary. (e specific process is shown in Figure 4.

3.4. Deep Learning Module. Deep learning algorithms in-
clude CNN, RNN, and LSTM. LSTM and RNN are suitable
for learning long time series, and CNN has a better learning
ability for local features. In this paper, the features contained
in each application are composed of four parts, which have
no time sequence and short average length. According to
reference [6], the parts associated with permission features
can more effectively characterize applications’ malice. (at
is, capturing the relationship between local features can train
the model more effectively. So, we finally adopted CNN.

(e structure of CNN in the deep learning module is
shown in Figure 5.

(e first layer is the embedding layer, which is mainly
responsible for embedding features into low-dimensional
vectors. (en, we perform multiple parallel convolution

/mnt/hgfs/share/apk/1.apk
RedFlags

DEX { ‘NATIVE’ :0, ‘DYNAMIC’ :1, ‘CRYPTO’ :1, ‘REFLECTION’ :1}
APK { ‘DEX’ :0, EXECTABLE’ :0, ‘ZIP’ :0, ‘SHELL_SCRIPT’ :0, ‘APK’ :0,

 ‘SHARED LIBRARIES’ :3}
PERM { ‘PRIVACY’ :0, ‘NORMAL’ :1, ‘MONEY’ :0, ‘INTERNET’ :1, ‘SMS’ :0, ‘DA

NGEROUS’ :1, ‘SIGNATUREORSYSTEM’ :0, ‘CALL’ :0, ‘SIGNATURE’ :0, ‘GPS’ :0}
FuzzyRisk

VALUE 92.0

DYNAMIC
CRYPTO
REFLECTION
SHARED LIBRARIES 3
NORMAL
INTERNET
DANGEROUS

�e Analysis Results of Androrisk.py Feature File

Figure 2: (e analysis result and extracted contents of androrisk.py.

Table 1: (e analysis content of androrisk.py.
DEX Description
NATIVE Number of calls to non-java code
DYNAMIC Times of dynamic loading of dex from sd
CRYPTO Number of hidden dexes
REFLECTION Number of reflections
APK Description
DEX Times of dex use
EXECUTABLE Number of executions
ZIP Compressed package
SHELL_SCRIPT Number of times the script is used
APK Number of other apks
SHARED LIBRARIES Number of shared databases

dz> run app. package. attacksurface com. glu. android. dinercn
Attack Surface:

1 activities exported
1 broadcast receivers exported
0 content providers exported
0 services exported

dz>

Figure 3: (e results of attack surface test.

Security and Communication Networks 5



operations, batch normalization, and 1-max pooling on the
input matrix and concatenate all the outputs into a fixed-length
feature vector. Finally, we classify the results using the full
connection layer. (e specific description of each layer is as
follows:

3.4.1. Convolutional Layer. (e convolutional layer is the
core of the network. We use multiple filters of different sizes
to learn the same area’s complementary features, and we can
obtain different feature maps. (ere are three parallel
convolutional layers in Figure 5, where the width of the filter
is the same as the width of the two-dimensional matrix (i.e.,
the length of the word vector), and we set it to 200. In this
way, after a convolution operation, the two-dimensional
matrix becomes a column vector. (3,4,5) is the height of the
filter, that is, the relationship between 3, 4, and 5 features.
(ere are 64 filters of each type.

3.4.2. Pooling Layer. (e dimension of the feature map
generated by each filter varies depending on the number
of features and the size of the filter region. (erefore, 1-

max pooling is applied to each feature map to induce a
fixed-length vector.

3.4.3. Fully Connected Layer. We send the concatenate
vectors to the softmax classifier through the full connection
layer for classification and use the regularization technology
Dropout to prevent overfitting.

3.5. Detection Module. (e user submits the application to
be tested through the client. (e malware detection module
firstly checks whether the application already exists in the
database through file hash and, if so, directly returns the
detection result. If it does not exist, the optimal detection
model obtained by the deep learning module is used. (e
detection result is an excel file, including the file hash and
classification results of the application (0 for malicious
application and 1 for benign application).

4. Experiments and Evaluation

4.1. Dataset. (e dataset includes 18549 malware and 18453
benign applications, of which the malware comes from
VirusShare [28] and Drebin [29], and the benign applica-
tions come from Google Play Store [30]. (ey are scanned
and detected by VirusTotal [31]. When all virus scanners in
VirusTotal treat the application as benign, the application
will be included in the benign application dataset.

In practice, we analyzed all applications, but tools do not
correctly analyze some applications. So, the features are
contained in 100% of themanifest files, 99.6757% of the APK
risk files, 99.5081% of the attack surface files, and 72.6420%
of the dynamic behavior files. Detailed statistical results are
shown in Table 2.

4.2. Experimental Settings. (e experimental environment is
as follows.

(i) Hardware Dependencies: on the hardware, NVIDIA
GPU GeForce RTX 2070, and 8GB memory are
used.

(ii) Software Dependencies: in terms of software,
Ubuntu 16.04 LTS, Python 3.6, TensorFlow 1.13.1,
Scikitlearn 0.20.3, Numpy 1.16.2, Pandas 0.24.2, and
Matplotlib 3.0.3 are used.

(iii) GPU Components: GPU components include
NVIDIA GPU driver, CUDA 10.1 and cuDNN
v7.5.1.

GPU is used to accelerate the CNN. Tensorflow is used to
implement CNN, and Scikitlearn is used to implement
various machine learning algorithms.

Android malware detection is a binary classification
problem. (ere are four possible prediction results. (e con-
fusion matrix is shown in Table 3. Among them, True Negative
(TN) indicates that benign samples are predicted as benign,
False Negative (FN) indicates that malicious samples are
predicted as benign, False Position (FP) indicates that benign
samples are predicted as malicious, and True Position (TP)

Vocabulary
Two-dimensional

matrix of Sample X

word vector 1
word vector 2
word vector 4
word vector 6

1
2
4
6

0 [word vector 0]
1 [word vector 1]
2 [word vector 2]
3 [word vector 3]
4 [word vector 4]
5 [word vector 5]
6 [word vector 6]

Sample X

READ_PHONE_STATE
SEND_SMS
GET_TASKS
CRYPTO 3

1
2
4
6

Figure 4: Feature vector generation.

Filter Concatenation

Fully Connected + So�max

Pooling 0
Kernel 3x1

Stride 1
1-max pooling

Pooling 1
Kernel 4x1

Stride 1
1-max pooling

Pooling 2
Kernel 5x1

Stride 1
1-max pooling

BatchNorm 0 

Embedding

 BatchNorm 1 BatchNorm 2

Convolutional 0
Kernel 3x200

Stride 1
Out channels 64

Convolutional 1
Kernel 4x200

Stride 1
Out channels 64

Convolutional 2
Kernel 5x200

Stride 1
Out channels 64

Figure 5: (e structure of CNN.

6 Security and Communication Networks



indicates thatmalicious samples are predicted asmalicious.(e
evaluation indicators are as follows: Accuracy (ACC), Precision
(PRE), Recall (REC), and F1 score (F1).

Accuracy is defined as the percentage of the total sample
that is predicted correctly.

ACC �
(TP + TN)

(TP + EN + FP + TN)
. (1)

Precision means the probability of a positive sample
among all the samples that are predicted to be positive.

PRE �
TP

(FP + TP)
. (2)

Recall is the probability of being predicted as a positive
sample in a sample that is positive.

REC �
TP

(EN + TP)
. (3)

F1 score is the harmonized average of precision and
recall.

F1 � 2PRE · REC(PRE + REC). (4)

4.3. Feature Selection and Analysis. After the feature ex-
traction module, the number of features included in
different feature sets is shown in Table 4 (the statistical
results in this table only include the feature names and do
not include the following parameters, such that “NA-
TIVE 2” and “NATIVE 3” are counted only once in this
table).

To have a more detailed understanding of the features
and lay the foundation for subsequent experiments, after
the feature preprocessing module, we count the types of
features contained in each feature set (Type), and the
maximum (Max), minimum (Min), and average (Ave)
number of features included in all feature files of each
feature set. (e statistical information is shown in
Table 5.

Taking feature set I as an example, we compare the
statistical information before and after feature pre-
processing and find that the number of feature types and
the maximum number of features are significantly re-
duced. Personality features are greatly reduced, but the
reduction of the average number of features is minimal.

4.4. Contrast Experiment with Machine Learning Algorithms.
To analyze the effect of the Android malware detection
model based on CNN, we select seven machine learning
algorithms, namely, k-NearestNeighbor (kNN), Decision
Tree (DT), Support Vector Machine (SVM), Logistics Re-
gression (LR), XGBoost, Random Forest (RF), and Multi-
Layer Perceptron (MLP) to test the detection effect on three
feature sets.

(e hyperparameters of seven machine learning algo-
rithms are set by default. (e hyperparameters of CNN
mainly refer to the experimental results and parameter
adjustment suggestions in reference [32].(rough a series of
experimental verification, we have obtained the baseline
configuration parameters.

(e filter region size is (3,4,5), the feature map is 64, and
the activation function is RELU. (e embedding size and
batch size are 200 and 128, respectively. (e epoch is set to
10, 1-max pooling is used, and the dropout rate and train set
radio are 0.5 and 50%, respectively.

We randomly selected 50% in all applications as the
training set, of which 10% as the verification set and the
remaining 50% as the test set. (e experimental results are
shown in Figure 6.(e detection effect of CNN is better than
that of machine learning algorithms. With the increase of
features, the detection effect is getting better and better,
proving the effectiveness of the feature set.

4.5. Contrast Experiment between Different Hyperparameters
of CNN. (is section further analyzes the influence of dif-
ferent hyperparameters on the experimental results. For this
reason, keep all other settings unchanged and only change
the parameters to be analyzed.

4.5.1. Effect of Filter Region Size. We first perform a coarse
linesearch over a single filter region size to find the “best”
size for the feature set under consideration. (e experi-
mental results are shown in Figure 7. When the filter region
size is 1, the performance of the model is weak. When the
filter region sizes are 3 and 5, the classification accuracy is the
highest. According to the statistical information, the average
number of features in each feature file ranges from 13 to 24.
For feature files containing more features, the optimal filter
region size can be more extensive. When the training set
accounts for 50%, the size of the vocabulary corresponding
to feature set I is 1233, feature set I + II is 1438, and feature
set I + II + III is 1817.

Besides, we combine different region sizes and copies to
obtain the best effect.(e experimental results can be seen in
Table 6. Using different feature sets, the combination of
several region sizes near the optimal size can improve the
classification performance. However, when we use other

Table 2: Detailed statistics of dataset.

Manifest file APK risk file Attack surface file Dynamic behavior file
Malicious 18549 (100%) 18506 (99.7682%) 18498 (99.7251%) 16769 (90.4038%)
Benign 18453 (100%) 18316 (99.2576%) 18322 (99.2901%) 10110 (54.7878%)
Total 37002 (100%) 36882 (99.6757%) 36820 (99.5081%) 26879 (72.6420%)

Table 3: Confusion matrix.

Type of prediction Benign Malicious
Benign TN FP
Malicious FN TP

Security and Communication Networks 7



Table 4: (e information of feature sets.

Benign Malicious

Feature set I

Permission feature 571 276
Component feature 848 420

Environmental feature 151 38
Total 1570 734

Feature set II APK risk feature 20 20

Feature set III Dynamic feature 45 45
Attack surface feature 4 4

Table 5: (e statistical information of feature files.

Type Ave Max Min

I (before) Malicious 734 16.4317 126 1
Benign 1570 13.1863 193 1

I (after) Malicious 286 16.3737 111 1
Benign 352 13.0542 149 1

I + II (after) Malicious 306 23.4436 121 1
Benign 372 20.0836 164 1

I + II + III (after) Malicious 355 24.3196 121 1
Benign 421 20.4258 164 1

I

I+II

I+II+III

I I+II I+II+III

94.8111

KNN DT SVM LR XGBoost RF MLP CNN

95.7894

95.7660

93.8544

95.1192

95.5516

94.5649

95.7420

96.0759

94.6009

95.8164

96.4574

94.1300

95.4992

96.6412

95.4327

96.6428

96.9191

95.7720

97.1354

97.5437

99.1190

99.2213

99.3538

100.0
99.5
99.0
98.5
98.0
97.5
97.0
96.5
96.0
95.5
95.0
94.5
94.0
93.5
93.0

Ac
cu

ra
cy

 (%
)

Figure 6: Detection accuracy of different algorithms under different feature sets.

99.35

99.3

99.25

99.2

99.15

99.1

99.05

ac
cu

ra
cy

 (%
)

99

98.95
3 5 7 10

filter region size

15 20 25

I

I+II

I+II+III

3, 99.1995%

3, 99.0905%

3, 99.3100%

Figure 7: Accuracy of models with different filter region size.

8 Security and Communication Networks



filter combinations far from the optimal region size, we
cannot achieve a better detection effect than a single filter.
For example, when using Feature Set I, the detection effect of
a single filter (3) is better than that of filter combinations
(7,7,7).

When all the features are applied, the model performs
best when the filter region size is (3,4,5). (e classification
accuracy is 99.3538%, and the training time is 70 seconds.
(e change of accuracy and loss on the training set and
verification set is shown in Figures 8 and 9. (e orange line
results from the training set, and the blue line is the result of
the verification set. (e model tends to be stable after 1,250
batch iterations, with the verification set’s accuracy floating
around 99.4% and the loss value floating around 0.02.

4.5.2. Effect of Number of Feature Maps. We again hold
other configurations constant and test the influence of the
number of feature maps.(e experimental results are shown
in Figure 10. (e “best” number of feature maps depends on
the feature sets. As the number of feature maps increases, the
classification effect is getting better and better. However,
when it exceeds the critical value marked in Figure 10, the
model may reduce the classification accuracy due to over-
fitting. On the other hand, as the number of feature maps
increases, the model’s training time is longer.

4.5.3. Effect of Regularization. Dropout is a common reg-
ularization strategy. During the learning process of a neural
network, it temporarily discards some units with a certain
probability and discards the weights of all nodes connected
to them. Keeping the other settings unchanged, we use the
feature set I + II + III to test the effect of Dropout. (e ex-
perimental result is shown in Figure 11.When the number of

feature maps is 64, the model performs best when the
dropout rate is 0.5. (e classification accuracy is 99.3538%,
and the training time is 70 seconds. At this time, the number
of randomly generated network structures is also the largest.
When the number of feature maps is 500, the model per-
forms best when the dropout rate is 0.6. (e classification
accuracy is 99.3921%, and the training time is 200 s. By
comparing the two sets of data, we can find that Dropout’s
effect is more noticeable when the amount of data is large.
When the network has the risk of overfitting, we can try the
following methods to prevent overfitting: 1. Applying batch
standardization between convolution layers can regularize
and avoid the gradient disappearance and reduce training
time. 2. When Dropout is applied to the full connection
layer, the dropout rate can be set to about 0.5.3, combining
learning rate decay and Adam optimization algorithm to
improve the model’s detection effect further.

4.6. Contrast Experiment with Deep Learning Algorithms.
To show the performance of our model, we investigated
similar approaches that have been previously proposed.
Table 7 shows the results of the investigations. Many existing
methods utilize the malware samples from the VirusShare.
(erefore, we include the performance in the table when
using the samples from the VirusShare in the detection test.

As shown inTable 7, ourmodel’s detection accuracy and the
F1-score values are higher than the other methods. [14, 33]
adopt the method of generating feature vectors based on ex-
istence. If there is a corresponding feature in the application, it is
expressed as 1; if it does not exist, it is expressed as 0.(e vectors
generated by this method are too sparse, and the dimension of
feature vectors is high. Our method can overcome these
shortcomings and achieve better detection results.

Table 6: Results obtained using different feature sets.

Region size Train time (s) ACC (%) PRE (%) REC (%) F1 (%)
Feature set I

(3) 37 99.0905 98.9735 99.1794 99.0763
(5) 39 99.0508 98.3917 99.6995 99.0413
(3,4,5) 63 99.1190 99.0872 99.1216 99.1044
(2,3,4,5) 80 99.0962 98.7040 99.4683 99.0847
(3,3,3) 62 99.0280 99.2337 98.7864 99.0096
(3,3,3,3) 74 99.1303 98.7719 99.4683 99.1189
(7,7,7) 81 99.0621 98.9616 99.1331 99.0473

Feature set I + II
(3) 36 99.1995 99.0590 99.3307 99.1947
(5) 38 99.1886 98.7705 99.6050 99.1860
(3,4,5) 63 99.2213 99.2966 99.1332 99.2148
(2,3,4,5) 76 99.2430 99.1781 99.2978 99.2379
(3,3,3) 58 99.1886 99.2096 99.1551 99.1824
(3,3,3,3) 71 99.2267 98.9524 99.4953 99.2231

Feature set I + II + III
(3) 43 99.3100 98.8877 99.7360 99.3100
(5) 44 99.2771 99.0153 99.5381 99.2760
(3,4,5) 70 99.3538 99.0061 99.7030 99.3534
(2,3,4,5) 85 99.2552 99.0794 99.4281 99.2534
(3,3,3) 69 99.2662 99.0044 99.5271 99.2650
(3,3,3,3) 79 99.3045 98.9089 99.7030 99.3044

Security and Communication Networks 9



accuracy_1

1

0.995

0.99

0.985

0.98

0.975

0.97

0.965

0 200 400 600 800 1k 1.2k

Figure 8: (e change of accuracy.

loss

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

0 200 400 600 800 1k 1.2k

Figure 9: (e change of loss.

99.4
99.35

99.3
99.25

99.2
99.15

99.1
99.05

ac
cu

ra
cy

 (%
)

99
98.95

10 50 100 200 400
number of feature maps

600 800 1000

50.99.2485%
100,99.1588%

I
I+II
I+II+III

100, 99.3319%

Figure 10: Effect of number of feature maps for different feature sets.

10 Security and Communication Networks



We measured the method proposed in [36], and the result
is shown in Table 8. (e feature vectorization method of [5]
first reads the classes.dex file as an unsigned vector and then
converts the vector into a fixed size by resampling. Resampling
algorithms commonly used in image processing include
Nearest Neighbor Interpolation, Bilinear Interpolation, and
Bicubic Interpolation. Unlike two-dimensional images, [5] uses
a similar method to resample one-dimensional sequences and
convert the original bytecode of classes.dex into a fixed-size
sequence. Besides, our model uses various kinds of features to
reflect the various aspects of applications.

4.7. Dynamic Adjustment Method. To make the model meet
more application scenarios, we design a dynamic adjustment
method of the model according to the user requirements, the
number of applications, and the average number of features.
(e detailed description is shown in Figure 12.

4.7.1. Mode Selection. (e model includes three detection
modes, namely, Android malware detection, Android
malware familial classification, and benign application
classification. Users can select the corresponding mode
according to their own needs.

4.7.2. Training Set. We will regularly update and add the
training set to ensure the model’s adaptability and long-term
effectiveness for Android malware detection mode. For
Android malware familial classification mode, users need to

upload the applications according to the familial classifi-
cation or add/delete the familial applications based on
Drebin. For benign application classification mode, users
need to upload applications according to the application
store’s classification.

4.7.3. Tool Selection. Users can choose the detection tool
according to their own needs (high efficiency/high accu-
racy), but to ensure the detection effect, APKTool is a re-
quired tool. (roughout the previous experiment, we
observed that even if only feature set I is used, the model can
still maintain a high accuracy of 99.1303% while detecting
rapidly.

4.7.4. Obtaining Indicators. According to the tools that are
selected by the user, feature extraction and preprocessing
operations are performed to obtain indicators: the total
number of feature files and the average number of features.

4.7.5. Dynamic Generation of Optimal Model. For multi-
classification mode, users need to select detection tools and
upload training sets. According to the indicators and con-
version table shown in Table 9, CNN, with different pa-
rameters, is automatically generated to train the data. (e
model with the highest detection accuracy is stored as the
final detection model.

99.5

99.4

99.3

99.2

99.1

99

ac
cu

ra
cy

 (%
)

98.9
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dropout_rate

0.5, 99.3538%

64
500

0.6, 99.3921%

Figure 11: Effect of regularization.

Table 7: (e results of the investigations.

System
Dataset

Algorithm ACC/F1
Benign applications Malware

Ours Google play store: 18453 VirusShare + drebin: 18549 CNN 99.3538%/99.3534%
[33] Google play store: 3000 Android malware genome project +Virusshare: 8000 DBN NA/95.05%
[14] Google play store: 19747 VirusShare: 13075 malgenome project: 1209 DNN 98%/NA

[34] 360 security company and
wandoujia app store:10948 Drebin +VirusShare: 8652 CNN 96.54%/95.89%

[35] AndroZoo: 5215 VirusShare + android malware genome project: 5442 DBN 98.71%/NA
[36] Google play store: 8000 VirusShare: 8000 CNN 95.8%/NA

Security and Communication Networks 11



4.7.6. Return Result. (euser uploads the applications to the
server, and the server uses the detection tools selected by the
user to perform feature extraction and preprocessing op-
erations. (en, use the optimal mode generated in the
previous step for detection, get the detection result, and
return it to the user.

5. Detection of Malware Families

(is section uses the Drebin dataset to evaluate the model’s
performance on the classification of malware families. (e
structure of CNN is shown in Figure 13, and the configu-
ration parameters are as follows. (e filter area size is set to
(2, 3, 4, 5), the feature map is 16, and the activation function
is RELU. (e embedding size and batch size are 200 and 32,
respectively, the epoch is set to 10, and 1-max pooling is
selected for pooling.(e dropout rate is 0.5, and the train set
radio is 90%.

All malware belongs to known malware families. (e
basic information is shown in Table 10, including the
number of applications of each malware family, the number
of feature types included in feature set I, and feature set I + II.

In all applications, 90% are randomly selected as the
training set, of which 10% are used as the verification set, and
the remaining 10% are used as the test set. When the filter
region size is (2,3,4,5), the model performs optimally, and
the classification accuracy is 99.5614%. Two applications are
classified incorrectly, which is higher than the 94.5% clas-
sification accuracy of EnDroid [22]. With the addition of
feature set II, the classification accuracy and stability of the
model have improved. (e change of accuracy and loss on
the training set and verification set are shown in Figures 14

and 15. (e orange line is the result of the training set, and
the blue line is the result of the verification set. (e model
tends to be stable after 1040 batch iterations, with the
verification set’s accuracy floating around 99% and the loss
value floating around 0.04.

6. Detection of Benign Applications

(is section evaluates the performance of the model on
multiple classifications of benign applications. We collect
nine types of applications from the Xiaomi App Store. (e
basic information is shown in Table 11, including the
number of applications of each type (Apps), the types of
features they contain (Features), and the maximum (Max),
minimum (Min), and average (Ave) number of features
contained in the feature files. From Table 11 [27], we can
infer that the game applications do not have a specific
function because the game applications contain only 191
types of features, and the average number of game appli-
cations’ features is the smallest.While the sports applications
features’ minimum number is 11, which means they have
specific functions. For example, accurately tracking sports
routes, distances, speeds, and altitudes through GPS and
measuring heartbeat frequencies and pulses related to
medical sports are the typical functions in most sports
applications. (ese applications need to get relevant per-
missions, namely, positioning permissions (ACCESS_FI-
NE_LOCATION and ACCESS_COARSE_ LOCATION)
and sensor permissions (BODY_SENSORS). It is feasible to
implement classification according to the applications’
features. Besides, to ensure the efficiency of classification
management, we only use feature set I.

Table 8: Comparison of experimental results.

PRE (%) REC (%) ACC (%) F1 (%)
Ours 99.0061 99.7030 99.3538 99.3534
[36] 95.4 96.2 95.8 95.8

Mode 
Selection

Training 
Set

Tool 
Selection

Obtaining 
Indicators

Dynamic 
Generation 
of Optimal 

Model

Return 
Result Users upload the applications to be tested

Store the model with the highest accuracy as the detection 
model

Generate different models based on indicators and 
conversion tables

�e Total Number of Feature Files
�e Average Number of Features

Android Malware 
Detection

Android Malware 
Familial 

Classification

Benign 
Application 

Classification
Regularly Update 

and Add
Applications

Add/Delete the 
Familial 

Applications

Upload 
Applications

APKTool Androguard Drozer DroidBox

Figure 12: Dynamic adjustment method.

12 Security and Communication Networks



In the most relevant work, Shabtai et al. [37] use
machine learning algorithms to classify tool and game
applications by extracting static features from dex files
and manifest files. Wang et al. [38] achieve an accuracy of
82.93% in benign application classification by extracting
11 static features and using a collection of multiple ma-
chine learning classifiers. Based on API relationships
analysis and CNN, an automatic classification method for
Android applications is proposed by Fan et al. [39]. It
classifies applications into 24 categories with an average
accuracy of 88.9%.

(e configuration parameters of CNN are as follows, and
its structure is the same as themalicious Android application
familial classification model. (e pooling and activation
function select 1-max pooling and ReLU, respectively, the
filter area size is (2,3,4,5), and the feature map is 32. (e
embedding size and batch size are 200 and 32, respectively,
the epoch is set to 10, the dropout rate is set to 0.5, the train
set radio is 80%, and the vocabulary is 1288. In all appli-
cations, 80% are randomly selected as the training set, of
which 10% are used as the validation set, and the remaining
20% are used as the test set.

Table 9: Conversion table.

Number of features files Number of filters (e average number of features Filter region size
0–5000 16 10–50 (3,4,5) (3,3,3,3) (2,3,4,5)
5001–10000 32 51–100 (5,6,7) (5,5,5,5) (4,5,6,7)
10001–20000 64 100+ Step1: Search for a single filter region
20001–30000 128 Step2: Search for the combination of filters

Fully Connected + So�max

Filter Concatenation

Pooling 0
Kernel 2x1

Stride 1
1-max pooling

Pooling 1
Kernel 3x1

Stride 1
1-max pooling

Pooling 2
Kernel 4x1

Stride 1
1-max pooling

Pooling 3
Kernel 5x1

Stride 1
1-max pooling

Convolutional 0
Kernel 2x200

Stride 1
Out channels 16

Convolutional 1
Kernel 3x200

Stride 1
Out channels 16

Embedding

Convolutional 2
Kernel 4x200

Stride 1
Out channels 16

Convolutional 3
Kernel 5x200

Stride 1
Out channels 16

BatchNorm 0 BatchNorm 1 BatchNorm 2 BatchNorm 3

Figure 13: (e structure of the CNN.

Table 10: (e basic information of malware families.

Malware families Samples Feature set I Feature set I + II
FakeInstaller 925 57 76
DroidKungFu 666 116 135
Plankon 625 133 152
Opfake 613 45 64
GinMaster 339 114 133
BaseBridge 328 66 85
Iconosys 152 33 52
Kmin 147 30 49
FakeDoc 132 49 68
Geinimi 91 43 62
Adrd 91 105 124
DroidDream 81 77 96
ExploitLinuxLotoor 69 67 86
MobileTx 69 10 29
Glodream 69 41 60
FakeRun 61 24 43
SendPay 59 18 37
Gappusin 58 46 65
Imlog 43 11 30
SMSreg 40 34 53
TOTAL 4658

Security and Communication Networks 13



(e experimental results are shown in Table 12. After
193s, the accuracy rate reaches 99.9046%. Only one ap-
plication is misclassified. Suda, which is originally a chat
social application, is misclassified as a camera

application. After analysis, we found that Suda is a
comprehensive application. It includes functions of chat
social, taking pictures, and editing pictures
simultaneously.

0.5

0 100 200 300 400 500 600 700 800 900 1k

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

accuracy_1

Figure 14: (e change of accuracy.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 100 200 300 400 500 600 700 800 900 1k

loss

Figure 15: (e change of loss.

Table 11: (e basic information of feature files.

Type Apps Features Max Min Ave
Game 697 191 59 1 13.4562
Book reading 597 450 121 4 33.5343
Audiovisual 659 520 98 3 34.8574
Chat social 741 484 161 1 39.4507
Sports 212 299 111 11 37.9057
News 552 381 122 2 37.5163
Shopping 803 567 132 1 39.7298
Financial 763 405 89 2 40.1782
Camera 323 289 107 1 23.2601

14 Security and Communication Networks



7. Conclusion and Future Work

In this paper, we design an Android application classi-
fication model based on multiple semantic features. It can
extract multiple types of static and dynamic features
automatically. We use feature selection algorithms to
remove irrelevant or noisy features and extract critical
features. (ese key features help identify dangerous be-
haviors in unknown applications more effectively. (en,
we use CNN to implement classification. We verify the
model’s effectiveness, the usefulness of the feature sets,
and the feature vector generation method’s effect through
a series of experiments. (e model also performs well on
malware familial classification and benign application
classification and has a short training time.

Despite the effectiveness of our model, several issues
remain to be resolved. Our future work will focus on
addressing the following problems. During the dynamic
analysis process, only 72.6420% of the applications can be
correctly analyzed by DroidBox, and 45 useful features are
extracted. We would investigate to combine input generator
tools IntelliDroid [40] to improve dynamic analysis coverage
and extract dynamic features in more detail. Finally, we will
further refine our classification model to enable more ac-
curate malware detection.

Data Availability

(e data used to support the findings of this study have been
deposited at https://github.com/blackwall0321/malicious_a
pplications_detection.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is research was financially supported by China Post-
doctoral Science Foundation funded project
(2019M650606), the Opening Project of Guangdong Pro-
vincial Key Laboratory of Information Security Technology
(202B1212060078-12), First-class Discipline Construction
Project of Beijing Electronic Science and Technology
Institute (3201012), and the National Key Research and
Development Program of China under Grant
(2018YFB0803401).

References

[1] International Data Corporation, “Global smartphone market
data report [EB/OL],” 2020, https://www.idc.com/getdoc.jsp?
containerId�prCHC45975020.

[2] J. Yan, Y. Qi, and Q. Rao, “Detecting malware with an en-
semble method based on deep neural network,” Security and
Communication Networks, vol. 2018, no. 1, pp. 1–16, 2018.

[3] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park,
and H. Jeon, “CNN-based Android malware detection,” in
Proceedings of the 2017 International Conference on Software
Security and Assurance (ICSSA), pp. 60–65, IEEE, Altoona,
PA, USA, July 2017.

[4] Z. Xu, K. Ren, S. Qin, and F. Craciun, “CDGDroid: android
malware detection based on deep learning using CFG and DFG,”
in Proceedings of the International Conference on Formal Engi-
neering Methods, Springer, Cham, pp. 177–193, 2018.

[5] P. Zegzhda, D. Zegzhda, E. Pavlenko, and G. Ignatev, “Applying
deep learning techniques for Android malware detection,” in
Proceedings of the 11th International Conference on Security of
Information and Networks, vol. 7, September 2018.

[6] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[7] Y. Kim, “Convolutional neural networks for sentence clas-
sification,” arXiv:1408.5882, 2014.

[8] T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye, “EveDroid: event-
aware android malware detection against model degrading for
IoT devices,” IEEE Internet of =ings Journal, vol. 6, no. 4,
pp. 6668–6680, 2019.

[9] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and
A. Sharif, “A multimodal malware detection technique for
android IoT devices using various features,” IEEE Access,
vol. 7, pp. 64411–64430, 2019.

[10] C. Hasegawa and H. Iyatomi, “One-dimensional convolu-
tional neural networks for Android malware detection,” in
Proceedings of the 2018 IEEE 14th International Colloquium
on Signal Processing & Its Applications (CSPA), March 2018.

[11] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An efficient android
malware detection system based on method-level behavioral
semantic analysis,” IEEE Access, vol. 7, no. 7,
pp. 69246–69256, 2019.

[12] Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android malware
familial classification based on DEX file section features,”
IEEE Access, vol. 8, no. 8, pp. 10614–10627, 2020.

[13] Y. Feng, I. Dillig, S. Anand, and A. Aiken, “Apposcopy:
automated detection of Android malware (invited talk),” in
Proceedings of the 2nd International Workshop on Software
Development Lifecycle for Mobile, pp. 13-14, Hong Kong,
China, November 2014.

[14] K. TaeGuen, K. BooJoong, R. Mina, S. Sezer, and E. G. Im, “A
multimodal deep learning method for android malware de-
tection using various features,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, pp. 773–788, 2019.

[15] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
effective and efficient behavior-based android malware detection
and prevention,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 1, pp. 83–97, 2016.

[16] A. Narayanan, L. Yang, L. Chen, and L. Jinliang, “Adaptive
and scalable android malware detection through online
learning,” in Proceedings of the International Joint Conference

Table 12: Classification accuracy of benign application.

Region size Train time (s) ACC (%)
(3) 101 99.4275
(5) 103 99.5229
(3,4,5) 164 99.6183
(2,3,4,5) 193 99.9046
(3,3,3) 163 99.4275
(3,3,3,3) 188 99.6183

Security and Communication Networks 15

https://github.com/blackwall0321/malicious_applications_detection
https://github.com/blackwall0321/malicious_applications_detection
https://www.idc.com/getdoc.jsp?containerId=prCHC45975020
https://www.idc.com/getdoc.jsp?containerId=prCHC45975020


on Neural Networks, pp. 2484–2491, Vancouver, BC, Canada,
July 2016.

[17] M. A. Azad, F. Riaz, A. Aftab, S. K. J. Rizvi, J. Arshad, and
H. F. Atlam, “DEEPSEL: a novel feature selection for early
identification of malware in mobile applications,” Future
Generation Computer Systems, vol. 129, pp. 54–63, 2022.

[18] M. Nisa, J. H. Shah, S. Kanwal et al., “Hybrid malware
classification method using segmentation-based fractal tex-
ture analysis and deep convolution neural network features,”
Applied Sciences, vol. 10, no. 14, p. 4966, 2020.

[19] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and
R. Damaševičius, “An efficient DenseNet-based deep learning
model formalware detection,” Entropy, vol. 23, no. 3, p. 344, 2021.

[20] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
performance-sensitive malware detection system using deep
learning on mobile devices,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 16, pp. 1563–1578, 2021.

[21] P. Chaurasia, “Dynamic analysis of Android malware using
droidbox,” Dissertations & (eses, Gradworks, 2015.

[22] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic
android malware detection system with ensemble learning,”
IEEE Access, vol. 6, no. 6, pp. 30996–31011, 2018.

[23] W. Enck, P. Gilbert, S. Han et al., “TaintDroid,” ACM Trans-
actions on Computer Systems, vol. 32, no. 2, pp. 1–29, 2014.

[24] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copper-
Droid: automatic reconstruction of android malware be-
haviors,” in Proceedings of the Internet Society Network and
Distributed System Security Symposium, pp. 15–26, San Diego,
California, February 2015.

[25] “APKtool,” 2019, https://ibotpeaches.github.io/Apktool.
[26] A. Desnos, G. Gueguen, and S. Bachmann, “Androguard

package [EB/OL],” https://androguard.readthedocs.io/en/
latest/api/androguard.html.

[27] Z. Wang, G. Li, and Y. Chi, “Multi-classification of android
applications based on convolutional neural networks,” in
Proceedings of the CSAE 2020: =e 4th International Con-
ference on Computer Science and Application Engineering,
Sanya, China, October 2020.

[28] “VirusShare,” 2019, https://virusshare.com.
[29] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and

K. Rieck, “DREBIN: effective and explainable detection of
android malware in your pocket,” in Proceedings of the 2014
Network and Distributed System Security Symposium, San
Diego, California, February 2014.

[30] Google Play Store, https://play.google.com/store, 2019.
[31] VirusTotal, https://www.virustotal.com/ko[Online], 2019.
[32] Y. Zhang and B. Wallace, “A sensitivity analysis of (and

practitioners’ guide to) convolutional neural networks for
sentence classification,” 2015, https://arxiv.org/abs/1510.
03820.

[33] D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen, “DeepFlow: deep
learning-basedmalware detection bymining Android application
for abnormal usage of sensitive data,” in Proceedings of the 2017
IEEE symposium on computers and communications (ISCC),
pp. 438–443, IEEE, Heraklion, July 2017.

[34] D. Zhu, T. Xi, P. Jing, D. Wu, Q. Xia, and Y. Zhang, “A
transparent and multimodal malware detection method for
android apps,” in Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, pp. 51–60, FL, Miami Beach, USA,
November 2019.

[35] X. Qin, F. Zeng, and Y. Zhang, “MSNdroid: the Android
malware detector based onmulti-class features and deep belief

network,” in Proceedings of the ACM Turing Celebration
Conference-China, pp. 1–5, Chengdu, China, May 2019.

[36] Z. Ren, H.Wu, Q. Ning, I. Hussain, and B. Chen, “End-to-end
malware detection for android IoT devices using deep
learning,” Ad Hoc Networks, vol. 101, p. 102098, 2020.

[37] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code
analysis for classifying android applications using machine
learning,” in Proceedings of the International Conference on
Computational Intelligence and Security, pp. 329–333, Nan-
ning, China, December 2010.

[38] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting
Android malicious apps and categorizing benign apps with
ensemble of classifiers,” Future Generation Computer Systems,
vol. 78, pp. 987–994, 2018.

[39] W. Fan, Y. Chen, Y. A. Liu, and F. Wu, “DroidARA: android
application automatic categorization based on API relation-
ship analysis,” IEEE Access, vol. 7, pp. 157987–157996, 2019.

[40] M. Y. Wong and D. Lie, “IntelliDroid: a targeted input
generator for the dynamic analysis of android malware,” in
Proceedings of the Network & Distributed System Security
Symposium, Ontario, Canada, January 2016.

16 Security and Communication Networks

https://ibotpeaches.github.io/Apktool
https://androguard.readthedocs.io/en/latest/api/androguard.html
https://androguard.readthedocs.io/en/latest/api/androguard.html
https://virusshare.com
https://play.google.com/store
https://www.virustotal.com/ko
https://arxiv.org/abs/1510.03820
https://arxiv.org/abs/1510.03820

