
Research Article
Security Enhancements for Data-Driven Systems: A
Blockchain-Based Trustworthy Data Sharing Scheme

Yanping Wang ,1 Xiaosong Zhang ,1 Xiaofen Wang ,1 Teng Hu ,2 Peng Lu ,2

and Mingyong Yin 2

1UESTC, Institute for Cyber Security, School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China
2CAEP, Institute of Computer Application, China Academy of Engineering Physics, Mianyang, China

Correspondence should be addressed to Teng Hu; mailhuteng@gmail.com

Received 9 August 2022; Accepted 14 September 2022; Published 11 October 2022

Academic Editor: Yuanyuan Huang

Copyright © 2022YanpingWang et al.'is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the increasingly prominent value of big data, data sharing within enterprises and organizations has become increasingly
popular, and many institutions have established data centers to achieve effective data storage and sharing. Meanwhile, cyberspace
data security and privacy have become the most critical issue that people are concerned about since shared data often involves
commercial secrets and sensitive information. At present, data encryption techniques have been applied to protect the security of
the sensitive data stored in and shared by the data centers. However, the challenges of efficient data sharing, secure management of
decryption keys, deduplication of the plaintext, and transparency and auditability of the data access arise. 'ese challenges may
obstruct the development of data sharing in data-driven systems. To meet these challenges, we propose a secure and trustworthy
data sharing scheme and introduce blockchain, proxy re-encryption (PRE), and trusted execution environments (TEEs) into the
data-driven systems. Our schememainly enables (1) automatic distribution andmanagement of the decryption keys, (2) reduction
of the reduplicative data, and (3) trustworthy data sharing and recording. Finally, we implement the proposed scheme and
compare it with other existing schemes. It is demonstrated that our scheme reduces the computation and
communication overhead.

1. Introduction

With the development of big data, the Internet of 'ings,
and other network technologies, various kinds of data have
been produced. 'e economic and social benefits of the data
trigger the demand for sharing data between institutes and
enterprises. 'erefore, many organizations have established
data centers utilizing the private or public cloud to realize
effective data storage and sharing. Because data often in-
volves business secrets and sensitive information, among
others, data privacy and security are the key issues that
people are concerned about, especially in large enterprises
and scientific research institutes.

Encryption can be applied to protect the privacy and
security of the sensitive data stored in and shared by the data
center to a certain extent. Encrypted data sharing schemes

[1, 2] are proposed, in which the data are encrypted by the
owner and can only be decrypted by authorized users. In
these scenarios [1, 2], an owner negotiates a session key with
a group of users in advance so that they can share data with
them. However, if a new user is added to the authorized
sharing group, a new session key is needed to be negotiated,
and data are required to be encrypted using this new session
key.'is inevitably introduces a large computation overhead
if there are frequent changes in the sharing group.

In order to alleviate the above complex key management
problems, the proxy re-encryption (PRE) techniques [3–5],
which allow a proxy [e.g., cloud server (CS)] to convert a
cipher of a delegator to different ciphers for different del-
egatees, have been used to share the data to different users
dynamically without the complex key agreement and de-
crypt-then-encrypt operations. PRE properties make it a

Hindawi
Security and Communication Networks
Volume 2022, Article ID 1317626, 11 pages
https://doi.org/10.1155/2022/1317626

mailto:mailhuteng@gmail.com
https://orcid.org/0000-0002-4544-222X
https://orcid.org/0000-0001-8673-9284
https://orcid.org/0000-0002-4267-2708
https://orcid.org/0000-0002-8624-0210
https://orcid.org/0000-0002-9086-6574
https://orcid.org/0000-0003-4119-8052
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1317626

practical approach to cloud-assisted data sharing. However,
in order to avoid huge computation in PRE’s cipher con-
version, the CS may not generate the re-encryption ci-
phertext honestly [6]. Additionally, many PRE-based data
sharing schemes [7, 8], cannot satisfy nonframeability. In
other words, in these schemes, the CS may be maliciously
framed for refusing to perform a re-encryption operation or
for outputting a wrong reencrypted cipher when it indeed
performs honestly.

Recently, blockchain has been applied in data sharing
solutions [2, 9, 10], in which the encrypted data were stored
in the off-chain data center (e.g., cloud), whereas the meta
and data transfer log were recorded in the blockchain for
data retrieval and auditing. 'en, the data sharing schemes
that combine the blockchain and PRE emerged such as in
[11–14], where the encrypted data can be accessed by the
authorized users with the help of a proxy server, and the
misbehavior of the proxy server or the users in re-encryption
can be hindered as all operations would be recorded in the
blockchain and can be audited. Nevertheless, references
[11–14] faced the efficiency challenge caused by the complex
encryption/decryption and frequent interaction of data
owners (DO) and users. On the one hand, frequent inter-
actions and complex ciphertext transformations are heavy
burdens to DO and CSs. On the other hand, the storage of
large-size data is a great burden to the blockchain. In ad-
dition, in [11–14], the same data will be packaged into
different ciphertexts, and the redundant plaintext copies
would result in additional storage overhead. 'ese chal-
lenges motivate us to propose a more efficient and versatile
encrypted data sharing scheme.

In this paper, we combine blockchain, PRE, and
trusted execution environments (TEEs) and propose a
flexible and secure data sharing method for data-driven
systems. By employing the PRE technology, our scheme
allows the encrypted data to be transformed (by the CS)
into different ciphertexts for different authorized users
without the complex key agreement. Furthermore, by
involving the blockchain, the misbehavior of the CS or the
users in re-encryption can be recorded and audited.
Meanwhile, the smart contract can automatically delegate
the re-encryption key to authorized users so that the DO’s
computation and communication burden can also be
reduced. Finally, by utilizing the TEEs, the smart contract
can be executed in a secure enclave to protect the DO’s
private key. 'e major contributions of our scheme are as
follows:

(1) Smart contract is employed to control the access of
data, such that the decryption key’s delegation can be
executed automatically and the DO is not required to
be online all the time, which greatly reduces the
computation and communication burden of the DO
and makes the data sharing convenient.

(2) Our scheme utilizes the tamper-proof and consensus
properties of the blockchain, and the transfer logs of
data requests and replays are recorded in the dis-
tributed ledger, which realizes the trustful recording
and the real-time monitoring.

(3) In our scheme, the duplicate data can be quickly
detected to avoid redundancy, and its storage request
will be refused. 'erefore, the ciphertexts corre-
sponding to the same plaintext can be reduced.

(4) We conduct experiments to evaluate the perfor-
mance of our proposed scheme, and the results show
that our scheme is more efficient than the existing
schemes [11–14] with respect to computation
overhead and cipher size.

'e rest of this paper is organized as follows: Section 2
surveys the related works.'e preliminaries are presented in
Section 3. 'e system model and design goals are described
in Section 4. Section 5 introduces the detailed proposal,
including the data release and retrieval. 'e analysis and
simulation of the proposed solution are shown in Section 6.
Finally, in Section 7, we draw our conclusion.

2. Related Works

With the rapid development of blockchain technologies, the
schemes [2, 9, 15, 16] of decoupling the storage layer and the
blockchain have been proposed to achieve efficient and
reliable data sharing, especially in large-scale data-driven
systems. In these cases, the data generated from the source
are stored in the off-chain data center, and the meta (e.g.,
digest) is recorded on the blockchain for efficient data re-
trieval. When a user queries data from the blockchain, the
distributed ledger’s retrieval mechanism can help users
quickly retrieve the queried information from the block-
chain, which greatly improves the efficiency and credibility
of the system. However, most of these schemes use block-
chain just as a distributed and immutable database, and the
issues such as trusted access control have not been com-
pletely solved.

'e concept of PRE was initially introduced and con-
structed in [3], in which the DO controls the delegation of
data access with the help of a CS. Based on this concept, Ran
and Susan [4] proposed a secure PRE scheme against chosen
ciphertext attacks. Next, Weng et al. [5] proposed a con-
ditional PRE, which achieves a more fine-grained delegation.
In order to ensure secure and efficient data sharing, PRE
technology is used in [11–14] to realize multisharing con-
trols of ciphertext for blockchain-based big data storage. In
schemes [11–14], DO outsource their encrypted data to the
cloud using identity-based encryption and grant legitimate
users access to the data. However, these schemes face heavy
communication and computation costs. Additionally,
schemes [11–14] either rely on a proxy to fully manage their
data or require the DO to always be online to delegate the
decryption key to the data user, which means either the data
transparency and auditability cannot be achieved or the DO
needs to be online all the time.

For achieving privacy-preserving and automatic data
sharing, Li et al. [17] proposed a blockchain-based privacy-
preserving data sharing scheme with rewards, which uses
smart contracts to automatically generate the decryption
keys for users, and the TEEs are used to ensure the security of
secret keys in smart contracts. Wang et al. [18] proposed a

2 Security and Communication Networks

TEEs-based smart contract execution scheme, which is used
to share private data with fine-grained access control for
smart grids. Lei et al. [19] proposed a multiparty data sharing
platform that combines blockchain and TEEs and realizes
automated data sharing. However, these schemes face
communication and computation burdens caused by fine-
grained access control.

Based on the above research, we provide a trust and
efficient data sharing scheme. We incorporate blockchain,
TEEs, and proxy re-encryption to achieve secure data
sharing while achieving (1) efficient one-to-many sharing of
data, (2) automatic distribution and management of the
decryption keys, (3) reduced reduplicative data storage, and
(4) trustworthy data transmission and records.

3. Preliminaries

'is section briefly outlines the preliminaries about pairing
groups, blockchain technologies, and PRE. 'e key nota-
tions involved in this paper are summarized in Table 1.

3.1. Pairing Groups. Let pp � (p,G,GT, e) be the pairing
parameter, where G,GT is the finite groups of order p and e

an efficiently computable bilinear map from G × G to GT,
which satisfies the following:

(1) Bilinearity: for any generator P, Q ∈ G and a, b ∈ Zp,
the equation e(aP, bQ) � e(P, Q)ab holds;

(2) Nondegenerability: e(P, Q)≠ 1;
(3) Computability: e can be efficiently computed.

Difficult problems based on the above bilinear pairings
are defined as follows:

Definition 1. (DL assumption) [3]. Let G be a cyclic group.
'e Discrete Logarithm (DL) assumption is that, for all
P ∈ G and a ∈ Zp, given an input P, aP{ }, the probability of
outputting a is negligible for any polynomial time algorithm.

Definition 2. (3-QBDH assumption) [5]. Let
pp � (p,G,GT, e) be the pairing parameter and P a gen-
erator ofG. 'e 3-quotient bilinear Diffie–Hellman (DBDH)
assumption on pp is as follows: for any unknown a, b ∈ Zp,
given P, − aP, aP, a2P, bP , the probability of computing
e(P, P)b/a2

is negligible for any polynomial time algorithm.

3.2. SomeBasic Knowledge of Blockchain. With the launch of
the bitcoin network [20], the concept of blockchain has
become widely known to the public. As a decentralized
distributed ledger maintained by multiple parties, the pri-
mary purpose of blockchain is to solve the trust problem in
untrustworthy distributed environments by using peer-to-
peer (P2P) network schemes, consensus algorithms, asym-
metric encryption, password hashing, and other technolo-
gies. 'e blockchain can be used as a secure data
management system [15] to ensure data integrity and
availability. It can also be used as a supervision and audit
platform [21] to achieve transparent supervision of the data.

Additionally, the blockchain can be used as a platform [17]
that achieves secure and trusted data processing by utilizing
smart contracts (self-executing programs with clauses clearly
specified by the underlying code and deployed on the
blockchain).

3.3. Trusted Execution Environments. As data in smart
contracts are transparent on the blockchain, users’ private
information can easily be exposed [17]. TEEs, such as Intel
Software Guard Extensions (SGX) [22], TrustZone [23], and
MultiZone [24], can be utilized to solve this problem. 'e
TEEs enable secure execution of programs on untrusted
hosts (e.g., cloud), as the programs can be run in a protected
manner by isolating all the operations against the outside
world.'ey also allow remote verifiers to ascertain a device’s
current configuration and behavior via remote attestation. It
is worth noting that, via remote attestation, a TEE can build
a secure channel for the user and other TEEs to commu-
nicate with it securely. 'ese properties make TEEs a good
choice for processing and sharing private data. For example,
Bowman et al. [25] proposed a TEEs-based private data
process scheme, named private data objects (PDOs), which
allows mutually untrusted parties to work on private data
based on preagreed policies, and the open-source code is
provided in [26].

3.4. Proxy Re-encryption. 'e concept of the RRE was in-
troduced by Blaze et al. [3], in which a semitrusted proxy
server is delegated to convert a delegator’s ciphertext to a
delegatee’s without the leakage of the corresponding
plaintext. 'e PRE can be used for secure data sharing in
cloud environments, which usually consists of the following
five algorithms:

KeyGen(λ)⟶ (pk, sk): on the input of the security
parameter λ, this algorithm outputs a public/private
key pair (pk, sk);
Re − Key(sko, pkc)⟶ ro⟶c: on the input of a user’s
private key sko and another user’s public key pkc, this
algorithm outputs a re-encryption key ro⟶c;

Table 1: Key notions.

Notions Description
‖ Data concatenation
h, h1, H Cryptographic hash functions
(sktee, pktee) Private/public key pair of a TEE
(sko, pko) Private/public key pair of DO
(skc, pkc) Private/public key pair of DC
(sks, pks) Private/public key pair of CS
(dk , ek) Randomly generated key pair by DO
SEnc(·), S De c(·) Symmetric encryption and decryption
AEnc(·), A De c(·) Asymmetric encryption and decryption
sigski

(·) Signature under the secret key ski

kst State key of smart contracts
ko⟶c Reencryption key for DC

CF, CF′ Original ciphertext and reencrypted
ciphertext

Security and Communication Networks 3

Encryption(pko,M)⟶ CF: on the input of a user’s
public key pko and the plaintext M, this algorithm
outputs a ciphertext CF under the public key pko;
Re − Encryption(CF, ro⟶c)⟶ CF′: on the input of
the ciphertext CF under the public key pko and the re-
encryption key ro⟶c, this algorithm outputs a ci-
phertext CF′ under the public key pkc;
De cryption(skc,CF′)⟶ M: on the input of a user’s
secret key skc and the reencrypted ciphertext CF′, this
algorithm outputs a plaintext M.

4. System Model

In this section, we illustrate the framework, outline the threat
model, and design goals of the proposed scheme.

4.1. Framework. 'e schematic diagram of our framework is
shown in Figure 1, in which the consensus is separated from
the execution of the smart contract. Similar to Ekiden [27],
our framework consists of a CS, consensus nodes, partici-
pant nodes, and authorities. Each component and its role are
described below.

4.1.1. Cloud Server. It is usually a data center responsible for
storing and securely sharing the encrypted data for the users
with the help of a TEE (this TEE in the cloud is called sTEE).
'e CS loads the smart contract, executes it in the sTEE to
generate a re-encryption key, and performs the reencrypting
operations.

4.1.2. Consensus Nodes. 'ere are two types of consensus
nodes: without TEEs and with TEEs. A consensus node
without TEEs is responsible for maintaining the blockchain
ledger and realizing basic blockchain functions such as
packaging blocks and verifying blocks. Besides maintaining
the ledger, consensus nodes with TEEs play the role of key
management committees (these TEEs are called kTEEs) and
are responsible for managing secret keys and remotely
attesting to the sTEE.

4.1.3. Participating Nodes. 'ey are the blockchain users,
including the DO and data consumers (DC). DO is re-
sponsible for data release; DC requests the data by revoking
the smart contract. After that, DC obtains the reencrypted
data, which can be decrypted using their private key.

4.1.4. Authorities. 'ere are two types of authorities, cer-
tificate authority (CA) and judgment authority (JA). 'e CA
is responsible for membership enrollment and certificate
distribution, and the JA is responsible for judging whether
malicious behaviors have been performed.

Algorithm 1 further illustrates the interactions of Fig-
ure 1 among CS, consensus nodes, and participating nodes.
Algorithm 1 shows that the interactions include two parts,
data release and data retrieval, and DC can obtain data M

when the algorithm ends.

4.2. 1reat Model and Design Goals. In our system, the
authorities are trusted, and DO will honestly share the ci-
phertext of the data. CS and some unauthorized DCs are
curious about DO’s data, and CS may not honestly transfer
the cipher to DC. Moreover, the openness of blockchain
enables the analysis of the transaction information (such as
input and output) [28], which may cause the leakage of DO’s
data or DC’s identity and attributes. We further assume the
data and program can be securely stored and executed in the
TEEs.

Based on the above security hypothesis, our goals are
achieved if the below properties are satisfied.

4.2.1. Data Confidentiality. 'e DO’s data should be kept
confidential to CS during the storage and computation.
Moreover, except for the DO and the authorized DC, other
users cannot obtain the original data.

4.2.2. Nonredundant Storage. 'e storage requests of du-
plicate data should be quickly detected and refused for re-
ducing storage costs.

4.2.3. Verifiable Integrity. When obtaining the data fromCS,
data integrity can be easily verified by DC.

4.2.4. Anonymity. 'e DC’s identity and attributes should
not be recognized by anyone during the data requesting
process.

4.2.5. Transparency and Auditability. DO should know
whom their data are shared with. Besides, the access and
computation processes should be auditable.

4.2.6. Efficient Computation. 'e data encryption/decryp-
tion should avoid the heavy cryptographic overhead and
save computation costs as much as possible.

5. The Proposed Approach

'e proposed data sharing scheme includes three phases:
system initialization, data release, and data retrieval. CA
generates the system parameters, and each entity generates a
private/public key pair and then registers to CA in the
system phase. In the data release phase, DO releases their
encrypted data and delegates the corresponding secret key
shares to a group of kTEEs. Finally, in the data retrieval
phase, DC invokes the smart contract and will obtain a re-
encryption ciphertext, and then DC decrypts the re-en-
cryption ciphertext to recover DO’s data.

5.1. System Initialization. CA chooses a security parameter λ
and generates the pairing parameter pp � (p,G,GT, e). CA
also chooses a generator P in G, a symmetric encryption
algorithm SEnc (such as AES), an asymmetric encryption
algorithm AEnc (such as ElGamal), and three secure
cryptographic hash functions, h, h1, and H, where h:

4 Security and Communication Networks

0, 1{ }l1← 0, 1{ }∗, h1: Zp← 0, 1{ }∗, and H: 0, 1{ }l2←GT, and l1
and l2 represent the output lengths of hash. CA stores the
system parameters (pp, P, SEnc, AEnc, h, h1, H) on the
blockchain.

Each participant node i picks a private key ski ∈ Zp,
computes the public key pki � skiP , and then registers to
CA. CA then issues a certificate certi to user i. 'e certificate
is combined with the user’s public key pki and attributes.

'e CS picks a private key sks ∈ Zp, computes the public
key pks � sksP, and then registers to CA. CS and key

management nodes initialize their TEEs and send the
necessary information (e.g., the TEE’s public key pktee) to
the blockchain.

5.2. Data Release. In our scheme, data are encrypted and
stored off-chain while the related information is stored on-
chain, and the DO can specify whom their data can be
shared with. 'e data release (Figure 2) is conducted as
follows.

smart
contract

Cloud server

Participant nodes

Consensus nodes

1.1 store

2.1 requst

sTEE
2.4 computing

kTEE

2.3 shares of key

2.7 result

1.2 contract

2.5 computing
secure channel
establised by

remote attestation

2.2 contract
and requst

2.6 result
1.3 shares of key

Figure 1: 'e proposed framework.

Require: DO: the encrypted data CF, the contract’s program code Contract, the secret key shares dk1, dk2, . . . , dkn; DC: the request
req.
Ensure: the data M.
procedure DATA RELEASE:

Step 1.1: DO sends CF and Contract to CS;
Step 1.2: CS publishes Contract to blockchain;
Step 1.3: DO checks Contract
if the Contract in the blockchain is correct, then
DO sends the secret key shares dki to the kTEE i.
procedure Data retrieval:
Step 2.1: DC revokes the smart contract with input req;
Step 2.2: CS loads Contract and req into the sTEE;
Step 2.3: sTEE performs remote attestation with kTEEs
if sTEE environment and loaded data are correct, then
'e kTEE i transmits dki to the sTEE;
Step 2.4: CS executes the smart contract in the internal
sTEE to obtain a reencryption key;
Step 2.5: CS computes the reencrypted ciphertext CF′
outside the sTEE;
Step2. 6: CS sends the reencrypted data CF′ to the
blockchain;
Step 2.7: DC obtains CF′ and decrypts it to obtain M.

ALGORITHM 1: 'e process of the proposed scheme.

Security and Communication Networks 5

5.2.1. Data Encryption and Storage. DO randomly generates
a private/public key pair (dk , ek) that satisfies ek � dk · P.
'en, DO randomly chooses r ∈ Zp and computes
s � h(m), C0 � SEncs(m), C1 � r · ek, and
C2 � s⊕H(e(P, P)r), where SEncs represents the symmetric
encryption under the secret key s. DO sends
CF � (C0, C1, C2) to CS. If C0 is not duplicated with other
ciphers (this means m is different from other data), DO will
receive a data retrieval index DI and a timestamp TS from
the CS, where DI � sigsks

(h(CF)‖TS). DO checks the val-
idity of the DI using the CS’s public key pks. If it is valid,
then it continues; otherwise, it aborts.

5.2.2. Smart Contract Creation. 'e smart contract is re-
sponsible for generating the re-encryption key for the au-
thorized DC, and the contract’s creation is carried out as
follows:

(1) DO creates a smart contract Contract, which is
written in the form of program codes. 'en, DO
chooses a state key kst and generates kst

′ by
encrypting kst under the sTEE’s public key pktee. DO
sends the Contract to the CS. 'e Contract contains
the related information RI � ek, A, W, DI , ks

t′, TS, sigsko
(ek, A, W, DI , kst

′, TS)}, where A is the
access attributes, W is the keywords set, kst

′ is the
encrypted state key, and sigsko

(·) is the signature
under DO’s private key sko.

(2) CS loads the code of Contract into the sTEE, and
then the sTEE generates a new contract ID, namely,
CID, and decrypts kst

′ using its secret key sktee to
recover the state key kst. 'en, the sTEE encrypts the
initial contract state as st0′ � SEnckst

(0
→

) and outputs
CID,Contract, st0′, π , where π is a correctness proof
generated using sTEE’s secret key sktee. After that, CS
sends the output to the blockchain. 'e consensus
nodes will verify π, pack the legitimate
CID,Contract, st0′, π into a block, and record it on
the blockchain.

(3) After the Contract has been confirmed in the
blockchain, DO sends CID and the shares of dk to

the kTEEs. 'e dk is shared using the secret-sharing
schemes [29, 30], and each share is encrypted using
the corresponding kTEE’s public key. 'e security
feature of TEEs ensures that dk is kept secret against
other nodes.

5.3. Data Retrieval. 'e anonymous data retrieval is con-
ducted as shown in Figure 3, which is comprised of three
phases: off-chain re-encryption key generation, cipher re-
encryption, and data decryption. In the first phase, DC
requests the cipher by invoking the smart contract, and then
the smart contract executed in the sTEE generates a re-
encryption key for the authorized DC. In the second phase,
CS reencrypts the cipher and sends it to DC. In the last
phase, DC receives the encrypted data and decrypts it to
obtain the plaintext.

5.3.1. Off-Chain Re-encryption Key Generation. DC retrieves
the interested keyword Wi on the blockchain and obtains
CID from the related information RI. After checking the
contents of the contract, DC invokes the smart contract with
input req � CID, AEncek(DI , pkc, certc) , where AEncek

represents the asymmetric encryption under the public key
ek. 'en, the CS loads the corresponding contract state stold′
and req into sTEE, and the sTEE performs remote attes-
tation with kTEEs to attest the sTEE environment. 'e
loaded smart contract and data are correct. After passing the
attestation, the shares of the decryption key dk will be
transmitted to sTEE through secure channels. Once
obtaining enough shares, the smart contract in sTEE per-
forms the following steps:

(1) recovers the decryption key dk and state key kst;
(2) ecrypts stold′ using the state key kst and obtains the

old state stold.
(3) ecrypts req using the decryption key dk and obtains

the certificate of DC.
(4) hecks whether DC satisfies the access condition by

verifying DC’s attributes in their certificate. If it is
satisfied, it continues. Otherwise, it jumps to step 7.

CS Blockchain kTEEs

Store CF

Send CID, Contract, st'0

Send the shares of dk

Generate (ek, dk), CF

Generate CID, st'0

Load contract to sTEE

Return DI

Send Contract

Check CF, generate DI

DO

Figure 2: Sequence diagram of data release.

6 Security and Communication Networks

(5) omputes k � h1(DI‖pks

����ek‖sktee · pkc).
(6) omputes a re-encryption key ko⟶c � (− dk) · k · pkc.
(7) pdates the contract state as stnew and computes

stnew′ � SEnckst
(stnew).

(8) utputs the executed results.

When the execution ends, all involved keys and inter-
mediate results of the off-chain smart contract execution in
sTEE can be securely erased [18]. 'ere are two outputs:
out1 � DI , ko⟶c and out2 � stnew′, h(ko⟶c), π (if DC is
illegal, then out1 � ⊥ and out2 � stnew′,⊥, π).

5.3.2. Cipher Re-encryption. CS retrieves the cipher CF

according to DI and reencrypts CF to obtain
CF′ � C0′ � C0, C1′ � e(C1, ko⟶c), C2′ � C2 . CS then sends
the reencrypted cipher to a temporary location, and a

transaction tran � out2, url, h(CF′), sigsks
(out2,

url, h(CF′))} is sent to the blockchain by CS, where url is the
link of the temporary location that CF′ stores. For the
transaction tran, consensus nodes check the validity of out2
through the proof π provided by sTEE, check the validity of
the url and h(CF′) through the signature provided by CS,
and maintain the consistency of state through consensus
schemes.

5.3.3. Data Decryption. DC can retrieve the location url
from the blockchain and download the cipher. After that,
DC computes k � h1(DI‖pks

����ek‖skc · pktee). DC then de-
crypts the cipher CF′ by computing
s � C2′⊕H(C1′(− k) · (− skc)) and m � S De cs(C0′), where
S De ck is the symmetric decryption under the key s. DC
verifies the data by checking if h(m)�

?
s. If yes, DC accepts it;

otherwise, DC rejects it and complains to the authority JA.

5.4.Claim. JA firstly requests the CS to provide the cipher
CF and the sTEE’s output out1. After confirming the
correctness of CF (using the index DI in the blockchain),
JA computes the hash of the re-encryption key H(ko⟶c)

and compares if it is equal to that in out2 of the
blockchain. If yes, JA computes the re-encryption
cipher (C0, C1, C2) and compares if C0 � C0′, C1 � C1′, and
C2 � C2′ hold. If they hold, it ignores this complaint;
otherwise, the CS has misbehaved, JA takes action
accordingly.

6. Analysis and Evaluation

In this section, we analyze the security properties and
evaluate the performance of the proposed scheme.

6.1. Security Analysis. Our scheme achieves the security
properties of correctness, confidentiality, verifiable integrity,
transparency, and auditability.

Theorem 1. If DO, DC, and CS execute the scheme honestly,
then DC can obtain DO’s data correctly.

We can prove 'eorem 1 by verifying the following
equation:

s � C2′⊕H C1′(− k) · − skc((

� s⊕H e(P, P)
r

(⊕H e C1, ko⟶c(
(− k)· − skc()

� s⊕H e(P, P)
r

(⊕H e r · dk · P, (− dk) · k · pkc(
(− k)· − skc()

� s⊕H e(P, P)
r

(⊕H e(P, P)
r

(� s.

(1)

Theorem 2. Our scheme achieves confidentiality if the 3-
QBDH assumption holds.

Blockchain CS kTEEs

Retrieval W
Return RI

Send contract,
CID, st'old, req

Send CID, req

Generate req

Load data to TEE

Remote attestation

Return the shares of dk

Computes out1, out2
in sTEE

Compute the re-
encrypted cipher CF'

Return out2, CF'
Return CF'

Decrypt CF'

DC

Figure 3: Sequence diagram of data retrieval.

Security and Communication Networks 7

We prove the confidentiality of our scheme by proving that
secret s cannot be recovered from the ciphertext by unautho-
rized users. We constructed an algorithm B that is given the
pairing parameters (G,GT, p, e) and an instance
(P, A0 � − aP, A1 � aP, A2 � (a2)P, B � bP, T) and aimed to
decide whether T � e(P, P)b/a2

. B controls a hash oracle and
runs an algorithmA (aimed to break the confidentiality of s) as
a subroutine. We can prove that ifA breaks the confidentiality
of s, then B can break the 3-QBDH problem.

Before starting, we define two lists, Lh and Lc, where
Lh is the list of honest users and Lc is the list of corrupt
users.

(i) Init phase: A prepares lists Lh and Lc and outputs
i⋆ ∈Lh as the challenger user. Let ski⋆ , ski be the
random numbers chosen from Zp. 'e public key for
the challenge user i⋆ is set as pki⋆ � ski⋆A2 and the
corresponding secret key is a2ski∗ . Public keys of other
honest users i ∈Lh are set as pki � skiA1 , and the
corresponding secret key is a · ski. Public keys of
corrupt users i ∈Lc are pki � skiP , and the corre-
sponding secret key is ski. It should be noted that the
corrupt users’ key pair (ski, pki)i∈Lc

is known as A.
(ii) Find phase: A plays the role of user j and queries a

re-encryption key of user i from B. If i � i⋆ and
j ∈Lh,B randomly chooses k ∈ Zp and computes
ki⟶j � skj · k · (− ski⋆) · A0 � − (ski⋆a

2) · (skja) · k

·P. If i, j≠ i⋆, i ∈Lh, and j ∈Lh, B randomly
chooses k ∈ Zp and computes ki⟶j � skj · k

·(− ski) · P � − (skia) · (skja) · k · P. If i ∈Lh, i≠ i⋆

and j � i⋆, B randomly chooses k ∈ Zp and
computes the rekey ki⟶j � ski⋆ · k · (− skj) · A1 �

− (skja) · (ski⋆a
2) · k · P. If i≠ i⋆, i ∈Lh, and

j ∈Lc, B randomly chooses k ∈ Zp and computes
ki⟶j � skj · k · (− ski) · A0 � − (skia) · skj · k · P. If
i ∈Lc, B computes ki⟶j � (− ski) · k · pkj.

(iii) Challenge phase: A chooses two numbers (s0, s1)

and sends them to B. B chooses sb, where
b ∈ 0, 1{ }. B sets the challenge cipher C⋆ as C⋆1 �

ski⋆B and C⋆2 � sb⊕H(T) and returns C⋆ to A.
(iv) Guess phase: A outputs its decision of sb′∈ 0,1{ }. If

b′ � b, B outputs 1, which means T � e(P, P)b/a2

and outputs 0 otherwise, which means T is a ran-
dom number of GT.

'e confidentiality of secret s is converted to the
hardness of the 3-QBDH problem. If T is a random number,
then the probability of A to break the confidentiality of our
scheme is 1/2. If T � e(P, P)b/a2

, then C⋆ is a valid ciphertext
of mb with r � b/a2, pki⋆ � ski⋆A2 � ski⋆a

2P, and B � bP.
'erefore, if A can break the confidentiality of our scheme
with advantage ε, then B can break the 3-QBDH as-
sumption with advantage 1/2ε.

Theorem 3. Our scheme reduced the redundant storage,
meanwhile, satisfied the verifiable integrity.

In the data release phase, data m are encrypted under key
s, equal to h(m). 'erefore, the same data m will be
encrypted under the same symmetric key s, and the ci-
phertext C0 � SEncs(m) will be the same. 'erefore, CS can
quickly detect whether plaintext m has already existed in the
database and refuse the redundant data’s storage request.
Furthermore, when DC decrypts key s from ciphertexts
C1′, C2′ and then recovers data m′ from C0 using s, they can
compare if h(m′) equals s to verify the integrity. If the
verification fails, DC can infer that the ciphertext has been
modified or has not been generated correctly.

Theorem 4. Our scheme satisfies the anonymity for DC.

In the data retrieval phase, DC uses the regenerated
pseudonym addresses to request the cipher. Meanwhile, the
certificate is encrypted and can only be decrypted in the
sTEE. 'erefore, others cannot know the real identity and
attributes of DC, and no one can recognize DC from the
pseudonym. 'erefore, our scheme achieves anonymous
data retrieval.

Theorem 5. Our scheme achieves transparency and
auditability.

'e data access events are transparently recorded in the
unforgeable ledger as transactions, publicly auditable to DO
and JA. If the CS did not honestly generate the reencrypted
cipher or if the CS was maliciously accused of returning the
wrong reencrypted ciphertext, JA could easily detect it using
the information in the ledger.

6.2. Performance Evaluation. We evaluate the computation
and communication overheads of our scheme and then
compare them with the related blockchain-based PRE
schemes [11–14]. 'e symmetric pairings e: G × G⟶ GT

over the elliptic curve E: y2 � x3 + 3xmodp with embed-
ding degree 2 are constructed, the field size is 520 bits, and
the group order is 160 bits. 'e bilinear pairing achieves the
security level of 80 bits. Our simulations are supported by
the MIRACL library [31], and our execution environment is
performed on a laptop with AMD Ryzen 5 3550H 2.10GHz
processor and 16.00GB memory.

6.2.1. Computation Overhead. 'e key cryptographic op-
erations are Par, Exp, and Sm, which means the bilinear
pairing operation, the exponentiation operation in GT, and
the scalar multiplication operation in G, respectively. Based
on this setting, the main computational costs of our scheme
are listed in Table 2. In the data release phase, DO performs 1
Sm operation and 1 Par. In the data retrieval phase, the smart
contract performs 2 Sm operations, the CS performs 1 Par
operation, and DC performs 1 Exp operation.

In order to demonstrate the efficiency of our scheme, we
compare our scheme with the related schemes [11–14] in

8 Security and Communication Networks

terms of the above operations. Reference [11] proposed a
blockchain-based data trade scheme. Reference [12] pro-
posed a data sharing scheme for the scenario of multiple
DCs, in which the PRE and smart contracts were integrated
to achieve the privacy-preserving share of medical data.
References [13, 14] proposed identity-based PRE approaches
to achieve secure data sharing for cloud-assisted systems.We
compare our scheme with these schemes [11–14] as we all

utilized the PRE and blockchain and achieved secure data
sharing.

Table 3 shows the comparison of operations Par, Exp,
and Sm among our scheme and schemes [11–14].We can see
that our scheme needs the fewest Par,Exp, and Sm opera-
tions. Figure 4 shows the total time of these schemes, from
which we can see that the computation time of data release in
our protocol is 14.7ms, which is much smaller than 23.9,
29.4, 22.3, and 22.9ms of [11–14]. 'e computation time of
data retrieval in our protocol is 23.2ms, which is also smaller
than 44.6, 63, 42.8, and 66.2ms of [11–14].

Table 2: 'e computational complexity of each phase.

Phase Entity Operation
Data release DO Sm + Exp
Data retrieval Smart contract 2 Sm

CS Par
DC Exp

[11] [12] [13] [14] Ours
0

10

20

30

40

50

60

70

80

C
om

pu
ta

tio
n

tim
e (

m
s)

data release

data retrieval

Figure 4: Computational overhead comparison.

Table 3: Computational comparison.

Data release Data retrieval
[11] 3 Sm + Exp 4 Sm + 2 Par
[12] 2 Sm + 2 Exp 8 Sm + 2 Par
[13] 2 Sm + Par Sm + 2 Par + Hp
[14] 3 Sm + Par 3 Sm + 4 Par
Ours Sm + Exp Par + Exp

50 100 150 200 250

2000

4000

6000

8000

10000

12000

Ci
ph

er
-te

xt
 le

ng
th

 (B
yt

e)

The number of data owners

[11]

[12]

[13]

[14]

Ours

Figure 5: Communication overhead of ciphertext.

50 100 150 200 250

2000

4000

6000

8000

10000

12000

Re
ci

ph
er

-te
xt

 le
ng

th
 (B

yt
e)

The number of data consumers

[11]

[12]

[13]

[14]

Ours

Figure 6: Communication overhead of the reencrypted ciphertext.

Table 4: Communication overhead comparison.

Ciphertext Reencrypted ciphertext
[11] 1|G| + 1|GT| 4|G| + 1|GT|

[12] 2|G| + 2|GT| 1|G| + 2|GT|

[13] 2|G| 3|G| + 1|GT|

[14] 3|G| + 1|GT| 2|G| + 2|GT|

Ours 2|G| 1|G| + 1|GT|

Security and Communication Networks 9

6.2.2. Communication Overhead. To evaluate the commu-
nication overhead, we denote the sizes of a scalar value inZp,
the group elements in G, and in GT by |Zp|, |G|, and |GT|,
respectively. We choose SHA-256 as the hash function of h.
'e symmetric encryption algorithm is AES-256. 'e sig-
nature used to sign a transaction of blockchain is ecdsa-with-
SHA256. Based on these, Table 4 compares the communi-
cation costs in [11–14] in terms of encryption overhead and
re-encryption overhead. Figure 5 and Figure 6 show the
comparison results, from which we can see that the ci-
phertext length of our protocol and that of [13] are identical,
which are shorter than those in [11, 12, 14], and the length of
the re-encryption ciphertext of our scheme is shorter than
those in [11–14]. Considering that our scheme has a sig-
nificant advantage in computational time, our scheme is
more efficient in the aspect of both computational overhead
and communication overhead.

7. Conclusion

'is paper proposes a flexible and secure data sharing
method for data-driven systems. In order to ensure confi-
dentiality and reliability, data are encrypted and then stored
off-chain. In contrast, the relevant information, such as
digest, is stored on-chain, and data can be efficiently shared
with authorized users with the help of a CS. 'e smart
contract is employed to control data access such that the key
delegation can be automatically executed and the DO is not
required to be online all the time. In order to enable security
and privacy, the smart contract is executed in the TEEs.
Besides, all interactions, data delegations, and other oper-
ations are recorded in the blockchain and can be checked at
any time, which realizes the efficient monitoring and
auditing of the data. We proved that the security properties,
such as confidentiality, anonymity, and verifiable integrity,
are ensured during the whole data sharing process. We also
simulated the proposed scheme, and the results show that
our scheme has a better performance than the related works.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was supported by the Presidential Foundation of
CAEP (Grant No. CX20220001), the Defense Industrial
Technology Development Program (JCKY2019602B013),
and the Natural Science Foundation (U19A2066).

References

[1] Y. Liu, W. Guo, C.-I. Fan, L. Chang, and C. Cheng, “A
practical privacy-preserving data aggregation (3pda) scheme

for smart grid,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 3, pp. 1767–1774, 2019.

[2] H. Shafagh, L. Burkhalter, A. Hithnawi, and D. Simon,
“Towards blockchain-based auditable storage and sharing of
iot data,” in Proceedings of the 2017 on cloud computing se-
curity workshop, pp. 45–50, Dallas TX USA, November 2017.

[3] B. Matt, G. Bleumer, andM. Strauss, “Divertible protocols and
atomic proxy cryptography,” in Proceedings of the Interna-
tional Conference on the 1eory and Applications of Crypto-
graphic Techniques, pp. 127–144, Springer, Trondheim,
Norway, June 1998.

[4] C. Ran and S. Hohenberger, “Chosen-ciphertext secure proxy
re-encryption,” in Proceedings of the 14th ACM conference on
Computer and communications security, pp. 185–194, Alex-
andria, VA, USA, November 2007.

[5] J. Weng, R. H. Deng, X. Ding, C.-K. Chu, and J. Lai,
“Conditional proxy re-encryption secure against chosen-ci-
phertext attack,” in Proceedings of the 4th International
Symposium on Information, Computer, and Communications
Security, pp. 322–332, Sydney Australia, March 2009.

[6] J. Lai, R. H. Deng, C. Guan, and J. Weng, “Attribute-based
encryption with verifiable outsourced decryption,” IEEE
Transactions on Information Forensics and Security, vol. 8,
no. 8, pp. 1343–1354, 2013.

[7] Q. Liu, G.Wang, and J. Wu, “Time-based proxy re-encryption
scheme for secure data sharing in a cloud environment,”
Information Sciences, vol. 258, pp. 355–370, 2014.

[8] L. Xu, X.Wu, and X. Zhang, “Cl-pre: a certificateless proxy re-
encryption scheme for secure data sharing with public cloud,”
in Proceedings of the 7th ACM symposium on information,
computer and communications security, pp. 87-88, Seoul,
Republic of Korea, May 2012.

[9] B. Huang, Z. Liu, J. Chen, A. Liu, Q. Liu, and Q. He, “Behavior
pattern clustering in blockchain networks,” Multimedia Tools
and Applications, vol. 76, no. 19, Article ID 20099, 2017.

[10] M. Zhang, C. Chen, T. Wo, T. Xie, M. Z. A. Bhuiyan, and
X. Lin, “Safedrive: online driving anomaly detection from
large-scale vehicle data,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 4, pp. 2087–2096, 2017.

[11] Y. J. Galteland and S. Wu, Blockchain-based privacy-pre-
serving fair data trading protocol, Cryptology ePrint Archive,
2021, https://eprint.iacr.org/2021/1321.

[12] H. Huang, P. Zhu, F. Xiao, X. Sun, and Q. Huang, “A
blockchain-based scheme for privacy-preserving and secure
sharing of medical data,” Computers & Security, vol. 99,
Article ID 102010, 2020.

[13] K. O.-B. O. Agyekum, Q. Xia, E. B. Sifah, C. N. A. Cobblah,
H. Xia, and J. Gao, “A proxy re-encryption approach to secure
data sharing in the internet of things based on blockchain,”
IEEE Systems Journal, vol. 16, no. 1, pp. 1685–1696, 2022.

[14] J. He, Z. Dong, R. Guo, Y. Chen, K. Li, and X. Tao, “Efficient
identity-based proxy re-encryption scheme in blockchain-
assisted decentralized storage system,” International Journal
on Network Security, vol. 23, no. 5, pp. 776–790, 2021.

[15] R. Li, T. Song, Bo Mei, H. Li, X. Cheng, and L. Sun,
“Blockchain for large-scale internet of things data storage and
protection,” IEEE Transactions on Services Computing, vol. 12,
no. 5, pp. 762–771, 2019.

[16] T. McConaghy, R. Marques, A. Müller et al., Bigchaindb: A
Scalable Blockchain Database, white paper, BigChainDB,
Berlin, Germany, 2016.

[17] T. Li, H. Wang, D. He, and J. Yu, “Blockchain-based privacy-
preserving and rewarding private data sharing for iot,” IEEE

10 Security and Communication Networks

https://eprint.iacr.org/2021/1321

Internet of 1ings Journal, vol. 9, no. 16, Article ID 15138,
2022.

[18] Y. Wang, Z. Su, N. Zhang et al., “Spds: a secure and auditable
private data sharing scheme for smart grid based on block-
chain,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 11, pp. 7688–7699, 2021.

[19] H. Lei, Y. Yan, Z. Bao, Q.Wang, Y. Zhang, andW. Shi, “Sdsbt:
a secure multi-party data sharing platform based on block-
chain and tee,” in Proceedings of the International Symposium
on Cyberspace Safety and Security, pp. 184–196, Springer,
Haikou, China, December 2020.

[20] S. Nakamoto and A. Bitcoin, “A peer-to-peer electronic cash
system,” 2008, https://bitcoin.org/bitcoin.pdf.

[21] C. Linnhoff-Popien, R. Schneider, and M. Zaddach, Digital
Marketplaces Unleashed, Springer, Singapore, 2018.

[22] V. Karande, E. Bauman, Z. Lin, and L. Khan, “Sgx-log: se-
curing system logs with sgx,” in Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Se-
curity, pp. 19–30, Abu Dhabi, UAE, April 2017.

[23] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm
trustzone to build a trusted language runtime for mobile
applications,” in Proceedings of the 19th international con-
ference on Architectural support for programming languages
and operating systems, pp. 67–80, Salt Lake City, UT, USA,
March 2014.

[24] C. Garlati and S. Pinto, “A clean slate approach to linux
security risc-v enclaves,” in Proceedings of the Embedded
World Conference, p. 5, Nuremberg, Germany, February 2020.

[25] M. Bowman, A. Miele, M. Steiner, and V. Bruno, “Private
Data Objects: An Overview,” 2018, https://arxiv.org/abs/1807.
05686.

[26] B. V. B. M. Andrea Miele and A. Adesokan, “Private-data-
objects,” https://github.com/hyperledger-labs/private-data-
objects.

[27] R. Cheng, F. Zhang, J. Kos et al., “Ekiden: a platform for
confidentiality-preserving, trustworthy, and performant
smart contracts,” in Proceedings of the 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 185–200,
IEEE, Stockholm, Sweden, June 2019.

[28] A. Prashanth Joshi, M. Han, and Y. Wang, “A survey on
security and privacy issues of blockchain technology,”
Mathematical Foundations of Computing, vol. 1, no. 2,
pp. 121–147, 2018.

[29] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612-613, 1979.

[30] D. Schultz, B. Liskov, and M. Liskov, “Mpss: mobile proactive
secret sharing,” ACMTransactions on Information and System
Security, vol. 13, no. 4, pp. 1–32, 2010.

[31] M. Scott, K. McCusker, A. Budroni, and S. Andreoli, “'e
Miracl Core Cryptographic Library,” 2019, https://github.
com/miracl/core.

Security and Communication Networks 11

https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/1807.05686
https://arxiv.org/abs/1807.05686
https://github.com/hyperledger-labs/private-data-objects
https://github.com/hyperledger-labs/private-data-objects
https://github.com/miracl/core
https://github.com/miracl/core

