
Research Article
Privacy-Preserving Outsourced Logistic Regression on Encrypted
Data from Homomorphic Encryption

Xiaopeng Yu ,1 Wei Zhao ,1 Yunfan Huang ,1 Juan Ren ,1 and Dianhua Tang 1,2

1Science and Technology on Communication Security Laboratory, Chengdu 610041, China
2School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Correspondence should be addressed to Dianhua Tang; tangdianhua86@163.com

Received 23 March 2022; Revised 11 May 2022; Accepted 24 May 2022; Published 21 July 2022

Academic Editor: Debiao He

Copyright © 2022 Xiaopeng Yu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Logistic regression is a data statistical technique, which is used to predict the probability that an event occurs. For some scenarios
where the storage capabilities and computing resources of the data owner are limited, the data owner wants to train the logistic
regression model on the cloud service provider, while the high sensitivity of training data requires effective privacy protection
methods that enable efficient model training without exposing information about the training data to untrusted cloud service
providers. Recently, several works have used cryptographic techniques to implement privacy-preserving logistic regression in such
application scenarios. However, on large-scale training datasets, the existing works still have the problems of long model training
time and poor model performance. To solve these problems, based on the homomorphic encryption (HE), we propose an efficient
privacy-preserving outsourced logistic regression (P2OLR) on encrypted training data, which enables data owners to utilize the
powerful storage and computing resources of cloud service providers for logistic regression analysis without exposing data
privacy. Furthermore, the proposed scheme can pack multiple messages into one ciphertext and perform the same arithmetic
evaluations on multiple plaintext slots by using the batching technique and single instruction multiple data (SIMD)mechanism in
HE. On three public training datasets, the experimental results show that, compared with the existing schemes, the proposed
scheme has better performance in terms of the encryption and decryption time of the data owner, the storage of encrypted training
data, and the training time and accuracy of the model.

1. Introduction

Logistic regression (LR) [1] is a popular classificationmethod,
which has been used in numerous practical applications
including cancer diagnosis [2], credit scoring [3], genome-
wide association study [4], and more. LR can not only be
applied to the problem of predicting the probability of oc-
currence of various events, but also is competitive with other
classification algorithms in terms of prediction accuracy. In
some practical application setting, the data owners have the
limited computing and storage resources, and thus wants to
outsource some of the heavy computation in logistic re-
gression model training, the outsourced data analysis [5] has
received considerable attention recently, which enables data
owners to train a LR model using the powerful storage ca-
pacity and computing resources of cloud service providers [6].

However, the high sensitivity of training data requires to
perform an effective privacy protection [7–10] that enable
efficient and secure logistic regression analysis without
leaking information about the training data to untrusted
cloud service provider. Recently, to meet such application
requirements, based on the cryptographic techniques like
secure multiparty computation (MPC) [11] and homo-
morphic encryption (HE) [12], there have been several re-
searches on the privacy-preserving logistic regression
(PPLR) [13–22], which enables data owners to employ the
service providers’ powerful data storage and computing
resources for logistic regression model training without
exposing its own data privacy. Specifically, the data owner
encrypts its training data, and sends encrypted training data
to the service provider. *e service provider can train a
logistic regression model on encrypted training data, and

Hindawi
Security and Communication Networks
Volume 2022, Article ID 1321198, 17 pages
https://doi.org/10.1155/2022/1321198

mailto:tangdianhua86@163.com
https://orcid.org/0000-0001-7658-6675
https://orcid.org/0000-0001-5274-7403
https://orcid.org/0000-0002-1385-6452
https://orcid.org/0000-0001-7636-0852
https://orcid.org/0000-0002-3169-4928
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1321198

returns the encrypted training result to the data owner. *e
data owner can decrypt the encrypted training result to
obtain final training result.

Unfortunately, on large-scale training dataset, the
existing PPLR schemes [13–22] still have the bottlenecks of
high model training time and low model precision. To solve
these problems, based on the HE cryptographic technique
[23] that has the property that the operation results on
ciphertexts are consistent with those on plaintexts, we design
an efficient privacy-preserving outsourced logistic regres-
sion (P2OLR). *e main contributions are as follows:

(1) Firstly, we propose amethod for achieving P2OLR on
encrypted data from HE. To speed up the model
training, the proposed P2OLR scheme employs the
batching technique to pack multiple elements into
multiple plaintext slots, encrypts them into one ci-
phertext, and performs the same arithmetic opera-
tions to multiple plaintext slots in the SIMD
mechanism.

(2) Secondly, we evaluate the proposed P2OLR on three
public datasets [18]. Under the same experimental
environment, compared with the related P2OLR
[17, 18, 22], the model training time of the proposed
P2OLR is reduced by more than 71.7%, and the
proposed P2OLR has a better model performance.

*e rest of this paper is arranged as follows. We present
the related works in Section 2. We review the preliminaries
related to our P2OLR in Section 3. In Section 4, ourP2OLR is
described. *e performance evaluation for our P2OLR is
presented in Section 5. *e security analysis of our P2OLR is
shown in Section 6. Finally, we conclude in Section 7.

2. Related Works

*ere have been a lot of works on achieving PPLR using
cryptographic techniques. In this paper, we mainly focus on
the PPLR based on HE. To outsource the LR model training
to a cloud service provider in a privacy-preserving manner,
based on the HE scheme (FV) [24], Charlotte et al. [13]
proposed an algorithm to train a LR model on an homo-
morphically encrypted dataset, which is implemented based
on the FV-NFLlib library [25]. However, the accuracy of
model is poor due to the use of a quadratic polynomial to
approximate the sigmoid function. Furthermore, the
training time grows linearly in the number of training
samples. Using the HE scheme (FV) [24] and 1 bit gradient
descent (GD)method, Chen et al. [14] presented amethod to
train LR over encrypted data, which is implemented through
the SEAL library [26], and allows an arbitrary number of
iterations by using bootstrapping [27] in FV, but boot-
strapping introduces a significant decrease in performance.
Focusing on the prediction process of LR, based on the HE
scheme (BGV) [28], Li and Sun [15] proposed a secure
protocol to solve the data leakage problem during the LR
prediction process, and implement their scheme by the
HElib library [29]. Based on the Chimera framework [30]
that allows switching between HE schemes TFHE [31] and
CKKS [23], Carpov et al. [16] proposed a solution to achieve

semi-parallel LR on encrypted genomic data, which per-
forms the bootstrapping [27] without re-encrypting the
genomic data for an arbitrary number of iterations, and is
implemented by using TFHE library [32] and HEAAN li-
brary [33].

Adapting the packing and parallelization techniques of
approximate HE scheme (CKKS) [23], Kim et al. [17]
proposed a PPLR, which is implemented through using the
HEAAN library [33], and uses least squares approximation
to improve the accuracy and efficiency of LR model training.
However, as the number of iterations increases, the pa-
rameters of the CKKS scheme also need to become larger,
which makes the training time increase dramatically. Kim
et al. [18] applied the HE scheme (CKKS) [23] to achieve
PPLR. *eir scheme is implemented via using the HEAAN
library [33]. Moreover, they devised an encoding method to
decrease the storage of encrypted training data and adapted
Nesterov’s accelerated GD method to reduce the number of
iterations as well as the computational cost. However, their
scheme requires the assumption that both the number of
training samples and features are power-of-two, which
makes the scheme unsuitable for practical applications. To
reduce the number of iterations, Cheon et al. [19] proposed
an ensemble GD method based on the HE scheme (CKKS)
[23], and applied it to the PPLR, in which they approximate
the sigmoid function using a polynomial of 5-degree ob-
tained by least squares approximation. *eir scheme is
implemented based on the HEAAN library [34]. To run a
genome-wide association study on encrypted data, using the
SIMD capabilities of HE scheme (CKKS) and Nesterov’s
accelerated GD, Bergamaschi et al. [20] introduced a method
for homomorphic training of LR model, which is imple-
mented based on the HElib library [29]. To protect the
private information of both parties, based on the HE scheme
(CKKS) [23] and gradient sharing technology, Wei et al. [21]
proposed a protocol to train an LR model on vertically
distributed data between two parties, which does not require
trusted third-party nodes and is implemented by the HElib
library [29]. Based on the HE scheme (CKKS) [23], Fan et al.
[22] offered a PPLR algorithm, where they approximate the
sigmoid function in LR by Taylor’s theorem, and use row
encoding to encrypt training samples, but as the number of
samples increased, this will lead to longer model training
time.

3. Preliminaries

3.1. System Model. As can be seen in Figure 1, the system
model of the proposed P2OLR considers two entities, namely
a data owner (DO) and a service provider (SP). For read-
ability, the definitions of the notations in this paper are
shown in Table 1. DO: It has limited computational re-
sources, and wants to use SP’s data analysis service on
encrypted data to train a LRmodel without revealing its own
training data privacy. SP: It is a semi-trusted entity with
powerful data storage and computing capabilities, and can
provide data analysis and statistical services on encrypted
data for DO. Specifically, DO chooses poly_modulus_degree
N, coeff_modulus Q, and runs key_generation algorithm to

2 Security and Communication Networks

generate the secret_key sk, public_key pk, relinear-
ization_key rk, galois_key gk. Next, DO encrypts the
training data D ∈ Rm×n into ciphertexts D, encrypts the
initial weight w

(0)
0 , w

(0)
1 , · · · , w

(0)
n− 1􏽮 􏽯 into ciphertexts W(0),

encrypts the learning rate α into one ciphertext α/m, and
sends N, Q, Δ, pk, rk, gk, t, D, W(0), α/m to SP. SP performs
the P2OLR algorithm and returns the ciphertext result W(t)

of the t -th iteration to DO. DO decrypts the ciphertext result
W(t) to obtain final result w

(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯.

3.2. Homomorphic Encryption. Homomorphic encryption
(HE) is a cryptographic technique, which allows operations
on ciphertexts without decryption, and guarantees that the
computation results on ciphertexts are consistent with the
computation results on plaintexts. We adopt the HE scheme
(CKKS) [23] based on the Ring Learning with Errors
(RLWE) problem, which can encrypt multiple elements in
one ciphertext and supports the single instruction multiple
data (SIMD) operations. Suppose ΦM(X) � XN + 1 denotes
the M -th cyclotomic polynomial, where N is power of 2.
R � Z[X]/(XN + 1) denotes the cyclotomic ring of poly-
nomials. Rq � R/qR � Zq[X]/(XN + 1) denotes the resi-
due ring of R modulo q. H denotes a subring of complex
vector CN that is isomorphic to CN/2. σ: R⟶ σ(R)⊆H
denotes a canonical embedding that transforms a plaintext
polynomial R into a complex vector H. π: H⟶ CN/2

denotes a natural projection that transforms a complex
vector CN to CN/2. HE scheme (CKKS) [23] supports the
operations as follows, which can be found in the Appendix.
For ease of description, we define the Algorithms 1–9.

3.3. Sigmoid Approximation. Since the existing HE scheme
can only effectively support polynomial arithmetic com-
putations, the computation of sigmoid function
σ(x) � 1/(1 + e− x) using HE is a barrier to the realization of
P2OLR. To find a approximate polynomial of σ(x), adapting
the least squares method, we consider the 7° polynomial
g(x) � a0 + a1x + a3x

3 + a5x
5 + a7x

7 over the domain
[− 8, 8], where a0 � 1/2, a1 � 1.73496/8, a3 � 4.19407/83,
a5 � 5.43402/85, a7 � 2.50739/87. σ(x) and g(x) can be seen
in Figure 2, the maximum errors between σ(x) and g(x) are
about 0.032. g(x) over encrypted data x from HE can be
achieved by the Algorithm 10.

3.4. Logistic Regression. Logistic regression (LR) is a statis-
tical analysis method for predicting the probability of an
event. We consider the case where the predicted value is a
binary dependent variable. Assuming that a dataset consists
of m samples of the form yi, xi􏼈 􏼉 with yi ∈ 0, 1{ } and
xi � xi,1, xi,2, · · · , xi,N/2− 1􏽮 􏽯 ∈ Rn− 1, the goal of LR is to find
the optimal parameters w � w0, w1, · · · , wn− 1􏼈 􏼉 that mini-
mizes the negative log-likelihood function (loss function)
J(w) � 1/m · 􏽐

m− 1
i�0 (yi · log(σ(di · wT)) + (1 − yi) · (1−

log(σ(di · wT)))), where di � 1, xi􏼈 􏼉. A common method for
minimizing loss function J(w) is a gradient descent (GD)
algorithm, which finds the local extremum of a loss function
by following the direction of the gradient. *e gradient of

J(w) with respect to w is calculated by
∇J(w) � 1/m · 􏽐

m− 1
i�0 ((σ(− di · wT) − yi) · di). Let wk be the

regression parameters and αk is a learning rate in the k-th
iteration of the GD algorithm, the GD algorithm can update
wk+1 by wk+1←wk − αk/m · 􏽐

m− 1
i�0 ((σ(di · wT) − yi) · di).

4. Privacy-Preserving Outsourced
Logistic Regression

Based on the HE scheme, we propose a P2OLR, where we
employ the batching method to pack multiple elements
into multiple plaintext slots, and encrypt them into one
ciphertext, and then perform the same arithmetic eval-
uations to multiple plaintext slots through the SIMD
mechanism. To reduce the parameters of HE scheme
(CKKS) as well as improve the performance of P2OLR,
the proposed P2OLR allows the interaction between DO
and SP during iterative training. Specifically, SP returns
the ciphertext training result to DO after certain number
of iterations t. DO decrypts the ciphertext training result,
and determines whether the performance of the model
has met the requirements. If so, stops training. Other-
wise, sends encrypted weights to SP to continue training.
Let

D �

y0

y1

⋮

ym− 1

x0,1

x1,1

⋮

xm− 1,1

x0,2

x1,2

⋮

xm− 1,2

· · ·

· · ·

⋱

· · ·

x0,n− 1

x1,n− 1

⋮

xm− 1,n− 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (1)

denote the training data sets held by DO, where D consists of
m samples of the form yi, xi,1, xi,2, · · · , xi,N/2− 1􏽮 􏽯 with
yi ∈ 0, 1{ } and xi,1, xi,2, · · · , xi,N/2− 1􏽮 􏽯 ∈ Rn− 1. *e first col-
umn of D denotes the label, other columns D denote the
features. Since DO has limited computational resources, DO

Security and Communication Networks 3

N, Q, ∆, pk, rk, gk, t, [[D]],[[W(0)]],[[α/m]]

[[W(t)]]

SPDO

Figure 1: System model.

Table 1: *e definitions of the notations.

Notations Definitions
x A message vector [x0, x1, · · · , xN/2− 1]

〈x〉 *e plaintext of message vector x
x *e ciphertext of message vector x
X A list x0, x1, . . . , xn− 1􏼈 􏼉

Xi *e i ciphertext of ciphertext list Xi

x∗ y *e multiplication of x and y, namely [x0 · y0, x1 · y1, · · · , xN/2− 1 · yN/2− 1]

x · y *e product of x and y, namely [x0 · y0, x1 · y1, · · · , xN/2− 1 · yN/2− 1]

x + y *e addition of x and y, namely [x0 + y0, x1 + y1, · · · , xN/2− 1 + yN/2− 1]

x − y *e subtraction of x and y, namely [x0 + y0, x1 + y1, · · · , xN/2− 1 + yN/2− 1]

Input: x

Output: x

(1) encode_double (x, Δ, x)
(2) encrypt (〈x〉, x)
(3) return: x

ALGORITHM 1: x � Enc(x).

Input: X

Output: x0, x1, · · · , xn− 1􏼈 􏼉

(1) for (i � 0 to n − 1) do
(2) decrypt (Xi, 〈xi〉)
(3) decode_double (〈xi〉, xi)
(4) xi � xi.get(0)

(5) end for
(6) return: x0, x1, . . . , xn− 1􏼈 􏼉

ALGORITHM 2: x0, x1, · · · , xn− 1􏼈 􏼉 � Dec(X).

Input: x, y

Output: x∗ y
(1) mod_switch_to_inplace (y, x.parms_id())
(2) multiply (x, y, x∗y)
(3) relinearize_inplace (x∗y, rk)
(4) rescale_to_next_inplace (x∗y)
(5) x∗y.set_scale (Δ)
(6) return: x∗y

ALGORITHM 3: x∗y � Mul(x, y).

Input: x, y

Output: x∗y

(1) encode_double (y, Δ, 〈y〉)
(2) mod_switch_to_inplace (〈y〉, x.parms_id())
(3) multiply_plain (x, 〈y〉, x∗y)
(4) rescale_to_next_inplace (x∗y)
(5) x∗y.set_scale (Δ)
(6) return: x∗y

ALGORITHM 4: x∗y � Mul_Plain(x, y).

Input: x, y

Output: x + y

(1) mod_switch_to_inplace (y, x.parms_id())
(2) add (x, y, x + y)
(3) return: x + y

ALGORITHM 5: x + y � Add(x, y).

Input: x, y

Output: x + y

(1) encode_double (y, Δ, 〈y〉)
(2) mod_switch_to_inplace (〈y〉, x.parms_id())
(3) add_plain (x, 〈y〉, x + y)
(4) return: x + y

ALGORITHM 6: x + y � Add_Plain(x, y).

4 Security and Communication Networks

wants to outsource to SP to train a LR model without
disclosing its own training data privacy. *e specific de-
scription of the proposed P2OLR is as follows.

(1) DO generates sk, pk, rk, gk􏼈 􏼉, computes l � 2m/N,
calls the Algorithm 1 to encrypt the training data D

into l × n ciphertexts

Input: x, y

Output: x − y

(1) mod_switch_to_inplace (y, x.parms_id())
(2) sub (x, y, x − y)
(3) return: x − y

ALGORITHM 7: x − y � Sub(x, y).

Input: x, y

Output: x

(1) mod_switch_to_inplace (x, y.parms_id())
(2) add inplace (x, y)
(3) return: x

ALGORITHM 8: x � Add_Inplace(x, y).

Input: x � [x0, x1, · · · , xN/2− 1]

Output: y � [􏽐
N/2− 1
i�0 xi, 􏽐

N/2− 1
i�0 xi, · · · , 􏽐

N/2− 1
i�0 xi]

(1) y � x

(2) for (k � N/2; k≥ 1; k � k/2) do
(3) rotate_vector (y, k, gk, z)
(4) add_inplace (y, z)
(5) end for
(6) return: y

ALGORITHM 9: y � Rotate_Sum(x).

1.0

0.5y

0.0

–8 –7 –6 –5 –4

σ (x)
g (x)

–3 –2 –1 0 1
x

2 3 4 5 6 7 8

Figure 2: Sigmoid approximation.

Security and Communication Networks 5

⟦yT
0 ⟧ � Enc y0, y1, · · · , yN/2− 1􏼂 􏼃(􏼁,

⟦yT
1 ⟧ � Enc yN/2, yN/2+1, · · · , yN− 1(􏼁􏼂 􏼃,

⟦yT
l− 1⟧ � Enc ym− (l− 1)·N/2, ym− (l− 1)·N/2+1, · · · , ym− 1􏽨 􏽩􏼐 􏼑,

⟦xT
0,1⟧ � Enc x0,1, x1,1, · · · , yN/2− 1,1􏽨 􏽩􏼐 􏼑,

⟦xT
0,n− 1⟧ � Enc x0,n− 1, x1,n− 1, · · · , yN/2− 1,n− 1􏽨 􏽩􏼐 􏼑,

⟦xT
0,2⟧ � Enc x0,2, x1,2, · · · , yN/2− 1,2􏽨 􏽩􏼐 􏼑,

⟦xT
1,1⟧ � Enc xN/2,1, xN/2+1,1, · · · , yN− 1,1􏽨 􏽩􏼐 􏼑,

⟦xT
1,2⟧ � Enc xN/2,2, xN/2+1,2, · · · , yN− 1,2􏽨 􏽩􏼐 􏼑,

⟦xT
1,n− 1⟧ � Enc xN/2,n− 1, xN/2+1+1,n− 1, · · · , yN− 1,n− 1􏽨 􏽩􏼐 􏼑,

⟦xT
l− 1,1⟧ � Enc xm− (l− 1)·N/2,1, xm− (l− 1)·N/2+1,1, · · · , ym− 1,1􏽨 􏽩􏼐 􏼑,

⟦xT
l− 1,2⟧ � Enc xm− (l− 1)·N/2,2, xm− (l− 1)·N/2+1,2, · · · , ym− 1,2􏽨 􏽩􏼐 􏼑

⟦xT
l− 1,n− 1⟧ � Enc xm− (l− 1)·N/2,n− 1, xm− (l− 1)·N/2+1,n− 1, · · · , ym− 1,n− 1􏽨 􏽩􏼐 􏼑.

(2)

calls the Algorithm 1 to encrypt the initial weight
w

(0)
0 , w

(0)
1 , · · · , w

(0)
n− 1􏽮 􏽯 into n ciphertexts

⟦w(0)
0 ⟧ � Enc w

(0)
0 , w

(0)
0 , · · · , w

(0)
0􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
1 ⟧ � Enc w

(0)
1 , w

(0)
1 , · · · , w

(0)
1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
N− 1⟧ � Enc w

(0)
1 , w

(0)
1 , · · · , w

(0)
1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

(3)

calls the Algorithm 1 to encrypt the learning rate α
into one ciphertext

⟦
α
m
⟧ � Enc α/m, 0, 0, · · · , 0􏽼√√√√√√􏽻􏽺√√√√√√􏽽

N/2

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠. (4)

and sends yT
0 , yT

1 , · · ·, yT
l− 1, x

T
0,1, xT

0,2, · · ·, xT
0,n− 1, xT

1,1,
xT
1,2, · · ·, xT

1,n− 1, x
T
l− 1,1, x

T
l− 1,2, · · ·, xT

l− 1,n− 1, w
(0)
0 , w(0)

1 , · · ·,
w(0)

n− 1, α/m, N, Q, sk, pk, rk, gk, t to SP.
(2) SP computes ciphertexts

⟦xT
i,0⟧ � Enc 1, 1, · · · , 1􏽼√√√√􏽻􏽺√√√√􏽽

N/2

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠, (i � 1, 2, · · · , l − 2),

⟦xT
l− 1,0⟧ � Enc 1, 1, · · · , 1􏽼√√√√􏽻􏽺√√√√􏽽

m− (l− 1)·N/2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎛⎝ ⎞⎠,

(5)

and sets the lists

Input: x

Output: g(x)

(1) x∗x � Mul(x, x)

(2) x∗x∗ x∗x � Mul(x∗ x, x∗ x)

(3) x∗x∗ x∗x∗ x∗x � Mul(x∗ x∗x∗ x, x∗ x)

(4) a7 ∗x � Mul_Plain(x, a7)

(5) a7 ∗x∗x∗x∗x∗x∗x∗x � Mul(x∗x∗x∗x∗x∗x, a7 ∗x)

(6) a5 ∗x � Mul_Plain(x, a5)

(7) a5 ∗x∗x∗x∗x∗x � Mul(x∗x∗x∗x, a5 ∗x)

(8) a3 ∗x � Mul_Plain(x, a3)

(9) a3 ∗x∗x∗x � Mul(x∗x, a3 ∗x)

(10) a1 ∗x � Mul_Plain(x, a1)

(11) a0 + a1 ∗x � Add_Plain(a1 ∗x, a0)

(12) a0 + a1 ∗x − a3 ∗ x∗x∗ x � Sub(a3 ∗x∗ x∗x, a0 + a1 ∗x)

(13) a0 + a1 ∗x − a3 ∗ x∗x∗ x + a5 ∗x∗x∗x∗x∗x � Add(a5 ∗x∗x∗x∗x∗x, a0 + a1 ∗ x − a3 ∗x∗x∗x)

(14) a0 + a1 ∗x − a3 ∗ x∗x∗ x + a5 ∗x∗x∗x∗x∗x − a7 ∗x∗x∗x∗x∗x∗x∗x � Sub(a7 ∗x∗x∗x∗x∗x∗x∗x, a0 +

a1 ∗x − a3 ∗x∗x∗x + a5 ∗x∗ x∗x∗ x∗x)

(15) return: g(x) � a0 + a1 ∗ x − a3 ∗x∗x∗x + a5 ∗x∗x∗x∗x∗x − a7 ∗x∗x∗x∗x∗x∗x∗x.

ALGORITHM 10: g(x) � Sigmoid_Approximation(x).

6 Security and Communication Networks

Y � ⟦yT
0 ⟧, ⟦y

T
1 ⟧, · · · , ⟦yT

l− 1⟧􏽮 􏽯,

⟦X0⟧ � ⟦xT
0,0⟧, ⟦x

T
0,1⟧, ⟦x

T
0,2⟧, · · · , ⟦xT

0,n− 1⟧􏽮 􏽯,

⟦X1⟧ � ⟦xT
1,0⟧, ⟦x

T
1,1⟧, ⟦x

T
1,2⟧, · · · , ⟦xT

1,n− 1⟧􏽮 􏽯,

⟦Xl− 1⟧ � ⟦xT
l− 1,0⟧, ⟦x

T
l− 1,1⟧, ⟦x

T
l− 1,2⟧, · · · , ⟦xT

l− 1,n− 1⟧􏽮 􏽯,

⟦W(0)⟧ � ⟦w(0)
0 ⟧, ⟦w

(0)
1 ⟧, · · · , ⟦w(0)

n− 1⟧􏽮 􏽯.

(6)

Next, SP calls the Algorithm 11, and returns the
ciphertext result W(t) to DO.

(3) DO calls the Algorithm 2 to decrypt the ciphertext
result W(t) into the result
w

(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯 � Dec(W(t)). Next, DO judges

whether w
(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯 has met the require-

ments. If so, terminates the training. Otherwise, DO
calls the Algorithm 1 to encrypt w

(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯

into n ciphertexts

⟦w(0)
0 ⟧ � Enc w

(t)
0 , w

(t)
0 , · · · , w

(t)
0􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
1 ⟧ � Enc w

(t)
1 , w

(t)
1 , · · · , w

(t)
1􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
n− 1⟧ � Enc w

(t)
n− 1, w

(t)
n− 1, · · · , w

(t)
n− 1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠.

(7)

and sends w
(0)
0 , w(0)

1 , · · ·, w(0)
n− 1 to SP to continue

training.

5. Performance Evaluation

We implement all experiments on a 32-core Intel Xeon CPU
with 256GB RAM. We compare the performance of the
proposed P2OLR with the related P2OLR [17, 18, 22]. We
employ 5-fold cross-validation method to obtain the validity
of the experimental results. For [17, 18], the implementa-
tions are publicly available at [35, 36], respectively, which
use the HEAAN library [33] to provide HE cryptographic
operations. For [22] and the proposed P2OLR, we employ
the Microsoft SEAL library [26] for the HE cryptographic
operations. For all experiments, we set the learning rate
α � 0.01, random initial weight vector w

(0)
0 , w

(0)
1 , · · · , w

(0)
n− 1􏽮 􏽯

maximum number of iterations λ � 20, and scaling factor
Δ � 240. To guarantee κ � 128 bit security, the scheme [17]
takes the polynomial-modulus-degree N � 217, coefficient-
modulusQ around 2204 to 2406 bits; the scheme [18] sets the
N � 216,Q � 1176 bits; the scheme [22] chooses theN � 215,
Q � 320 bits; For the proposed P2OLR, we select N � 215,
Q � 512 bits. Using the three datasets [18]: D1—Umaru
Impact Study, D2—Myocardial Infarction Study from
Edinburgh, D3—Nhanes III, we compare the proposed
P2OLR with the related P2OLR [17, 18, 22] in terms of the
encryption time (E. time) and decryption time (D. time) of
DO, storage of encrypted training data, and training time
(T. time), accuracy, precision, recall, F1-score and AUC of
model. All comparison results are shown as an average of 10

experiments. *e performance comparisons of the proposed
P2OLR and the related P2OLR [17, 18, 22] are shown in
Table 2.

From Table 2, we can see that, compared with the related
P2OLR [17, 18, 22], the proposed P2OLR has a better per-
formance. Specifically, as shown in Figure 3, under the
training dataset D1, the encryption time of DO in the
proposed P2OLR is 2.01 s, which is reduced by nearly 71.4%,
7.8%, and 93.3% respectively compared with the encryption
time of DO in [17, 18, 22]; under the training dataset D2, the
encryption time of DO in the proposed P2OLR is 2.16 s,
which is reduced by nearly 73.6%, 2.3%, and 96.8% re-
spectively compared with the encryption time of DO in
[17, 18, 22]; under the training dataset D3, the encryption
time of DO in the proposed P2OLR is 3.49 s, which is re-
duced by nearly 75.9%, 81.6%, and 75.0% respectively
compared with the encryption time of DO in [17, 18, 22].

As can be seen in Figure 4, under the training dataset D1,
the decryption time of DO in the proposed P2OLR is 0.23 s,
which is reduced by almost 95.3% and 41.0% respectively in
comparison to the decryption time of DO in [17, 18]; under
the training dataset D2, the decryption time of DO in the
proposed P2OLR is 0.26 s, which is reduced by almost 95.0%
and 36.6% respectively in comparison to the decryption time
of DO in [17, 18]; under the training dataset D3, the de-
cryption time of DO in the proposed P2OLR is 0.45 s, which
is reduced by almost 96.1% and 6.1% respectively in com-
parison to the decryption time of DO in [17, 18]. *e de-
cryption time of DO in [22] is smaller in comparison to that
of the proposed P2OLR.

As described in Figure 5, under the training dataset D1,
the storage of encrypted training data in the proposed
P2OLR is 72.00MB, compared with the storage of encrypted
training data in [17, 22], which is reduced by nearly 88.9%
and 95.0%; under the training dataset D2, the storage of
encrypted training data in the proposed P2OLR is 80.00MB,
compared with the storage of encrypted training data in
[17, 22], which is reduced by nearly 89.0% and 97.4%; under
the training dataset D3, the storage of encrypted training
data in the proposed P2OLR is 128.00MB, compared with
the storage of encrypted training data in [17, 18, 22], which is
reduced by nearly 89.4%, 13.0% and 99.7% respectively.
Although the storage of encrypted training data for dataset
D1 and D2 in [18] is smaller than that of the proposed
P2OLR, as the number of samples m and features n increases,
for dataset D3, the storage of encrypted training data in the
proposed P2OLR is smaller than that of [22].

As displayed in Figure 6, under the training dataset D1,
the training time of model in the proposed P2OLR is
2.64min, which is reduced by almost 96.6%, 73.8%, and
90.1% respectively than the training time of model in
[17, 18, 22]; under the training dataset D2, the training time
of model in the proposed P2OLR is 2.91min, which is re-
duced by almost 96.5%, 71.7%, and 95.0% respectively than
the training time of model in [17, 18, 22]; under the training
dataset D3, the training time of model in the proposed
P2OLR is 4.21min, which is reduced by almost 96.5%, 79.8%,
and 99.4% respectively than the training time of model in
[17, 18, 22].

Security and Communication Networks 7

As illustrated in Figure 7, under the training dataset D1,
the average accuracy of model in the proposed P2OLR is
80.6%, which has nearly 5.8%, 6.2%, and 6.2% improvement
respectively compared with the average accuracy of model in
[17, 18, 22]; under the training dataset D2, the average
accuracy of model in the proposed P2OLR is 90.6%, which
has nearly 9.0%, 7.6%, and 7.9% improvement respectively
compared with the average accuracy of model in [17, 18, 22];
under the training dataset D3, the average accuracy of model
in the proposed P2OLR is 83.7%, which has nearly 4.6%,

4.5%, and 5.8% improvement respectively compared with
the average accuracy of model in [17, 18, 22].

As illustrated in Figure 8, under the training dataset D1,
the average precision of model in the proposed P2OLR is
95.6%, which has nearly 3.3%, 4.7%, and 4.7% improvement
respectively compared with the average precision of model
in [17, 18, 22]; under the training dataset D2, the average
precision of model in the proposed P2OLR is 95.1%, which
has nearly 5.4%, 4.7%, and 4.7% improvement respectively
compared with the average precision of model in [17, 18, 22];

Input: Y, X0, X1, · · ·, Xl− 1, w(0), α/m, N, Q,., sk, pk, rk, gk, t

Output: W(t)

(1) for (k � 0 to t − 1) do
(2) for (i � 0 to l − 1) do
(3) for (j � 0 to n − 1) do
(4) Cij � Mul(W(k)

j, Xij)

(5) end for
(6) Oi � 0
(7) for (j � 0 to n − 1) do
(8) Oi � Add Inplace(Oi,Cij)

(9) end for
(10) Gi � Sigmoid Approximation(Oi)

(11) G′i � Sub(Gi,Yi)

(12) for (j � 0 to n − 1) do
(13) Ci

′
j � Mul(G′i,Xij)

(14) end for
(15) end for
(16) for (j � 0 to n − 1) do
(17) Zi � 0
(18) for (i � 0 to l − 1) do
(19) Zj � Add Inplace(Zj, Ci

′
j)

(20) end for
(21) Z′j � Rotate Sum(Zj)

(22) Z′j � Mul(Z′j, α/m)

(23) W(k+1)
j � Sub(W(k)

j,Z″j)
(24) W’(k+1)

j � Mul Plain(W(k+1)
j, 1)

(25) W″(k+1)

j � Rotate Sum(W′(k+1)

j)

(26) end for
(27) end for
(28) return: W(t)

ALGORITHM 11: P2OLR.

Table 2: Performance comparisons.

Dataset m n λ Scheme E. time
(s)

D. time
(s)

Storage
(MB)

T. time
(min)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%) AUC

D1 575 8 20

[17] 7.04 4.93 648.56 77.35 74.8 92.3 71.4 80.5 0.68
[18] 2.18 0.39 36.75 10.09 74.4 90.9 71.4 80.0 0.65
[22] 30.28 0.06 1438.75 26.67 74.4 90.9 71.4 80.0 0.66

P2OLR 2.01 0.23 72.00 2.64 80.6 95.6 77.4 85.5 0.73

D2 1253 9 20

[17] 8.17 5.19 726.86 83.57 81.6 89.7 82.4 85.9 0.82
[18] 2.21 0.41 36.75 10.28 83.0 90.4 83.5 86.8 0.86
[22] 68.35 0.06 3133.75 57.35 82.7 90.4 82.9 86.5 0.86

P2OLR 2.16 0.26 80.00 2.91 90.6 95.1 90.6 92.8 0.88

D3 15649 15 20

[17] 14.48 11.65 1203.00 121.95 79.1 50.0 61.2 55.0 0.83
[18] 13.96 0.48 147.00 20.86 79.2 50.2 61.3 55.2 0.71
[22] 823.56 0.06 39123.75 718.25 77.9 52.4 62.2 56.9 0.71

P2OLR 3.49 0.45 128.00 4.21 83.7 60.3 64.2 62.2 0.85

8 Security and Communication Networks

7.04

2.18

30.28

2.01

[17] [18] [22] Ours
0

5

10

15

20

25

30

35
Th

e e
nc

ry
pt

io
n

tim
e o

f D
O

 (s
)

Dataset D1

(a)

[17] [18] [22] Ours
0

10

30

20

40

50

60

70

80

Th
e e

nc
ry

pt
io

n
tim

e o
f D

O
 (s

)

Dataset D2

8.17
2.21

68.35

2.16

(b)

[17] [18] [22] Ours
0

200

400

600

800

1000

Th
e e

nc
ry

pt
io

n
tim

e o
f D

O
 (s

)

Dataset D3

14.48 13.96

823.56

3.49

(c)

Figure 3: *e encryption time of DO.

[17] [18] [22] Ours
0

1

2

3

4

5

6

Th
e d

ec
ry

pt
io

n
tim

e o
f D

O
 (s

)

Dataset D1

4.93

0.39
0.06 0.23

(a)

[17] [18] [22] Ours
0

1

2

3

4

5

6

Th
e d

ec
ry

pt
io

n
tim

e o
f D

O
 (s

)

Dataset D2

5.19

0.41
0.06 0.26

(b)

Figure 4: Continued.

Security and Communication Networks 9

under the training datasetD3, the average precision of model
in the proposed P2OLR is 60.3%, which has nearly 10.3%,
10.1%, and 7.9% improvement respectively compared with
the average precision of model in [17, 18, 22].

As illustrated in Figure 9, under the training dataset D1,
the average recall of model in the proposed P2OLR is 77.4%,
which has nearly 6.0%, 6.0%, and 6.0% improvement re-
spectively compared with the average recall of model in
[17, 18, 22]; under the training dataset D2, the average recall
of model in the proposed P2OLR is 90.6%, which has nearly
8.2%, 7.1%, and 7.7% improvement respectively compared
with the average recall of model in [17, 18, 22]; under the
training dataset D3, the average recall of model in the
proposed P2OLR is 64.2%, which has nearly 3.0%, 2.9%, and
2.0% improvement respectively compared with the average
recall of model in [17, 18, 22].

As illustrated in Figure 10, under the training dataset D1,
the average F1-score of model in the proposed P2OLR is
85.5%, which has nearly 5.0%, 5.5%, and 5.5% improvement
respectively compared with the average F1-score of model in
[17, 18, 22]; under the training dataset D2, the average F1-
score of model in the proposed P2OLR is 92.8%, which has
nearly 6.9%, 4.0%, and 4.3% improvement respectively
compared with the average F1-score of model in [17, 18, 22];
under the training dataset D3, the average F1-score of model
in the proposed P2OLR is 62.2%, which has nearly 7.2%,
7.0%, and 5.3% improvement respectively compared with
the average F1-score of model in [17, 18, 22].

As demonstrated in Figure 11, under the training dataset
D1, the AUC of model in the proposed P2OLR is 0.73,
compared with the AUC of model in [17, 18, 22], which has
nearly 0.05, 0.08, and 0.07 improvement respectively; under

the training dataset D2, the AUC of model in the proposed
P2OLR is 0.88, compared with the AUC of model in
[17, 18, 22], which has nearly 0.06, 0.02, and 0.02 im-
provement respectively; under the training dataset D3, the
AUC of model in the proposed P2OLR is 0.85, compared
with the AUC of model in [17, 18, 22], which has nearly 0.02,
0.14, and 0.14 improvement respectively.

6. Security Analysis

In a semi-honest adversary model, we assume that DO and
SP hold the public key pk, relinearization key rk, galois key
gk, and only DO holds the secret key sk. For our P2OLR that
evaluates deterministic functionf, following the simulation-
based paradigm [37], we consider the security model for
security analysis, namely, DO encrypts its private data x and
sends x to SP. SP performs the homomorphic operations on
x to obtain y, homomorphically evaluates f(x) on x to
obtain f(x), and sends f(x) to DO. DO decrypts f(x) and
obtains f(x).

Theorem 1. We assume that SP is a semi-honest entity and
assume that DO and SP do not collude with each other. Let x
be a private data of DO. If the HE scheme [23] provides
semantic security, after performing the homomorphic oper-
ations on x and the evaluation of f(x) on x, DO learns f(x)

but nothing else, SP learns nothing.
Security Proof. 8e security proof of the proposed P2OLR

follows the simulation-based paradigm [37]. Let the view of
DO and SP during the evaluation be VDO and VSP, re-
spectively. 8e view VSP of SP consists of
pk, rk, gk, x, y, f(x)􏼈 􏼉. We construct a simulator SSP as

[17] [18] [22] Ours
0

2

4

6

8

10

12

14

Th
e d

ec
ry

pt
io

n
tim

e o
f D

O
 (s

)

Dataset D3

11.65

0.48 0.06 0.45

(c)

Figure 4: *e decryption time of DO.

10 Security and Communication Networks

[17] [18] [22] Ours
0

400

800

1200

1600

2000
Th

e s
to

ra
ge

 o
f e

nc
ry

pt
ed

 tr
ai

ni
ng

 d
at

a (
M

B)

Dataset D1

648.56

36.75

1438.75

72.00

(a)

[17] [18] [22] Ours
0

800

1600

2400

3200

4000

Th
e s

to
ra

ge
 o

f e
nc

ry
pt

ed
 tr

ai
ni

ng
 d

at
a (

M
B)

Dataset D2

726.86

36.75

3133.75

80.00

(b)

[17] [18] [22] Ours
0

10000

20000

30000

40000

50000

Th
e s

to
ra

ge
 o

f e
nc

ry
pt

ed
 tr

ai
ni

ng
 d

at
a (

M
B)

Dataset D3

1203.00 147.00

39123.75

128.00

(c)

Figure 5: *e storage of encrypted training data.

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e t

ra
in

in
g

tim
e o

f m
od

el
 (m

in
)

Dataset D1

77.35

10.09

26.67

2.64

(a)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e t

ra
in

in
g

tim
e o

f m
od

el
 (m

in
)

Dataset D2

83.57

10.28

57.35

2.91

(b)

Figure 6: Continued.

Security and Communication Networks 11

[17] [18] [22] Ours
0

200

400

600

800

1000

Th
e t

ra
in

in
g

tim
e o

f m
od

el
 (m

in
)

Dataset D3

121.95

20.86

718.25

4.21

(c)

Figure 6: *e training time of model.

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e a

cc
ur

ac
y

of
 m

od
el

 (%
)

Dataset D1

74.8 74.4 74.4
80.6

(a)

[17] [18] [22] Ours
0

20

40

60

80

100
Th

e a
cc

ur
ac

y
of

 m
od

el
 (%

)

Dataset D2

81.6 83.0 82.7
90.6

(b)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e a

cc
ur

ac
y

of
 m

od
el

 (%
)

Dataset D3

79.1 79.2 77.9
83.7

(c)

Figure 7: *e accuracy of model.

12 Security and Communication Networks

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e r

ec
al

l o
f m

od
el

 (%
)

Dataset D1

71.4 71.4 71.4
77.4

(a)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e r

ec
al

l o
f m

od
el

 (%
)

Dataset D2

82.4 83.5 82.9
90.6

(b)

Figure 9: Continued.

[17] [18] [22] Ours
0

20

40

60

80

100
Th

e p
re

ci
sio

n
of

 m
od

el
 (%

)

Dataset D1

92.3 90.9 90.9
95.6

(a)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e p

re
ci

sio
n

of
 m

od
el

 (%
)

Dataset D2

89.7 90.4 90.4
95.1

(b)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e p

re
ci

sio
n

of
 m

od
el

 (%
)

Dataset D3

50.0 50.2 52.4
60.3

(c)

Figure 8: *e precision of model.

Security and Communication Networks 13

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e F

1–
sc

or
e o

f m
od

el
 (%

)

Dataset D1

80.5 80.0 80.0
85.5

(a)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e F

1–
sc

or
e o

f m
od

el
 (%

)

Dataset D2

85.9 86.8 86.5
92.8

(b)

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e F

1–
sc

or
e o

f m
od

el
 (%

)

Dataset D3

55.0 55.2 56.9
62.2

(c)

Figure 10: *e F1-score of model.

[17] [18] [22] Ours
0

20

40

60

80

100

Th
e r

ec
al

l o
f m

od
el

 (%
)

Dataset D3

61.2 61.3 62.2 64.2

(c)

Figure 9: *e recall of model.

14 Security and Communication Networks

follows. SSP randomly chooses input data x′, y′, f(x′). 8en,
SSP simulatesVSP byVSP

′ � pk, rk, gk, x′, y′, f(x′)􏼈 􏼉. Since
the HE scheme [23] provides semantic security by assumption,
VSP and VSP

′ are indistinguishable. 8erefore, the proposed
P2OLR is secure against a semi-honest SP.

7. Conclusion

In this paper, we present a method for achieving a P2OLR on
encrypted training data, which enables data owners to utilize
the powerful storage and computing resources of cloud
service providers for logistic regression analysis without
exposing the privacy of training data. We take advantage of
the batching technique and SIMD mechanism in HE to
speed up the training progress. On the three public datasets,
compared with the related P2OLR schemes [17, 18, 22], the
model training time of the proposed P2OLR is reduced by
more than 71.7%, and the proposed P2OLR has over 4.5%,
3.3%, 2.0%, 4.0%, and 0.02 performance in terms of the
accuracy, precision, recall, F1-score, and AUC of model.
*ere are still some limitations in applying our scheme to

arbitrary datasets and performing arbitrary number of it-
erations on encrypted training data. In the future, we will
extend our scheme to efficiently support P2OLR with ar-
bitrary number of iterations.

Appendix

(1) key_generation(params) ⟶ {sk, pk, rk, gk }:
Given the poly_modulus_degree N and coef-
f_modulus Q, it returns the secret_key sk, pub-
lic_key pk, relinearization_key rk, galois_key gk.

(2) encode_double(x, Δ, x): Given the message vector
x ∈ CN/2 and scaling factor Δ, it expands x to H by
π− 1(x), scales π− 1(x) byΔ · π− 1(x), and outputs the
plaintext x � σ − 1(Δ · π− 1(x)) ∈R.

(3) decode_double(x, x): Given the plaintext x, it
computes
σ · x � σ · σ − 1(Δ · π− 1(x)) � Δ · π− 1(x) ∈ H,
Δ− 1 · [Δπ− 1(x) ≈ π− 1(x)], and outputs the message
vector x � π · π− 1(x) ∈ CN/2.

[17] [18] [22] Ours
0.0

0.2

0.4

0.6

0.8

1.0
Th

e A
U

C
of

 m
od

el

Dataset D1

0.68 0.65 0.66
0.73

(a)

[17] [18] [22] Ours
0.0

0.2

0.4

0.6

0.8

1.0

Th
e A

U
C

of
 m

od
el

Dataset D2

0.82
0.86 0.86 0.88

(b)

[17] [18] [22] Ours
0.0

0.2

0.4

0.6

0.8

1.0

Th
e A

U
C

of
 m

od
el

Dataset D3

0.83

0.71 0.71

0.85

(c)

Figure 11: *e AUC of model.

Security and Communication Networks 15

(4) encrypt (x, x): Given the plaintext x, it encrypts x
into a ciphertext x, and outputs the ciphertext x.

(5) decrypt (x, x): Given a ciphertext x, it decrypts x
into a plaintext x, and outputs the plaintext x.

(6) add (x, y, x + y): Given two ciphertexts x and y, it
computes x + y and saves the result as a new ci-
phertext x + y.

(7) add_inplace(x, y): Given two ciphertexts x and y, it
computes x + y and saves the result in ciphertext x.

(8) add_plain(x, y, x + y): Given a ciphertext x and a
plaintext y, it computes x + y and saves the result as
a new ciphertext x + y.

(9) sub(x, y, x − y): Given two ciphertexts x and y, it
computes x − y and saves the result as a new ci-
phertext x − y.

(10) multiply(x, y, x ∗ y): Given two ciphertexts x and y,
it computes x ∗ y and saves the result as a new
ciphertext x ∗ y.

(11) multiply_plain(x, y, x ∗ y): Given a ciphertext x and
a plaintext y, it computes x ∗ y and saves the result
as a new ciphertext x∗ y.

(12) mod_switch_to_inplace(x\ x, y.parms_id()): Given
a ciphertext/plaintext x\ x and a levels y.parms_id()
of ciphertext y, it switches the levels of x\ x to
y.parms_id().

(13) relinearize_inplace(x, rk): Given a ciphertext x and
a relinearization_key rk, it relinearizes x and saves
the result in ciphertext x.

(14) rescale_to_next_inplace(x): Given a ciphertext x, it
switches the modulo of x to the next levels, reduces
the length of the plaintext accordingly, and saves the
result in ciphertext x.

(15) set_scale(Δ): Given a scaling factor Δ, it scales the
ciphertext x by computing x.set_scale(Δ), and
outputs the ciphertext x.

(16) rotate_vector(x, k, gk, y): Given a ciphertext
x � [x0, x1, · · · , xN/2− 1], a rotation value k, and
galois_key gk, it rotates x left by k, and saves the
result as a new ciphertext
y � [xk, xk+1, · · · , xN/2− 1, x0, x1, · · · , xk− 1].

Data Availability

Previously reported Umaru Impact Study, Myocardial In-
farction dataset from Edinburgh and Nhanes III datasets
were used to support this study and are available at https://
doi.org/10.1186/s12920-018-0401-7. *ese prior studies
(and datasets) are cited at relevant places within the text as
references [18].

Conflicts of Interest

*e authors declare no conflicts of interest.

Acknowledgments

*is work was supported by the National Natural Science
Foundation of China under Grant no. U19B2021.

References

[1] Y. Jiang, J. Hamer, C. Wang et al., “SecureLR: secure logistic
regression model via a hybrid cryptographic protocol,” IEEE/
ACM Transactions on Computational Biology and Bio-
informatics, vol. 16, no. 1, pp. 113–123, 2019.

[2] V. V. P. Wibowo, Z. Rustam, A. R. Laeli, and A. A. Said,
“Logistic regression and logistic regression-genetic algorithm
for classification of liver cancer data,” in Proceedings of
theInternational Conference on Decision Aid Sciences and
Application, pp. 244–248, Sakheer, Bahrain, December 2021.

[3] B. Liu, L. Lu, Q. Zeng, and Y. Li, “Implementation of credit
scoring card model based on logistic regression and
lightgbm,” in Proceedings of the International Conference on
Control Science and Electric Power Systems, pp. 175–178,
Shanghai, China, May 2021.

[4] Z. Han, L. Lu, and H. Liu, “A differential privacy preserving
approach for logistic regression in genome-wide association
studies,” in Proceedings of the International Conference on
Networking and Network Applications, pp. 181–185, Daegu,
Korea (South), October, 2019.

[5] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced
matrix computation and application to neural networks,” in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, pp. 1–23, Toronto, Canada, Oc-
tober 2018.

[6] J. M. Cortas-Mendoza, A. Tchernykh, M. Babenko,
L. B. Pulido-Gaytan, and A. Avetisyan, “Privacy-preserving
logistic regression as a cloud service based on residue number
system,” in Proceedings of the 6th Russian Supercomputing
Days, pp. 598–610, Moscow, Russia, September 2020.

[7] P. Mohassel and Y. Zhang, “SecureML: “A system for scalable
privacy-preserving machine learning,” in Proceedings of the
IEEE Symposium on Security and Privacy, pp. 19–38, San Jose,
CA, USA, May 2017.

[8] J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization
for efficient hierarchical federated learning in wireless edge
networks,” IEEE Transactions on Parallel and Distributed
Systems, p. 1, 2022.

[9] J. Feng, W. Zhang, Q. Pei, J. Wu, and X. Lin, “Heterogeneous
computation and resource allocation for wireless powered
federated edge learning systems,” IEEE Transactions on
Communications, vol. 70, no. 5, pp. 3220–3233, 2022.

[10] S. Mao, L. Liu, N. Zhang et al., “Reconfigurable intelligent
surface-assisted secure mobile edge computing networks,”
IEEE Transactions on Vehicular Technology, p. 1, 2022.

[11] A. C. Yao, “Protocols for secure computations,” in Proceedings
of the 23rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 1–5, Chicago, Illinois, USA, November
1982.

[12] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the 41st Symposium on 8eory of
Computing, pp. 169–178, Bethesda, Maryland, USA, June
2009.

[13] B. Charlotte and V. Frederik, “Privacy-preserving logistic
regression training,” BMC Medical Genomics, vol. 11, no. 4,
pp. 13–21, 2018.

16 Security and Communication Networks

https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1186/s12920-018-0401-7

[14] H. Chen, R. Gilad-Bachrach, K. Han et al., “Logistic regression
over encrypted data from fully homomorphic encryption,”
BMC Medical Genomics, vol. 11, no. S4, p. 81, 2018.

[15] Z. Li and M. Sun, “Privacy-preserving classification of per-
sonal data with fully homomorphic encryption: an application
to high-quality ionospheric data prediction,” Machine
Learning for Cyber Security, pp. 437–446, 2020.

[16] S. Carpov, N. Gama, M. Georgieva, and J. R. Troncoso-
Pastoriza, “Privacy-preserving semi-parallel logistic regres-
sion training with fully homomorphic encryption,” BMC
Medical Genomics, vol. 13, no. S7, p. 88, 2020.

[17] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure
logistic regression based on homomorphic encryption: design
and evaluation,” JMIR Medical Informatics, vol. 6, no. 2,
p. e19, 2018.

[18] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic
regression model training based on the approximate homo-
morphic encryption,” BMCMedical Genomics, vol. 11, no. S4,
p. 83, 2018.

[19] J. H. Cheon, D. Kim, Y. Kim, and Y. Song, “Ensemble method
for privacy-preserving logistic regression based on homo-
morphic encryption,” IEEE Access, vol. 6, pp. 46938–46948,
2018.

[20] F. Bergamaschi, S. Halevi, T. T. Halevi, and H. Hunt, “Ho-
momorphic training of 30,000 logistic regression models,”
Applied Cryptography and Network Security, vol. 11464,
pp. 592–611, 2019.

[21] Q. Wei, Q. Li, Z. Zhou, Z. Ge, and Y. Zhang, “Privacy-pre-
serving two-parties logistic regression on vertically parti-
tioned data using asynchronous gradient sharing,” Peer-to-
Peer Networking and Applications, vol. 14, no. 3, pp. 1379–
1387, 2020.

[22] Y. Fan, J. Bai, X. Lei et al., “Privacy preserving based logistic
regression on big data,” Journal of Network and Computer
Applications, vol. 171, p. 102769, 2020.

[23] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in
Proceedings of the Advances in Cryptology - ASIACRYPT 2017:
23rd International Conference on the 8eory and Application
of Cryptology and Information Security, vol. 10624, pp. 409–
437, Hong Kong, China, December 2017.

[24] J. Fan and F. Vercauteren, “Somewhat practical fully ho-
momorphic encryption”, IACR Cryptology Eprint Archive,”
2012, https://eprint.iacr.org/2012/144.

[25] “FV-NFLlib,” 2016, https://github.com/CryptoExperts/FV-
NFLlib.

[26] “Seal,” 2021, https://github.com/microsoft/SEAL.
[27] C. Ilaria, N. Gama, M. Georgieva, and M. Izabachne, “Faster

fully homomorphic encryption: bootstrapping in less than 0.1
seconds,” in Proceedings of the Advances in Cryptology
ASIACRYPT 2016: 22nd International Conference on the
8eory and Application of Cryptology and Information Se-
curity, vol. 10031, pp. 3–33, Hanoi, Vietnam, December 2016.

[28] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in
Proceedings of the 3rd Innovations in 8eoretical Computer
Science, pp. 309–325, New Yark, USA, June 2012.

[29] “HElib,” 2021, https://github.com/homenc/HElib.
[30] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Chimera:

combining ring-lwe-based fully homomorphic encryption
schemes,” Journal of Mathematical Cryptology, vol. 14, no. 1,
pp. 316–338, 2020.

[31] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: fast fully homomorphic encryption over the torus,”
Journal of Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[32] “Tfhe,” 2021, https://github.com/tfhe/tfhe.
[33] “Heaan,” 2022, https://github.com/snucrypto/HEAAN.
[34] “Heaan,” 2019, https://github.com/kimandrik/HEAAN.
[35] “Helr,” 2019, https://github.com/K-miran/HELR.
[36] “Heml,” 2018, https://github.com/kimandrik/IDASH2017.
[37] R. Küsters, A. Datta, J. C. Mitchell, and A. Ramanathan, “On

the relationships between notions of simulation-based secu-
rity,” Journal of Cryptology, vol. 21, no. 4, pp. 492–546, 2008.

Security and Communication Networks 17

https://eprint.iacr.org/2012/144
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/microsoft/SEAL
https://github.com/homenc/HElib
https://github.com/tfhe/tfhe
https://github.com/snucrypto/HEAAN
https://github.com/kimandrik/HEAAN
https://github.com/K-miran/HELR
https://github.com/kimandrik/IDASH2017

