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Local differential privacy (LDP) is a promising privacy-preserving technology from users’ perspective, as users perturb their
private information locally before reporting to the aggregator. We study the problem of collecting heterogeneous data, that is, key-
value pairs under LDP, which is widely involved in real-world applications. Although previous LDP work on key-value data
collection achieves a good utility on frequency estimation of key and distribution estimation of value, they have three downfalls:
(1) existing work perturbs numerical value in a discrete manner that does not exploit the ordinal nature of the numerical domain
and lead to poor accuracy, (2) they do not lead to improved privacy budget composition and consume more privacy budget than
necessary to achieve the given privacy level, and (3) the frequency estimation of the key is not the most accurate due to the lack of
consistency requirement. In this paper, we propose a novel mechanism to collect key-value data under LDP leveraging the
numerical nature of the domain and result in better utility. Due to our correlated perturbation, the mechanism consumes less
privacy budget than previous work while keeping the privacy level. We also adopt consistency as the postprocessing, which is
applied to the estimated key frequency to further improve the accuracy. Comprehensive experiments demonstrate that our
approach consistently outperforms the state-of-the-art mechanisms under the same LDP guarantee.

1. Introduction

Differential privacy (DP) [1] is the state-of-the-art technology
for private data release, which provides provable and mea-
surable privacy protection regardless of the adversary’s back-
ground knowledge. Different fromDP in the centralized setting
that protects data after data collection, local differential privacy
(LDP) has been proposed to protect data during data collection.
In LDP, the server is assumed to be untrusted. Each user locally
obfuscates his/her personal data using the LDP mechanism
before uploading. After receiving the perturbed data from all
users, the server performs data analytics or answers queries.
LDP technology enables collecting statistics of users under a
privacy guarantee and has been widely deployed in practice. For
example, Apple deploys the LDP mechanism in iOS to identify
heavy hitters in emojis while keeping user privacy [2]; RAPPOR
has been deployed in Google’s browser Chrome to collect and
analyze the web browsing behavior of users under LDP [3].

Early LDP work mainly focuses on simple statistical
queries such as frequency estimation on categorical data [4]
and mean estimation [5, 6] on numerical data. Nowadays,
LDP is also applied for hybrid data types or queries [7–9], for
example, key-value data, which has categorical data and
numerical data simultaneously and is widely used in prac-
tice. +e following examples show the potential applications
of key-value data:

(i) Product rating analysis: online market platforms
such as Amazon and eBay are collecting users’
ratings for the products they bought and show the
ratings online as a reference for other buyers. +ese
rating data are usually in the form of key-value data
where the key is the product and the value is the
rating.

(ii) Software usage analysis: software developers and
providers such as Microsoft need to collect usage
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time about each software to analyze users’ prefer-
ences. +is data is usually in the form of key-value
pairs, where the key is the software identifier and the
value is the usage time of this software.

Literature [7, 8] are the first to study the problem of
collecting key-value data under LDP. +ey design mecha-
nisms to support two estimation tasks: (1) the frequency of
the key and (2) the mean estimation of the value. Recently,
Ye et al. [9] expand the previous work and are the first to
propose PrivKVM∗ to estimate the frequency of the key and
the distribution of the value. It discretizes the domain into
many bins and reports which bin contains the private value
using categorical frequency oracle (e.g., GRR [10]) while
considering the correlation between keys and values.
However, it has three main limitations. First, it perturbs the
numerical value in a discrete manner, which does not work
well because it does not exploit the ordinal information of
the numerical domain, that is, a perturbed report that is close
to the true value also has useful information for the dis-
tribution estimation. Second, although the mechanism
considers the correlation between keys and values, it does
not lead to an improved budget composition. +ird, it does
not consider the consistency in the estimated frequency of
the key.+at is, the estimated frequency should be consistent
with the property of frequency: (1) each frequency should be
non-negative and (2) the sum of all estimated frequencies
should be 1.Without enforcing the consistency requirement,
the mechanism may not result in the most accurate answers
to the key frequency [11].

Motivated by this, in this paper, we study the problem of
collecting key-value data under LDP and propose a mech-
anism to solve the above three limitations: existing mech-
anisms (1) do not exploit the ordinal information about the
numerical domain, (2) do not consider consistency to
achieve the most accuracy, and (3) do not result in improved
budget composition. Our mechanism aims to collect the two
most fundamental statistics of key-value pairs: key frequency
and value distribution. It contains three steps: (1) padding
and sampling, (2) perturbation, and (3) aggregating and
estimating key frequency and value distribution.

In step 1, each user pads his key-value data by dummy
into the same length (make the sampling rate identical for all
users) and samples one key-value pair. +e reason for using
the sampling protocol is that multiple key-value pairs are
possessed by each user; if all the pairs are reported to the
server, each pair will split the privacy budget, which results
in large noise in each pair and bad utility.

In step 2, we solve the first and second limitations. Each
user perturbs the sampled key-value pair in a correlated
manner because there is an inherent correlation between key
and value and reporting the value may also reveal infor-
mation about the presence of the corresponding key [8].
+us, we first perturb the key and then perturb the value
according to the perturbation results of the key. If a pos-
sessed key is still possessed after perturbation, we then report
the value via the LDP mechanism that utilizes the ordered
nature of the domain and directly perturbs the value in the
numerical domain, which solves the first limitation by

leveraging the ordinal information about the numerical
domain. However, there is a challenge when a non-possessed
key is perturbed as possessed. By LDP definition, the per-
turbed values of the dummy keys and the perturbed values of
the genuine keys are indistinguishable. +us, the perturbed
values of the dummy keys would affect the distribution
estimation. To address this problem, we generate fake values
for these keys that can satisfy LDP. Previous work selects
values uniformly at random from the discrete output do-
main as fake values. However, such fake value generation
does not work for our mechanism. In our mechanism, the
output domain is a numerical continuous interval, and such
fake value generation will violate the privacy guarantee since
the probability of outputting the values that are not those
discrete values is unbounded. +erefore, we adopt the
existing fake value generation for our mechanism.

By an outgrowth of the fake value generation, we show
that our correlated perturbation has a privacy amplification
effect: it consumes less privacy budget overall than the
summation of budget in key and value perturbation. +is
solves the third limitation by providing a tighter budget
composition, which achieves a better privacy-utility trade-
off than basic sequential composition (used in PrivKVM∗).

In step 3, we solve the third limitation.+e server collects
the perturbed results from all users and estimates the key
frequency and the value distribution. For the frequency
estimation, the server enforces consistency requirements to
improve the accuracy. Since the fake values generated in the
perturbation step affect the distribution, removing the in-
fluence of the fake value is another challenge. +e consis-
tency is not designed for this challenge since it only requires
the estimated frequencies are sum-up-to-1 and non-negative
but cannot detect the fake value and remove them. To ad-
dress this problem, we design a method to statistically
remove the fake value in the distribution estimation.

Our main contributions are summarized as follows:

(1) Novel LDP mechanism for key-value data collection:
we propose a mechanism that supports frequency
estimation and distribution estimation over key-
value data. It takes advantage of the numerical nature
of the data domain and achieves better accuracy than
existing solutions.

(2) Improved privacy budget composition: we show that
the privacy budget composition of our correlated
perturbation mechanism has a tighter bound than
sequential composition, which provides a privacy
amplification effect and achieves a better privacy-
utility trade-off.

(3) Consistency as postprocessing to improve accuracy:
we enforce consistency as postprocessing for key
frequency estimation in our mechanism, which can
further improve the accuracy than the existing LDP
mechanism for key-value data collection.

(4) Comprehensive evaluation: we implement the
mechanism and evaluate it on real-world data sets.
+e results show our mechanism outperforms
existing LDP schemes. In particular, our mechanism
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significantly improves the accuracy, that is, reducing
the error of current mechanisms by about an order of
magnitude in most cases, especially when ε is small
(large noise).

2. Preliminary

2.1. Local Differential Privacy. In the centralized setting of
differential privacy, a trusted server or data aggregator has all
users’ personal data, and it is responsible for responding to
queries while using DP mechanisms to protect user privacy.
However, the assumption of a trust server may not hold in
practice. Local differential privacy addresses this problem. In
the local setting, each user perturbs his personal data and
then uploads the perturbed results to the server for data
analysis. In this way, the server can be untrusted because it
cannot access the original data.

Definition 1 (local differential privacy (LDP) [12]). A ran-
domized algorithm M is ε-LDP if and only if for any input
x1 and x2, the probability ratio of outputting the same result
is bounded by eε. Formally,

Pr M x1( 􏼁 � y( 􏼁≤ e
εPr M x2( 􏼁 � y( 􏼁. (1)

ByDefinition 1, given any output y, the adversary cannot
infer the original input is x1 or x2 with high confidence.
Here, the confidence is controlled by the parameter ε (called
privacy budget). +e smaller the ε, the closer the probability
Pr(M(x1) � y) is to the probability Pr(M(x2) � y).+at is,
the mechanism provides stronger privacy protection since
the adversary has lower confidence to distinguish whether
the original input is x1 or x2.

When multiple LDP mechanisms are combined together
to generate a new mechanism, the sequential composition
theorem guarantees the total privacy of the new mechanism.

Theorem 1 (sequential composition theorem [12]). If a
sequence of mechanisms M1, M2, . . ., Mn satisfies ε1-LDP,
ε2-LDP, . . ., εn-LDP, then the sequential composition M �

[M1,M2, . . . ,Mn] satisfies 􏽐
n
i�1 εi-LDP.

By +eorem 1, given a total privacy budget ε and a
computation task, we can split the task into multiple parts
and allocate each part a portion of privacy budget ε to
achieve ε-LDP.

Theorem 2 (postprocessing [12]). If a mechanism M sat-
isfies ε-LDP, given any function F that cannot access the
original data and noise, then the F ∘M also satisfies ε-LDP.

By +eorem 2, the postprocessing does not violate the
privacy guarantee of LDP mechanisms. In this paper, we use
the postprocessing method to further improve the utility of
our mechanism.

2.2. Basic LDP Mechanisms

2.2.1. Unary Encoding (UE). Unary encoding first encodes
an input x � i into a binary vector x � [0, 0, 1, . . . , 0] where
the only i-th position is 1 and others are 0 [10]. Also, the

length of the vector is equal to the domain size d of the input.
+en it perturbs each bit as follows (q≤ 0.5≤p):

Pr(􏽢x[i] � 1) �
p, if x[i] � 1,

q, if x[i] � 0,
∀i � 1, 2, . . . , d.􏼨 (2)

As shown in [10], unary encoding provides ε-LDP, where
ε � ln(p(1 − q)/q(1 − p)).

After receiving the perturbed results from all n users, the
server or aggregator can estimate the frequency of users who
possess the i-th item, that is, the input value is x � i. Denote
the estimated frequency of the i-th item by fi; the aggregator
can estimate the frequency fi by the following unbiased
estimator 􏽢fi:

􏽢fi �
􏽐

n
j�1 I 􏽢x

j
[i] � i􏼐 􏼑 − nq

p − q
, (3)

where I is the indicator function and 􏽢xj[i] indicates the i-th
bit of the vector of the user j.

2.2.2. Square Wave Mechanism (SW Mechanism). SW
mechanism is designed for numerical distribution estimation
under LDP [13]. +e intuition behind this mechanism is to
increase the probability that a noisy reported value can carry
useful information about the input. For the numerical do-
main, a noisy reported value that is different from but close to
the true value also contains useful information for distribu-
tion estimation. +erefore, given an input x, the SW
mechanism reports values closer to x with a higher proba-
bility than values farther away from x. Formally speaking, the
SW mechanism M assumes the domain of the input is D �

[0, 1] (any bounded value can be linearly transformed into
this domain) and the domain of the output is 􏽢D � [− b, 1 + b],
then it perturbs the input x with the following probabilities:

Pr(M(x) � 􏽢x) �
p, if |x − 􏽢x|≤ b,

q, if |x − 􏽢x|≤ b,
∀x ∈ D, ∀􏽢x∈ 􏽢D.􏼨

(4)

As shown in [13], the value p and q are set to be

p �
e
ε

2be
ε

+ 1
,

q �
1

2be
ε

+ 1
,

(5)

which are derived by maximizing the difference between p

and q while satisfying the total probability is add-up-to 1.
Also, the parameter b is set to be

b �
εeε − e

ε
+ 1

2e
ε

e
ε

− ε − 1( 􏼁
, (6)

which is obtained by maximizing the mutual information
between the input and output of the SW mechanism.

Since the output domain and the input domain are dif-
ferent, the server/aggregator uses expectation-maximization
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(EM) algorithm to reconstruct the distribution after receiving
the noisy reported values.

3. Key-Value Data Collection under LDP

3.1. Problem Statement

3.1.1. System Model. +ere are n users and one server in our
system model, where each user possesses one or multiple
key-value pairs 〈k, v〉. +e domain of the key is assumed to
be K � 1, 2, . . . , d{ }, while the domain of the value is as-
sumed to be V � [0, 1] (any bounded value can be linearly
transformed into this domain). Besides, we assume the user i

possesses the set of key-value pairs Si. +e goal of the server
is to collect the key-value data from all users and then es-
timate the (1) frequency and the (2) value distribution of a
certain key. In other words, the server calculates the fraction
of users who have a certain key and the value distribution of
that key among those who have it.

3.1.2. 5reat Model. We assume the server is untrusted, and
a data breach might occur as a result of unauthorized data
publishing or hacking. +e adversary is considered to have
access to all users’ output and to be aware of the perturbation
algorithm in the mechanism locally established on the user
side. Furthermore, we assume that all users will honestly
follow the perturbation mechanism.

3.2.PrivKVM∗. To the best of our knowledge, PrivKVM∗ [9]
is the state-of-the-art LDP framework for key-value data
collection that can support frequency estimation of key and
distribution estimation of value. We first briefly describe the
mechanism and then summarize the main differences be-
tween our work and PrivKVM∗.

3.2.1. Workflow of PrivKVM∗. PrivKVM∗ collects the key-
value data in two phases. In the first phase, each user first
samples one key-value pair uniformly at random from the
full domain of the key and then perturbs it in a correlated
manner. Specifically, it first perturbs the key and then
perturbs the value according to the perturbed result of the
key. +e following are the four cases of perturbation:

(1) +e sampled key is possessed by the user, and the key
is perturbed as possessed.+e user perturbs the value
using the technology called GVPP, which is a cat-
egorical frequency oracle with a boundary. +at is,
the user first discretizes the numerical domain into
many bins and then discretizes the value to the
boundary of the bin containing the value with a
specific probability. +en, the user reports which
boundary contains the private value using categor-
ical frequency oracle, for example, GRR [10].

(2) +e sampled key is possessed by the user, and the key
is perturbed as non-possessed. +e existing key
disappears after perturbation in this case, and the
user simply sets the value to be 0.

(3) +e sampled key is non-possessed by the user, and
the key is perturbed as possessed. In this case, a
“fake” key appears, and the user samples a mean
uniformly at random from the current means of all
bins as the value.

(4) +e sampled key is non-possessed by the user, and
the key is perturbed as non-possessed. +e user
simply set the value to be 0.

After the perturbation, each user reports the obfuscated
result, and the server estimates the statistical information: (1)
the frequency of all keys, (2) the mean of the value, and (3)
the distribution of values. To obtain a more accurate mean
estimation, the server leverages virtual iteration technology
and further calibrates the estimated mean. In the second
phase, the server broadcasts to all users the heavy hitters (the
keys with frequencies higher than a given threshold) and
their corresponding mean estimated in the first phase, and
users and the server repeatedly execute the steps as in the
first phase to obtain the statistics estimation, except that the
statistics are for the set of heavy hitters instead of all keys.
For the rest of the keys, the server averages their statistics to
reduce the noise effect since they are non-heavy hitters and
the number of samples are insufficient.

3.2.2. Limitations of PrivKVM∗. We summarize the limi-
tations of PrivKVM∗ as follows:

(1) PrivKVM∗ estimates value distribution using cat-
egorical frequency oracle with boundary. In this
way, the server can estimate the count of values
falling in each bin and obtain the density distri-
bution over the domain. However, values in the
numerical domain have meaningful total order, and
this method ignores such information in the value
due to discretization. What is worse, it faces the
challenge of finding the optimal size of bins. Bin-
ning causes two sources of errors: (1) LDP noise and
(2) bias due to grouping values together. More bins
lead to large error due to LDP noise, and fewer bins
result in a greater error because of bias. Unfortu-
nately, finding the optimal size of bins is a non-
trivial task since the effect of the size depends on
both ε and the property of actual data distribution
that is unknown to the server [13].

(2) PrivKVM∗ does not consider the consistency
problem in the frequency estimation of the key. +at
is, the estimated frequencies could not satisfy the
basic requirements of frequency: (1) every frequency
should be non-negative and (2) all frequencies
should be summing-up-to-1. +us, the estimated
frequencies are not the most accurate.

(3) Although PrivKVM∗ perturbs the key and value in a
correlated manner, it does not lead to an improved
budget composition for LDP.

In what follows, we elaborate on our mechanism. Some
important notations are summarized in Table 1.
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4. Proposed Method

+e overview of the proposed method is shown in Figure 1.
+e idea of our mechanism is as follows. Each user first
samples one key-value pair from his personal data (the
sampling protocol will be discussed in Section 4.1); then each
user privately perturbs the sampled key-value pair by our
LDP mechanism (the mechanism will be discussed in Sec-
tion 4.2). After receiving the reported results, the server
aggregates the perturbed data and estimates the key fre-
quency and value distribution, which will be shown in
Section 4.3.

4.1.SamplingProtocol. In this subsection, we explain why we
need to sample before reporting perturbed data and elab-
orating on our sampling protocol.

4.1.1. Why Sampling Protocol. In practice, each user may
have multiple key-value pairs. If the user perturbs all his key-
value pairs, then each pair would consume the privacy
budget, and the LDPmechanism has to split the total privacy
budget. +us, the noise added to each pair would be too
large. To solve this problem, a promising method is to
sample and submit one pair, which avoids the privacy budget
splitting and improves the utility.

4.1.2. Our Sampling Protocol. Sampling protocols are widely
used in existing DP mechanisms for key-value data pertur-
bation [7–9]. However, they either do not support distri-
bution estimation or do not work well on large domain sizes.
In particular, PrivKVM∗ [9] samples from the full domain in
the first phase to identify heavy hitters, which does not work
well when the domain size is very large and each user only
possesses a small number of keys since users rarely report the
information about the keys they possess. +erefore, we adopt

the padding-and-sampling protocol [8, 14] for key-value data
to support frequency and distribution estimation. +e ad-
vantage of the padding-and-sampling protocol is that it
samples from the set of keys users possess instead of from the
full domain, and thus, it handles large domains better.

+e step of our sampling protocol is as follows. First, all
users generate l dummy key-value pairs whose keys are
d + 1, . . . , d + l{ } and values are zeros. For user i whose

|Si|< l, he adds l − |Si| different random dummy key-value
pairs to Si and make the length be l. Without padding,
determining the probability that a pair is sampled is difficult,
resulting in inaccurate estimation. +erefore, the domain of
the key of the padded data is K′ � 1, 2, . . . , d′􏼈 􏼉 where
d′ � d + l. +en each user samples one pair from the padded
data to perturb and upload. Although some pairs may be
unsampled, this case only occurs for infrequent pairs, and
the useful information is still reported with high probability.
+e following shows an example to illustrate the sampling
process, and the details are shown in Algorithm 1.

4.1.3. Example. Suppose the domain size d � 4 and the
padding length l � 3. Let the domain of the key
K � 1, 2, 3, 4{ }, the domain of the dummy key is 5, 6, 7{ }, and
the domain of the padded key-value pair becomes
K′ � 1, 2, 3, 4, 5, 6, 7{ }. For a user whose key-value pairs are
〈1, v1〉, 〈2, v2〉􏼈 􏼉, since he possesses two pairs, he first pads
the data by one dummy pair and gets 〈1, v1〉, 〈2, v2〉, 〈6, 0〉􏼈 􏼉

(suppose the dummy 〈6, 0〉 is picked). +en he picks one
pair uniformly at random from the padded result
〈1, v1〉, 〈2, v2〉, 〈6, 0〉􏼈 􏼉 to perturb and upload.

We note that the previous mechanism PCKV [8] also
adopts a padding-and-sampling protocol for key-value data
collection under LDP. We emphasize there is a difference
between their protocol and ours. PCKV only supports the
mean estimation of values; thus, it discretizes the value into 1
and − 1 with particular probability to guarantee the unbi-
asedness for mean estimation. Our sampling protocol does
not adopt the discretizing step because we want to estimate
the value distribution and discrete values lose the numerical
information and would affect the distribution estimation.

According to the literature [8, 14], padding length l

would cause two types of error: (1) variance between true

Table 1: Notations.

Symbol Description
S Domain of key-value data
Si Key-value data set of user i

K Domain of the key, K � 1, 2, . . . , d{ }

K′ Domain of the padded key,
K′ � 1, 2, . . . , d, d + 1, . . . , d + l{ }

d Domain size of the key
l Padding length
d′ Domain size of the padded key, d′ � d + l

x Vector encoded by sampled key-value pair
􏽢x Randomized output vector
x[i] or
􏽢x[i]

+e i-th element of vector x or 􏽢x

k(i)
x +e key of x[i]

v(i)
x +e value of x[i]

􏽢k
(i)

x +e perturbed key of x[i]

􏽢v(i)
x +e perturbed value of x[i]

fi True frequency of the key i
􏽢fi Estimated frequency of the key i
􏽥fi Postprocessed frequency of the key i

Sampling
x = (k, υ) ← S

 (x) = y

User Server

Aggregate
reported result

Perturbation Estimation
frequency and

distribution

Figure 1: +e overview of our mechanism.

Security and Communication Networks 5



values and estimated results and (2) bias between true values
and estimated results. A smaller l would underestimate the
key frequency and results in a large bias, and a larger l would
enlarge the noise in estimation, thus leading to a large
variance. Unfortunately, finding the optimal padding length
l that can balance the trade-off between the variance and the
bias is a non-trivial task, and it is still an open problem so far
[8]. +us, in this paper, we empirically set the suitable
padding length l in the experiments for comparing with
other LDP mechanisms.

4.2. Perturbation Mechanism. In this subsection, we in-
troduce our perturbation mechanism. By Algorithm 1,
each user samples one key-value pair 〈k, v〉 as the input of
the perturbation mechanism. +e basic idea of our per-
turbation mechanism is to perturb the value according to
the perturbed results of the key. If a non-possessed key is
perturbed as possessed or a possessed key is perturbed as
non-possessed, we generate a fake value for the key to
avoid the influence on the distribution estimation of the
value. Under this strategy, we find the mechanism pro-
vides a tighter privacy budget composition (see +eorem
3), that is, it is shown that the total privacy budget of the
combined perturbations (key perturbation and value
perturbation) is smaller than the sequential composition.
Based on the above idea and two basic LDP mechanisms
(UE and SW), we design an LDP mechanism for key-value
data collection that can support numerical distribution
estimation. Overall, the LDP perturbation is shown in
Algorithm 2.

In the UE mechanism, the original input is encoded as a
binary vector where the bit at the input-corresponding
position is 1 and other bits are 0. Similarly, for key-value
data, we encode the sampled key-value pair 〈k, v〉 as a vector
xwhere the k-th element x[k] (corresponding to the key k) is
〈1, v〉 and the other element is 〈0, 0〉. +en the perturbation
can be divided into two steps. Note that each element in the
vector has two items (key and value), for brevity, we use
notation k(i)

x and v(i)
x to represent the key and value of the

i-th element of vector x, respectively, and use 􏽢k
(i)

x and 􏽢v(i)
x to

represent perturbed key and value. First, we perturb the key
as follows:

Pr 􏽢k
(i)

x � 1􏼒 􏼓 �
a, if k

(i)
x � 1,

c, if k
(i)
x � 0,

∀i � 1, 2, . . . , d′,
⎧⎨

⎩ (7)

where c≤ 0.5≤ a. Given the perturbation result of the key,
we then perturb the value. +e value perturbation can be
divided into three cases as follows:

(i) If the key 􏽢k
(i)

x is perturbed from 1 to 1, the corre-
sponding value v(i)

x is perturbed as 􏽢v(i)
x such that

Pr M v
(i)
x􏼐 􏼑 � 􏽢v

(i)
x􏼐 􏼑 �

p, if v
(i)
x − 􏽢v

(i)
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ b,

q, if v
(i)
x − 􏽢v

(i)
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ b.

⎧⎪⎨

⎪⎩
(8)

(ii) If the key 􏽢k
(i)

x is perturbed from 0 to 1, the fake value
drawn from the uniform distribution U(− b, 1 + b) is
assigned.

(iii) If the key 􏽢k
(i)

x is perturbed from 0 to 0 or from 1 to 0,
the key is reported as non-possessed; thus, we set the
perturbed value to be 0.

4.2.1. Privacy Analysis of Our Mechanism. In our mecha-
nism, the key is perturbed by the UE mechanism with privacy
budget ε1 � ln(a(1 − c)/c(1 − a)) (see Section 2); the value is
perturbed by the SW mechanism with privacy budget
ε2 � ln(p/q). In our mechanism, the key perturbation and
value perturbation are correlated, that is, the value perturbation
relies on the key and key perturbation. Generally, the correlated
perturbation may leak less privacy than independent pertur-
bation and has a privacy amplification effect [8]. +at is, the
total privacy budget ε is less than the summation ε1 + ε2.
+eorem 3 shows our mechanism satisfies LDP and has a
tighter budget composition than sequential composition.

Theorem 3. Denote the privacy budget for key perturbation
and value perturbation are ε1 and ε2, respectively; our
mechanism satisfies ε-LDP where

ε � ln max
ε2e

ε2 − e
ε2 + 1

e
ε2 e

ε2 − ε2 − 1( 􏼁
, e

ε2 , e
ε1 ×

e
ε2 − 1
ε2

􏼨 􏼩􏼢 􏼣. (9)

Proof. For a key-value set S, we denote the key-value pairs
by 〈k, v〉 for all i ∈ S, where i ∈ S means the key-value pair
〈i, ·〉 ∈ S. Suppose the sampled key-value pair is
〈k, v〉(v ∈ [0, 1]), we have the perturbed value 􏽢v(k)

x � 0 if the
key is drawn from d + 1, . . . , d′􏼈 􏼉. For vector x, only the k-th
element is non-zero, and others are zeros. +en we have the
probability of outputting a vector 􏽢x is as follows:

Input: +e set Si of key-value pairs, padding length l.
Output: Sampled key-value pair 〈k, v〉, where k ∈ K′ and v ∈ [− b, 1 + b]

(1) Generate l dummy key-value pairs, whose keys are d + 1, . . . , d′ and values are 0.
(2) if |Si|< l then
(3) Add l − |Si| random different dummy pairs to Si.
(4) end if
(5) Pick one key-value pair 〈k, v〉 uniformly at random from the Si.
(6) return Sampled key-value pair 〈k, v〉.

ALGORITHM 1: Sampling protocol.
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Pr[􏽢x|S, k] � Pr[􏽢x[k]|x[k]] 􏽙
i≠k

Pr[􏽢x[i]|x[i] � 0]

�
Pr[􏽢x[k]|x[k]]

Pr[􏽢x[k]|x[k] � 0]
􏽙

i

Pr[􏽢x[i]|x[i] � 0].

(10)

Denote the first term by f(􏽢x, k) and the second term by
g(􏽢x), that is,

f(􏽢x, k) �
Pr[􏽢x[k]|x[k]]

Pr[􏽢x[k]|x[k] � 0]
,

g(􏽢x) � 􏽙
i

Pr[􏽢x[i]|x[i] � 0].

(11)

Since the second term g(􏽢x) is same for different inputs, it
will be canceled out when we calculate the ratio of Pr(􏽢x|S1)

to Pr(􏽢x|S2) (S1, S2 are two different key-value sets).
+erefore, we first calculate the f(􏽢x, k).

According to the perturbation mechanism, we can
calculate the numerator as follows:

Pr[􏽢x[k]|x[k]] �

ap, if v
(k)
x − 􏽢v

(k)
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ b,

aq, if v
(k)
x − 􏽢v

(k)
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> b,

1 − a, if 􏽢v
(k)
x � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

Based on the result, we can obtain the f(􏽢x, k) by

f(􏽢x, k) �

ap

c ×(2b/(1 + 2b))
, if v

(k)
x − 􏽢v

(k)
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ b,

aq

c ×(2b/(1 + 2b))
, if v

(k)
x − 􏽢v

(k)
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> b,

1 − a

1 − c
, if 􏽢v

(k)
x � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

+en, we discuss the upper and lower bounds of f(􏽢x, k).
Since both the UE mechanism and the SW mechanism have
a higher probability of maintaining the input value than that
of perturbing the input as other values, we have

Pr[􏽢x[k] � 0|x[k]]

Pr[􏽢x[k] � 0|x[k] � 0]
≤
Pr[􏽢x[k] � x[k]|x[k]]

Pr[􏽢x[k]|x[k] � 0]

⇒
1 − a

1 − c
≤

ap

c ×(1/(1 + 2b))
.

(14)

Because (ap/(c × (1/(1 + 2b)))) is greater than (ap/(c ×

(2b/(1 + 2b)))) and (aq/(c × (1/(1 + 2b)))), thus, we have
the upper bound fu and lower bound fl of f(􏽢x, k) as
follows:

fu �
ap

c ×(1/(1 + 2b))
,

fl � min
ap

c ×(2b/(1 + 2b))
,

aq

c ×(1/(1 + 2b))
,
1 − a

1 − c
􏼨 􏼩.

(15)

+en, we have the probability of outputting 􏽢x given a
key-value set S is

Pr(􏽢x|S) � 􏽘
k

Pr(􏽢x|S, k) ×
Pr(S, k)

Pr(S)

� 􏽘
k

Pr(􏽢x|S, k) × Pr(S|k)

� 􏽘
k

Pr(􏽢x|S, k) ×
1

|S|
≤fu × g(􏽢x).

(16)

Similarly, we also have Pr(􏽢x|S)≥fl × g(􏽢x). +us, the
following inequality holds for two different key-value setsS1
and S2:

Input: +e sampled key-value pair 〈k, v〉, privacy budget ε1, ε2
Output: Perturbed result 􏽢x

(1) Encode 〈k, v〉 as vector x
(2) Perturb k(i)

x as 􏽢k
(i)

x by (2) (∀i � 1, 2, . . . , d′)
(3) if k(i)

x : 1⟶ 1(∀i � 1, 2, . . . , d′) then
(4) Perturb v(i)

x as 􏽢v(i)
x by (3)

(5) end if
(6) if k(i)

x : 0⟶ 1(∀i � 1, 2, . . . , d′) then
(7) Generate fake value 􏽢v(i)

x � U(− b, 1 + b)

(8) end if
(9) if k(i)

x : 0, 1⟶ 0(∀i � 1, 2, . . . , d′) then
(10) 􏽢v(i)

x � 0
(11) end if
(12) return 􏽢x � [〈􏽢k

(i)

x , 􏽢v(i)
x 〉]

d′

i�1.

ALGORITHM 2: Perturbation.
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Pr 􏽢x|S1( 􏼁

Pr 􏽢x|S2( 􏼁
≤

fu × g(􏽢x)

fl × g(􏽢x)

�
ap/(c ×(1/(1 + 2b)))

min (ap/(c ×(2b/(1 + 2b)))), (ap/(c ×(1/(1 + 2b)))), ((1 − a)/(1 − c))􏼈 􏼉

� max
ε2e

ε2 − e
ε2 + 1

e
ε2 e

ε2 − ε2 − 1( 􏼁
, e

ε2 , e
ε1 ×

e
ε2 − 1
ε2

􏼨 􏼩 � e
ε
.

(17)

+e second equality holds because, in SW mechanism,
b � ((ε2eε2 − eε2 +1)/2eε2(eε2 − ε2 − 1)), p � (eε2 /(2beε2 +1))

and q � (1/(2beε2 +1)).
It is worth noting that the work [8] also proposed a

tighter privacy budget composition in their mechanism.
However, our tighter privacy budget composition is different
from that in [8]. Specifically, the composition theorems hold
for different LDP problems. +e improved privacy budget
composition in [8] holds for the estimation of the key
frequency and the mean of the value under LDP. However,
our tighter budget composition holds for the estimation of
key frequency and the distribution of the value. Moreover,
the perturbations are different between our mechanism and
[8]. Literature [8] proposed two mechanisms: (1) PCKV-UE
and (2) PCKV-GRR. PCKV-UE comprises unary encoding
(UE) and randomized response, and PCKV-GRR is based on
GRR. However, the components in our mechanism are UE
and squared wave (SW) mechanisms. As a result, the privacy
budget in our mechanism and literature [8] composes in
different ways. +e privacy budget is composed as equation
(9) in our mechanism. But, in PCKV-UE and PCKV-GRR,
the budget is composed as max ε2, ε1 + ln 2/(1 + e− ε2)􏼈 􏼉 and
ln((eε1+ε2 + λ)/(min eε1 , (eε2 + 1)/2{ } + λ)), respectively.

Figure 2 shows the (1) basic sequential composition, (2)
the tighter composition of our mechanism, and (3) the tighter
composition of PCKV (including PCKV-UE and PCKV-
GRR). Note that the composition of PCKV-GRR depends on
the padding length l(l≥ 1) and the larger l results in tighter
budget composition. +erefore, we compare PCKV-GRR
with varying l. +e result shows that the composition of our
mechanism is less tight than that of PCKV even under the
minimum l, that is, l � 1. +ere is an intuition behind this
result. Our mechanism estimates the value distribution under
LDP, which needs more information about the data than
PCKV that only estimates the mean of the value.+us, PCKV
can bound the privacy loss at a tighter level. □

4.2.2. Privacy Amplification. Figure 2 also shows the rela-
tionship between our composition with basic sequential
composition, which demonstrates the privacy amplification
of our mechanism. Compared with a sequential composition
where the total privacy budget ε � ε1 + ε2, our mechanism
consumes less privacy budget because max ((ε2eε2 −􏼈 eε2 + 1)/
eε2(eε2 − ε2 − 1)), eε2 , eε1 × ((eε2 − 1)/ε2)}≤ eε1+ε2 . In other
words, our mechanism has a privacy amplification effect.

4.2.3. No Privacy Amplification Effect from Sampling
Protocol. In+eorem 3, the privacy guarantee is independent
of the padding length l, which means our mechanism obtains
no privacy amplification from the sampling protocol. +e
main reason is that our mechanism outputs a vector con-
taining multiple keys and multiple positions in the vector are
1. +erefore, even if the sampling protocol is used, the upper
bound of the probability ratio in the worst case is independent
of the protocol. Here, we take an example that only considers
the key perturbation to make this point more clear. Suppose
the key domain is K � 1, 2, 3, 4{ }(d � 4), l � 2, and two key
sets S1 � 1, 2{ } and S2 � 3, 4{ }. Note that the output domain
is y � 0, 1{ }d+l. +en the encoded vector of S1 is [100000] or
[010000], and that of S2 is [001000] or [000100] (depending
on which key is sampled). Since the probability ratio is
Pr(M(S1) � y)/Pr(M(S2) � y).+us, in the worst case, we
need to maximize the Pr(M(S1) � y) and minimize
Pr(M(S2) � y). To this end, we select the output vector y �

[110000] because, in our mechanism, 1⟶ 1 with the
highest probability and 0⟶ 1 with the smallest probability.
+erefore, no matter which key is sampled, the probability of
outputting y is the same, that is, Pr(M(S1) � y) � ac(1 − c)4

and Pr(M(S2) � y) � c2(1 − a)(1 − c)3. In other words,
there are no privacy benefits from the sampling protocol.

4.2.4. Privacy Budget Allocation. Since our mechanism
contains two steps and each of them uses ε1 and ε2, allocating
a privacy budget for each step is important. A basic and
widely used idea to allocate a privacy budget is to calculate
the error as the function of ε and then find the optimal ε1 and
ε2 that minimize the error [8]. However, calculating the error
(or distance) between the estimated distribution and the true
distribution as the function of ε is a non-trivial task [13].
+us, we use an empirical allocation method in this paper
and leave the strategy of finding the optimal privacy
budget allocation method for future work.

In particular, given the total privacy budget ε, we first set
ε2 � (ε/2). +en, according to +eorem 3, we can calculate
the ε1 such that the total budget is ε. Specifically, we find the
ε1 such that the term eε1 × ((eε2 − 1)/ε2) � ε as the ε1. +is is
because, in +eorem 3, the other two terms max ((ε2eε2􏼈

− eε2 + 1)/eε2(eε2 − ε2 − 1)), eε2}< ε when ε2 � (ε/2), and only
when the third term eε1 × ((eε2 − 1)/ε2) � ε, the total privacy
budget is not violated. Given the privacy budget ε1, we set the
perturbation probability for key perturbation as follows:
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a �
1
2
,

c �
1

eε1 + 1
.

(18)

Wenote that this perturbation probability is aligned with
the optimized unary encoding (OUE) mechanism [10],
which achieves the minimum error of frequency estimation
under the same privacy budget.

In our experiments, we observe that even under such
suboptimal budget allocation, our mechanism is still better
than other mechanisms that consider the optimal privacy
budget allocation.

4.3. Aggregation and Estimation. In this subsection, we in-
troduce how to aggregate the perturbed results and get the
estimation of the frequency of the key and the estimation of
the value distribution. For frequency estimation, an unbi-
ased estimator is proposed in [8, 14]. However, they do not
take the prior knowledge of the estimated frequency into
account, which reduces the utility. For numerical distri-
bution estimation, the SW mechanism uses the EM algo-
rithm to estimate the distribution. However, due to the fake
value in our design (we set v̂(i)x � U(− b, 1 + b) if k(i)x is
perturbed from 0 to 1), directly using the EM algorithm
would not get a useful estimation. We use postprocessing
methods to address these problems. Note that post-
processing of the output of a DP mechanism does not a�ect
its privacy guarantee [1].

4.3.1. Key Frequency Estimation. After the server receives
the perturbed results from all users, it counts the number of
1’s that supports each key i, denoted as ni � Count(k̂

(i)
y � 1).

�en we �rst use the estimator in [8, 14] to obtain an
unbiased frequency estimation f̂i of key i. Formally,

f̂i �
ni/(n − c)
a − c

× l. (19)

Theorem 4. If the padding length l≥ |Su| for all users u, the
estimator f̂i is unbiased, that is, E[f̂i] � fi, and the variance
is

Var f̂i[ ] �
l2c(1 − c)
n(a − c)2

+
l × fi(1 − a − c)

n(a − c)
. (20)

Proof. �e random variable ni is the summation of n in-
dependent random variables, each of which follows the
Bernoulli distribution. For users who input the key i for
perturbation (accounting for (fi/l) of all n users), the
variable is drawn from Bernoulli(a), and for users who do
not input the key i (accounting for 1 − (fi/l) of all n users),
the variable is drawn from Bernoulli(c). �us, we have the
expectation of estimator f̂i that is

E f̂i[ ] �
l

a − c
E
ni
n
− c[ ]

�
l n fi/l( )a + n 1 − fi/l( )( )c[ ] − c

n(a − c)
� fi,

(21)

and the variance of the estimator is

Var f̂i[ ] �
l2

(a − c)2
Var

ni
n
− c[ ]

�
l2 n fi/l( )a(1 − a) + n 1 − fi/l( )( )c(1 − c)[ ]

n2(a − c)2

�
l2c(1 − c)
n(a − c)2

+
l × fi(1 − a − c)

n(a − c)
.

(22)

□

4.3.2. Improve the Utility with Postprocessing. �e estimator
f̂i only provides unbiasedness in theory. However, the es-
timation may not be consistent. �at is, the estimations for
many values may be negative, and the total sum of fre-
quencies is not equal to 1. Such inconsistency may reduce
the utility of LDP mechanisms [11]. �erefore, we further
enforce the following consistency requirements on the es-
timated results to improve the utility:

(1) �e estimated frequencies are non-negative
(2) �e sum of the estimated frequencies is 1

To achieve consistency given the estimated results f̂ �
[f̂1, . . . , f̂d′], we solve the following optimization problem
and �nd the postprocessed results f̃ � [f̃1, . . . , f̃d′] as the
estimation:
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Figure 2: Privacy ampli�cation.
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min
􏽥f

‖􏽢f − 􏽥f‖
2
2

s.t.
􏽥f≥ 0

􏽘
i

􏽥fi � 1.

(23)

Based on the KKT condition [15], we can solve the
postprocessed results as follows:

􏽥fi � 􏽢fi +
1

|A|
1 − 􏽘

i∈A

􏽢fi
⎛⎝ ⎞⎠, (24)

whereA is the set containing the non-negative frequencies in
􏽢f.

We further explain why we use ‖􏽢f − 􏽥f‖
2
2 as the objective

function. L2 norm is used in the objective function because
the noise by UE is well approximated by Gaussian noise, and
minimizing L2 norm achieves MLE [13]. Besides, when we
enforce the consistency requirement on the estimated re-
sults, there are many results that can achieve the consistency
requirements. For example, suppose 􏽢f � [− 0.1, 0.5, 0.8], the
postprocessed results 􏽥f � [0, 0.3, 0.7] and 􏽥f � [0, 0, 1] are
both consistent. However, the postprocessed results that are
far from the estimated results lead to poor utility. +is is
because the 􏽢f is a useful unbiased estimator for each key, and
a large deviation from it results in a large error. +erefore,
the postprocessed results should not only be consistent but
also be close to the estimated results.

+eorem 5 proves that postprocessing leads to positive
bias for frequency estimation.

Theorem 5. Given the unbiased estimated results 􏽢f, the
corresponding postprocessed results 􏽥f solved by (13) lead to
positive biases.

Proof. For each key i, we have the bias that is

E 􏽢fi − fi􏽨 􏽩 � E 􏽢fi􏽨 􏽩 − fi

� E 􏽢fi􏽨 􏽩 +
1

|A|
1 − 􏽘

i∈A
E 􏽢fi􏽨 􏽩⎛⎝ ⎞⎠ − fi

�
1

|A|
1 − 􏽘

i∈A
fi

⎛⎝ ⎞⎠.

(25)

Since 􏽐i∈Afi ≤ 1, thus, we have E[􏽢fi − fi]≥ 0.
In many application domains, the number of users is

large, and the true frequency of many keys is far from zero.
+us, few estimated results may be negative, and |A| may be
large. +erefore, even though the postprocessing introduces
a positive bias, it is sufficiently small in practice.

4.3.3. Numerical Distribution Estimation
+e server performs the distribution estimation in a

discretized way, that is, the histogram on the domain. For a
key i, the server first finds the reported results that support
key i, that is, the i-th bit of the perturbed vector 􏽢k

(i)

x � 1.
+en it discretizes the received value (in domain [− b, 1 + b])
intom buckets and construct a histogramwithm bins, where

each bin corresponds to the count of values falling in this
bin. Since the value of the reported results that support key i

is the result perturbed either from the true value or from the
fake value (the fake value would affect the distribution es-
timation), the server then statistically removes the fake value
and reconstructs a histogram with m bins (in domain [0, 1])
as the estimated value distribution.We denote the histogram
constructed by the true values as H (with m bins), the
reconstructed histogram as 􏽥H, and the i-th bin ofH and 􏽥H as
Bi and 􏽥Bi. Next, we introduce how to statistically remove the
fake value and then elaborate on the method of recon-
structing the histogram.

Since the fake value is generated by users who do not
possess the key i but report as possessed, we first calculate the
number of such users. Given the estimated frequency 􏽥fi for
the key i, we can calculate the count of such users is ap-
proximately n(1 − 􏽥fi)c. Since the fake value is drawn from the
uniform distribution U(− b, 1 + b), the count of such users in
each bin of the histogram is approximately (n(1 − 􏽥fi)c/m).
+us, the server can statistically remove the fake value by
subtracting (n(1 − 􏽥fi)c/m) from each bin in the histogram.
+en the server divides each bin by the count of users who
really possess the key i, that is, (n􏽥fia/l), to obtain the fre-
quency of values falling in each bin. Denote this histogram by
􏽢H and the i-th bin of 􏽢H by 􏽢Bi, the frequency of values falling in
each bin 􏽢Bi can be used to estimate the probability Pr(v ∈ 􏽢Bi).
Leveraging the probability Pr(v ∈ 􏽢Bi) for all 􏽢Bi, the server can
reconstruct the histogram and obtain the numerical distri-
bution estimation, that is, the probability Pr(v ∈ 􏽢Bi) for each
􏽥Bi. Note that we denote the probability Pr(v ∈ 􏽢Bi) by 􏽢P

v

Bi
and

Pr(v ∈ 􏽢Bi) by 􏽥P
v

Bi
for brevity.

Given the histogram of the frequency of values, the
server uses the EM algorithm to reconstruct the histogram
(in domain [0, 1]) and obtain the estimated value distri-
bution. Denote the number of values falling in the 􏽢Bi by 􏽢Ni;
the overall algorithm is shown in Algorithm 3. □

5. Experiments

5.1. Setup

5.1.1. Data Sets. Four real-world data sets are involved in
our evaluation: E-commerce [16], Clothing [17], Amazon
[18], and Movie [19]. We summarize the data sets param-
eters in Table 2, where l is the padding length. All rating
values are linearly transformed into the range [0, 1].

5.1.2. Competitors. We compare our mechanism with three
existing mechanisms: PrivKVM∗ [9], PCKV [8], and KVUE
[20]. PrivKVM∗ is elaborated in Section 3.2, and we do not
repeatedly introduce it here. PCKV contains two mecha-
nisms, namely PCKV-UE and PCKV-GRR, which are based
on optimal unary encoding (OUE) and generalized random
response (GRR), respectively, and we compare both in this
paper. KVUE is a mechanism proposed to improve the
performance of PrivKVM [7], which is the degraded version
of PrivKVM∗. It treats each key-value pair as a whole entity
instead of treating key and value separately and directly
perturbs each entity.
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Since only PrivKVM∗ can support frequency estimation
of keys and distribution estimation of values and other
mechanisms are only designed for frequency estimation and
mean estimation of values, we compare with PrivKVM∗ on
both frequency and distribution estimation tasks and
compare with PCKV and KVUE only on frequency and
mean estimation.

5.1.3. Evaluation Environments. All mechanisms are
implemented using Python 3.6 and Numpy 1.14. All ex-
periments are conducted on an Amax server. +e operating
system of the machine is Ubuntu 16.04; the CPU is Intel
Xeon Silver 4214 2.2GHz, 24 cores in total; and the memory
is DDR4-2666, with a total of 128GB.

5.2. Metric

5.2.1. Frequency. We evaluate the key frequency by the
mean squared error (MSE). Formally, we measure

MSEfreq �
1

|X|
􏽘
i∈X

􏽥fi − fi􏼐 􏼑
2
, (26)

where X is any subset of the key domain K, and we set the
default X to be K.

5.2.2. Distribution Distance. We evaluate the distribution
estimation by the average Wasserstein distance. Formally,
we measure

AWdist �
1

|X|
􏽘
k∈X

Wk(H, 􏽥H), (27)

where X is any subset of the key domain K, and we set the
default X to be K. Wk(H, 􏽥H) is the Wasserstein distance
between the true value distribution of the key k and the
estimated distribution. Formally, given the histogram H

constructed by the true value of key k and the reconstructed
histogram 􏽥H, the Wasserstein distance is

Wk(H, 􏽥H) � 􏽘
m

j�1
􏽘

j

i�1
Pr v ∈ Bi( 􏼁 − 􏽘

j

i�1
Pr v ∈ 􏽥Bi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (28)

5.2.3. Mean and Variance. Given the estimated value dis-
tribution, we can also calculate the mean and the variance of
the value. We also use the MSE to evaluate the mean esti-
mation and variance estimation. Formally, we measure

MSEmean �
1

|X|
􏽘
i∈X

􏽥μi − μi( 􏼁
2
,MSEvar �

1
|X|

􏽘
i∈X

􏽥σ2i − σ2i􏼐 􏼑
2
,

(29)

where similar to frequency estimation,X is any subset of the
key domainK and we set the defaultX to be K; 􏽥μi and μi are
the estimated mean and the true mean of the value of the key
i, respectively; and 􏽥σ2i and σ2i are the estimated variance and
the true variance of the value of the key i, respectively.

All metrics measure the error between the estimated
result and the true result, and the smaller the metric, the
more accurate the estimated result. All results are averaged
with 50 repeats to make the experiment results stable.

5.3. Key Frequency. We first evaluate the existing LDP
mechanisms on key frequency estimation. Here, we analyze
these methods on three tasks:

Input: Perturbed results, estimated frequency 􏽥f, padding length l, number of bins m.
Output: Reconstructed histogram

(1) Discretize the perturbed results into m bins.
(2) Subtract (n(1 − 􏽥fi)c/m) from each bin.
(3) Divide each bin by (n􏽥fia/l) to generate 􏽢H.
(4) Initialize 􏽥P

v

Bi
� (1/m) for all i � 1, . . . , m.

(5) while not converging do
(6) E-step ∀i � 1, . . . , m, Pi � 􏽥P

v

Bi
􏽐

m
j�1

􏽢NjPr(v ∈ 􏽢Bj|v ∈ Bi)/􏽐
m
k�1 Pr(v ∈ 􏽢Bk|v ∈ Bj)

􏽥P
v

Bk

(7) M-step ∀i � 1, . . . , m, 􏽥P
v

Bi
� (Pi/􏽐

m
j�1 Pj)

(8) end while
(9) Reconstructed histogram 􏽥H � [􏽥P

v

B1
, 􏽥P

v

B2
, . . . , 􏽥P

v

Bm
]

(10) return reconstructed histogram 􏽥H

ALGORITHM 3: Numerical distribution estimation.

Table 2: Data sets.

Data sets #Ratings #Users #Keys Selected l

E-commerce 23,486 23,486 1,206 3
Clothing 192,544 105,508 5,850 5
Amazon 2,023,070 1,210,271 249,274 5
Movie 20,000,263 138,493 26,744 100
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(1) Frequency of individual key: We measure MSE be-
tween [􏽥fi]i∈K and [fi]i∈K. In this task, the X is the
key domain K.

(2) Frequency of most frequent keys:We select the top-T
key and measure the MSE between their actual
frequencies and the postprocessed ones. Formally,
denote the top-T keys by the set DT � i ∈ K|fi􏼈

rank stopT} andmeasureMSE between [􏽥fi]i∈DK
and

[fi]i∈DK
. We also set the default T � 15 and ε � 1. In

this task, X is the domain of the top-T key.
(3) Frequency of subsets of keys: Estimating the subset

of keys plays an important role in the interactive data
analysis setting (e.g., estimating which category of
products is more popular). We uniformly sample α
(0≤ α≤ 1) data from the domain of key and measure
the MSE between the sum of the actual frequencies
and the postprocessed frequencies. Formally, sup-
pose Dα is the random sampled subset of the key that
has α × K keys, we define fDα

� 􏽐i∈Dα
fi and

􏽥fDα
� 􏽐i∈Dα

􏽥fi. We sample Dα 100 times and mea-
sure MSE between fDα

and 􏽥fDα
. We set the default

α � 30% and ε � 1.

5.3.1. Frequency of Individual Key. We first evaluate the
performance when querying the frequency of individual
keys, and the results are shown in Figure 3. As a result, we
conclude that our method is better than any other methods
(the MSE of our method is the smallest) on all data sets
because we enforce the consistency as postprocessing. Es-
pecially when the noise is large (ε≤ 2), our method reduces
the MSE of the state-of-the-art solution by about 2 orders of
magnitude. +is is because the estimated frequencies are
prone to be inconsistent under large noise and our post-
processing improves the accuracy significantly. +is also
happens to the other two tasks for a similar reason (see
Figures 4and 5). On data sets E-commerce, Clothing, and
Amazon, the MSE results of other existing methods are very
similar; this is because the number of users in data sets
Clothing and Amazon are large, and it compensates for the
impact of the large domain of the key. However, our method
shows the smallest MSE in data set Amazon among all four
data sets.+is is because the number of users on Amazon are
largest, which lead to smaller bias and better accuracy
(according to the analysis of our postprocessing in +eorem
5). In data set Movies, although all methods do not perform
as good as they do on the first three data sets (due to large
padding length l leading to large error), our method still
performs best among all mechanisms due to the consistency
requirement.

5.3.2. Frequency of Most Frequent Keys. +e MSE results
when querying the top-T frequent keys under varying T

and ε values are shown in Figures 4 and 6. Overall, our
mechanism significantly reduces the MSE of other
methods under all ε values and T values in most cases.
Similar to the results when querying the frequency of
individual keys, the MSE of our method is also apparently

lower than that of other solutions when the noise is large
(ε≤ 2). As the ε value grows, the decline in the MSE of our
method is becoming stable. Figure 6 represents the MSE of
our mechanism is significantly smaller than other
mechanisms on all data sets under all T, which actively
demonstrates that our method can cope with various
queries for top-T frequent keys.

5.3.3. Frequency of Subsets of Key. We show the results for
frequency estimation of a subset of keys in Figures 5 and 7.
Overall, our method outperforms other mechanisms
under all ε values and α values. In Figure 5, the MSEs of all
mechanisms decrease as the ε value grows, and the large
gap between our method and other methods indicates our
method performs much better than other existing
methods. Moreover, it is worth noting that in Figure 7, the
MSEs of other mechanisms are getting greater as the α
grows, but the MSE of our method is symmetric with
α � 50%. +is is because the individual estimation error
accumulates as α increases under other mechanisms, but
we enforce consistency on the estimated results and all
estimated frequencies are summing-to-1; thus, estimating
the frequency of a subset for α> 50% is equivalent to
estimating the rest.

5.4. Distribution. We evaluate existing LDP mechanisms on
distribution estimation. Here, we evaluate it from three
perspectives: (1) distribution distance, (2) mean, and (3)
variance. We compare our mechanism with PrivKVM∗ on
all three tasks and compare with other mechanisms only on
mean estimation since they are only designed for mean. We
also set the number of buckets m � 1024 in our experiments
as it has been shown to perform best in most cases for
distribution estimation [13].

5.4.1. Distribution Distance. We plot the AW results as the
function of ε value in Figure 8. It shows our mechanism
outperforms PrivKVM∗ and achieves a reasonable dis-
tribution estimation on all data sets, and the largest AW is
only about 10− 1. +is is because PrivKVM∗ perturbs
numerical values in a discrete manner and does not ex-
ploit the ordinal information of the numerical domain. It
is also worth noting that the AW results on the first three
data sets (E-commerce, Clothing, and Amazon) are
similar and lower than that on data set Movies. +is is
because the padding length l for data set Movies is the
largest (l � 100), which leads to a large error for frequency
estimation (see Figure 3). +us, we may get a relatively
inaccurate number of users who generate fake values
when we statistically remove the fake value, which leads to
high AW for distribution estimation.

5.4.2. Mean. +e evaluation of mean estimation is shown in
Figure 9. As a result, our method performs much better than
any other mechanisms under all ε value. Specifically, when ε
is relatively small, our mechanism significantly reduces
MSEs of all other solutions; when ε is larger than 4, the MSE
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Figure 3: MSE results on individual key frequency. (a) E-commerce. (b) Clothing. (c) Amazon. (d) Movies.
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Figure 4: MSE results on top-T key frequency varying ϵ from 0.1 to 6, fixing T � 15. (a) E-commerce. (b) Clothing. (c) Amazon. (d) Movies.
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Figure 5: MSE results on subset-key frequency varying ϵ from 0.1 to 6, fixing α � 30%. (a) E-commerce. (b) Clothing. (c) Amazon. (d)
Movies.
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Figure 6: MSE results on top-T key frequency varying T from 5 to 30, �xing ϵ � 1. (a) E-commerce. (b) Clothing. (c) Amazon. (d) Movies.
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Figure 7: MSE results on subset-key frequency varying α from 10% to 90%, fixing ϵ � 1. (a) E-commerce. (b) Clothing. (c) Amazon. (d)
Movies.
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Figure 8: AW results on distribution. (a) E-commerce. (b) Clothing. (c) Amazon. (d) Movies.
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of our mechanism is one to two orders of magnitude smaller
than most other solutions. +is is because our mechanism
reports the value closer to the original value with a higher
probability than the value far away from the original value.
In this way, such perturbed result can carry more useful
information about the original value and leads to more
accurate results.

5.4.3. Variance. Figure 10 plots the MSE results as the
function of ε value. Due to the categorical frequency oracle,
PrivKVM∗ underperforms in our experiments. It is worth
noting that the MSE on data set Movies is the highest. +is is
also because the largest padding length l � 100 for data set
Movies leads to a large error for frequency estimation (see
Figure 3) and results in a relatively inaccurate number of
users who generate fake values when we statistically remove
the fake value.

6. Related Work

Differential privacy has been the de facto standard for
privacy-preserving. +ere are many LDP deployments in the
real world: Google Chrome extension [3], spelling prediction
of Apple [2], and telemetry collection by Microsoft [21].

6.1. Frequency Oracle and Distribution Estimation.
Estimating the frequency of values is a basic task in LDP.
+ere have been several mechanisms [3, 10, 22, 23] proposed
for this task, and they are often called frequency oracles. For
example, RAPPOR [3] enables the estimation of the mar-
ginal frequencies of a set of strings. However, it needs a
dictionary for the candidate strings, which can be very large
or unknown in practice. To solve this problem, Fanti et al.
[24] use the EM algorithm as a decoder for RAPPOR to
enable learning without explicit dictionary knowledge.
Based on RAPPOR, Ren et al. [25] propose a novel
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Figure 9: MSE results on mean. (a) E-commerce. (b) Clothing. (c) Amazon. (d) Movies.
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mechanism to estimate distribution for high-dimensional
data. Instead of the EM algorithm, they use Lasso regression
to estimate the distribution in one round. Combining the
EM algorithm and Lasso regression, Ren et al. [26] further
propose a solution that can generate synthetic data by
leveraging the estimated distribution of the data under LDP.
Although the above schemes also use the EM algorithm,
there are two differences compared to the EM algorithm in
our mechanism: (1) our EM algorithm can statistically
remove the fake values and (2) it takes the aggregated results
and is thus more efficient.

When estimating the distribution of numerical data, a
naı̈ve approach is to bucketize the data and apply the cat-
egorical frequency oracles listed above. In [4], the authors
achieve distribution estimation under LDP but with a strictly
weaker privacy guarantee. +ere are also mechanisms that
can handle numerical settings but focus on the specific task
of mean estimation, that is, SR [5, 21] and PM [27]. +e SW
mechanism [13] is the state-of-the-art mechanism for dis-
tribution estimation tasks under LDP, which can recover the
distribution instead of focusing on a specific task.

Different from existing LDP mechanisms that only focus
on simple statistical queries (such as frequency and mean),
our paper designs a new LDP mechanism for key-value data
collection that considers both key frequency and value
distribution simultaneously.

6.2. Postprocessing. For statistic tasks in differential privacy,
one can utilize the structural information to postprocess and
improve the data accuracy. Following this idea, Hay et al.
[28] utilize the structural information and propose an ef-
ficient hierarchical method to minimize L2 difference be-
tween the noisy result and the processed result. Besides that,
Lee et al. [29] consider the non-negativity constraint and
propose to use the alternating direction method of multi-
pliers (ADMM) to obtain a result that achieves maximal
likelihood. Wang et al. [11] further improve the data ac-
curacy by enforcing consistency that the frequency should be
non-negative and sum-to-one. Jia and Gong [30] use con-
ditional expectation to estimate the true data given the LDP-
protected results. +is method shows satisfactory results
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Figure 10: MSE results on variance. (a) E-commerce. (b) Clothing. (c) Amazon. (d) Movies.
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when data approximately follows power-law distribution.
EM algorithm is used by [13] to improve the accuracy of
histogram data when estimating numerical distribution.

In this paper, we adopt postprocessing for key frequency
estimation to further improve the accuracy.

6.3. Key-Value Data Collection. Ye et al. [7] are the first to
propose the LDP mechanism to collect key-value data
called PrivKV, PrivKVM, and PrivKVM+. PrivKVM it-
eratively estimates the mean to guarantee unbiasedness.
PrivKV is a simple version of PrivKVM, and it can be
regarded as PrivKVM with only one iteration. To balance
unbiasedness and communication cost, they also propose
the advanced version of PrivKVM called PrivKVM+. Sun
et al. [20] proposed another estimator for frequency and
mean estimation under the PrivKV to achieve better ac-
curacy. +ey also introduced conditional analysis for key-
value data for other complex analysis tasks in machine
learning. Gu et al. [8] proposed the framework PCKV. It
perturbs the key and value in a correlated manner and
provides a tighter privacy budget composition. As a result,
PCKV outperforms the above LDP mechanisms in both
estimation of the key frequency and the estimation of the
value mean. To the best of our knowledge, PrivKVM∗ [9] is
the state-of-the-art mechanism that not only can support
more statistical tasks but also can achieve the best accuracy
in most cases.

7. Discussion and Conclusion

In this paper, we propose a novel LDP mechanism for
private key-value data collection. Due to the consideration of
numerical information of the value domain, our mechanism
outperforms existing schemes in most cases.+emechanism
perturbs the key-value data in a correlated manner and
results in the privacy amplification effect. We further im-
prove the accuracy of the frequency estimation by consis-
tency. Finally, we evaluate our mechanism on four real-
world data sets and demonstrate our mechanism outper-
forms existing schemes.

Although our mechanism performs well in our experi-
ments, it still has the following limitations:

(1) We do not consider the optimal padding length l that
would lead to more accurate results.

(2) Our mechanism only adopts the suboptimal privacy
budget allocation scheme instead of studying the
optimal allocation scheme. Although our method
still outperforms previous mechanisms, it does not
achieve the minimum error.

In future work, we will study the optimal padding length
l that can further improve the privacy-utility trade-off and
study the optimal privacy budget allocation.
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