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Tomeet the rapidly increasing demand for Internet of&ings (IoT) applications, edge computing, as a novel computing paradigm,
can combine devices at the edge of the network to collaboratively provide computing resources for IoTapplications. However, the
dynamic, heterogeneous, distributed, and resource-constrained nature of the edge computing paradigm also brings some
problems, such as more serious privacy leakages and performance bottlenecks. &erefore, how to ensure that the resource
requirements of the application are satisfied, while enhancing the protection of user privacy as much as possible, is a challenge for
the task assignment of IoT applications. Aiming to address this challenge, we propose a privacy-aware IoT task assignment
approach at the edge of the network. Firstly, we model the resource and privacy requirements for IoTapplications and evaluate the
resource satisfaction and privacy compatibility between edge devices and tasks. Secondly, we formulate the problem of privacy-
aware IoT task assignment on edge devices (PITAE) and develop two solutions to the PITAE problem based on the greedy search
algorithm and the Kuhn–Munkres (KM) algorithm. Finally, we conduct a series of simulation experiments to evaluate the
proposed approach. &e experimental results show that the PITAE problem can be solved effectively and efficiently.

1. Introduction

With the development of the Internet of &ings (IoT),
various IoTapplications emerge as the times require, such as
disaster relief, public safety, and face recognition [1–3].
According to Garner [4], the global IoT-enabled applica-
tions and infrastructure market will represent a 33 billion US
dollar opportunity in 2025. IoT applications usually have a
large amount of data that need to be processed in time.
Hence, they have strict requirements on computing re-
sources, response time, and privacy [5–7]. &e traditional
cloud-centric task processing model fails to meet these re-
quirements, because it often needs to transmit a large
amount of data to the cloud, which increases network
transmission delay and network traffic [8].

To address the shortcomings of the cloud model, re-
searchers have proposed edge computing [9, 10]. As a novel
computing paradigm, edge computing can combine the

resources of multiple devices at the edge of the network to
provide task processing for IoT applications [11, 12]. With
the wide adoption of wireless sensing and communication
technology, a large number of IoT devices are emerging at
the network edge, such as closed-circuit television (CCTV)
cameras, smartphones, tablets, smart watches, smart home
devices, and smart vehicles. Due to limited resources, these
devices are generally only responsible for data collection and
preprocessing, while complex data analysis work is offloaded
to edge servers or cloud servers.

Supported by the advances in hardware and networking
technologies, IoT devices are constantly increasing in re-
sources and processing capabilities. &ey communicate with
each other to collect and share data, and immediately
process tasks near the data source [13, 14]. Edge computing
has recently moved beyond the initial principle of utilizing
IoTdevices to collect and preprocess sensory data and is now
able to combine and coordinate multiple IoT devices to
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provide processing for IoTapplications [1, 14, 15].&erefore,
the advantages of edge computing such as low latency and
local data processing are further highlighted [2, 16]. In this
paper, we refer to these resource-constrained IoT devices
with data collection and task processing capabilities as edge
devices.

Due to the dynamic, heterogeneous, and distributed
nature of the edge computing paradigm, edge devices are
generally owned by individuals with different interests and
affiliations [17]. As a result, the owner of edge devices may
illegally use and disclose the user privacy information
hidden in IoT data, e.g., faces, motions, locations, etc.,
resulting in serious privacy leakages [18, 19].

Consider a data-intensive IoT application consisting of
multiple interrelated tasks, where each task has different
resource requirements, e.g., CPU, memory, storage, band-
width, etc. To protect user privacy, each private data in the
task specify a set of privacy requirements. Correspondingly,
each edge device has a set of available resources and provides
a set of privacy policies. An important prerequisite for an
edge device to be qualified to execute an IoT task is that it
must satisfy the resource and privacy requirements of the
task. Moreover, a single edge device is difficult to process
relatively complex computations due to limited resources.
Consequently, multiple tasks of an IoT application need to
be assigned to multiple edge devices for execution. In
summary, how to assign tasks to multiple edge devices that
satisfy resource and privacy requirements is an important
challenge in task assignment for IoT applications.

In the research of task assignment for IoT applications,
some useful approaches were proposed to offload tasks to
cloud, fog, and edge [1, 20–22]. However, most of them
regard the task assignment from the perspective of resources
and quality of service (QoS), while ignoring the privacy
requirements of the users. Moreover, some researches focus
on the privacy-aware IoT task assignment. &ey mainly
adopt various privacy technologies like differential privacy,
data generalization, task fragmentation, and privacy conflict
avoidance to control data access [23–26], but they are in-
adequate to address the issue of how private data will be used
after being accessed, such as the purpose of using the data,
the retention time of the data, and the operations executed
on the data.

Inspired by these works, in this paper, we propose a
privacy-aware IoT task assignment approach at the edge of
the network, which assigns IoT tasks to multiple edge
devices close to the data source. &ese devices do not rely
on a central coordinator and collaborate to process IoT
tasks in a distributed manner. Specifically, we first model
the resource and privacy requirements of the IoT tasks and
evaluate whether the edge devices can satisfy these re-
quirements. &en, we formulate the problem of privacy-
aware IoT task assignment on edge devices (PITAE) as an
optimization problem to maximize the privacy compati-
bility degree between IoT tasks and edge devices. Fur-
thermore, we develop two solutions based on the greedy
search algorithm and the KM algorithm [27, 28] to solve the
problem. &e main contributions of this paper are as
follows:

(1) An integer programming optimization model is used
to formulate the PITAE problem considering both
the resource and privacy constraints.

(2) A privacy model is presented to specify the privacy
requirements and privacy policies, and the weighted
Euclidean distance is employed to measure the
privacy compatibility degree between edge devices
and tasks.

(3) Two solutions based on greedy search and KM al-
gorithm are developed to solve the PITAE problem.
&e experimental results demonstrate that the pro-
posed approaches can significantly improve the
privacy compatibility degree of the solution com-
pared with the benchmark approach.

&e rest of this paper is structured as follows. Section 2
describes the motivation and framework of the PITAE
problem. Section 3 formally specifies the PITAE problem.
Section 4 presents two solutions to solve the PITAE problem.
&e experiments and results are illustrated in Section 5. &e
related work is reviewed in Section 6. Finally, the conclusion
and further works are given in Section 7.

2. Motivation and Framework

In this section, we show an audit example of emergency
supply distribution in a disaster relief scenario. In such a
scenario, emergency supplies are usually ample in
quantity and variety, and the distribution time is urgent.
&erefore, it is a very complicated task for traditional
manual audit methods to handle. An IoT-based audit
application can quickly and automatically execute this
process. Such a process captures emergency supply dis-
tribution videos stored in CCTV cameras and uses nearby
edge devices to analyze the videos to automatically
identify some violations, e.g., fake or erroneous emer-
gency supply distribution.

As shown in Figure 1, the workflow of the IoT audit
application includes six tasks (t0-t5): data collection, object
detection, face recognition, supply recognition, violation
analysis, and alarm and report. Firstly, task t0 collects data
required for subsequent tasks, e.g., supply distribution video,
supply distribution location, and supply application form.
Secondly, t1 uses video data as input to execute object de-
tection and sends the detected face and supply images to t2
and t3, respectively. &irdly, t2 recognizes the face image to
obtain personal identity information (PII), t3 recognizes the
type and quantity of supplies, and t4 conducts violation
analysis based on the recognition results, location, and
supply application form. Finally, t5 issues an alert based on
the violation result and generates an audit report. In Fig-
ure 1, the rectangular boxes represent tasks, the arrows
represent the invocation of the tasks within the application
workflow, the vertical solid lines mean that all the previous
tasks should be accomplished before the next task is initi-
ated, and the workflow starts from the left and ends at the
right.

&is example is a typical data-intensive IoT application.
&e input data of each task may involve the user’s private
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data, e.g., face, location, application form, etc. In addition,
each task needs to be assigned to edge devices with different
available resources, e.g., CPU, memory, storage, bandwidth,
etc. &e resources and private data required for each task are
shown in Table 1. &ere are 10 available edge devices (d0-d9)
in the demonstration scenario, and the available resources of
each device are shown in Table 2.

Before assigning IoT tasks to edge devices, it is nec-
essary to evaluate whether these devices can satisfy the
resource requirements of the tasks [29, 30]. As shown in
Tables 1 and 2, d0 only satisfies the resource requirements of
t5, while d9 can satisfy the resource requirements of all the
tasks.

According to the General Data Protection Regulation
(GDPR) [31], data consumers can only collect private data
for legal purposes. At the same time, the GDPR also requires
data consumers not to use the collected data for other
purposes, and the retention time of the data and the op-
erations executed on the data must be consistent with those
necessary for the stated purpose. To comply with GDPR,
private data in Table 1 have a set of privacy requirements,
e.g., the sensitivity of the data, the purpose of using the data,
the retention time of the data, and the operations executed
on the data. Correspondingly, each edge device also provides
a set of privacy policies. &erefore, another prerequisite for
assigning tasks to edge devices is that the privacy policies of
the edge devices should be compatible with the privacy
requirements of the tasks. &e higher the privacy compat-
ibility degree between the edge device and the task, the more
suitable the edge device is to undertake the task.

For example, a privacy requirement of the video data in
task t0 is <video, 0.8, data collection, {read, transfer}, 1>. It
means that the sensitivity degree of video is 0.8, and an edge
device can only execute read and transfer operations on the
video for the purpose of data collection. At the same time, it
also requires that the trust degree of the device must be
greater than or equal to 0.8 (sensitivity degree), and video
cannot be retained more than 1 month. Correspondingly, a
privacy policy of edge device d2 for the video data is <video,
0.6, data collection, {read, write, transfer, profiling}, 12>. It
indicates that the trust degree of d2 is 0.6, d2 will execute
read, write, transfer, and profiling operations on the video
for the purpose of data collection, and d2 will retain the video
for at least 12 months. As can be seen from this example, the
privacy policy of d2 is incompatible with the privacy re-
quirement of t0 in terms of sensitivity degree, operations
executed, and retention time.

In summary, the task assignment problem of IoT audit
applications is to assign multiple tasks to suitable edge
devices, so as to satisfy the resource requirements of the tasks

while maximizing the overall privacy compatibility of the
assigned edge devices.

Based on the above example, the privacy-aware IoT task
assignment framework at the edge of the network is shown
in Figure 2. In Figure 2, the developer designs an IoT ap-
plication based on resource requirements, privacy require-
ments, tasks, and their dependencies. &e tasks of the IoT
application need to be deployed to qualified edge devices for
execution. Each edge device contains an available resource
description file, a privacy policy description file, and is
equipped with a task assignment manager responsible for
device discovery, qualification evaluation, task assignment,
and coordination.

&e framework in Figure 2 does not depend on a central
coordinator and supports distributed task assignment.
&erefore, each participating edge device of IoTapplications
can generally play the role of coordinator or collaborator. To
protect privacy and reduce network transmission, all edge
devices participating in the application should be as close as
possible to the data source. &e IoT application shown in
Figure 1 is a typical stream data processing application, and
the data collection device (e.g., CCTV camera) is the data
production source of the application. &erefore, the appli-
cation developer selects it as the coordinator of the appli-
cation, which delivers offloading requests to nearby edge
devices. If there are multiple data collection devices (i.e.,
multiple data sources) in an application, the application
developer will select an edge device with large data volume
and high privacy protection requirements from these devices
as the coordinator.

&e coordinator is responsible for discovering a set of
qualified edge devices from nearby and forming a collab-
orative group with these devices as its collaborators, and
offloading tasks to these collaborators at the same time.
Specifically, once the coordinator receives the deployment
request of an IoT application, it will advertise the task
processing request to nearby edge devices. &e edge devices
that are willing to participate in the collaboration accept the
request and reply their available resources status and privacy
policies to the coordinator. &en, the coordinator evaluates
the resource satisfaction and privacy compatibility of each
collaborative device. More specifically, the application de-
veloper sets a privacy compatibility threshold for tasks.
During the privacy evaluation process, if the privacy com-
patibility between the task and all its candidate devices fails
to satisfy the threshold constraints, the coordinator will
request the application developer to relax the privacy
threshold to ensure that the task has enough devices to
perform its function. Finally, the coordinator assigns tasks to
the most suitable set of devices according to the evaluation

Data
Collection (t0)

Object
Detection (t1)

Face
Recognition (t2)

Supply
Recognition (t3)

Violation
Analysis (t4)

Alert
& Report (t5)

Figure 1: An example IoT audit application.
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results to maximize the overall privacy compatibility degree
of the collaboration group.

After the collaboration group is established, each device
starts to execute the assigned tasks. &e coordinator is
responsible for managing and coordinating the execution
of all tasks, and periodically scanning the network to
discover new edge devices. Once an edge device leaves the
collaboration group, the coordinator will invite a new
device to join the collaboration group and assign a task to it.
Considering that a task may have multiple candidate new
devices, the coordinator first evaluates the resource satis-
faction and privacy compatibility between these devices
and the task, and then selects the one with the highest
privacy compatibility degree for the task from the qualified
devices.

3. Problem Description

3.1. Application Model. A typical IoT application is defined
by the developer at design time. It specifies the functional
and nonfunctional requirements. Formally, it is described by
a directed acyclic graph G� (T, E), nodes T� {t0, t1, ..,tn-1}
represent a set of tasks where tj (0≤ j< n) is the jth task, and
edges E� {(tg, th)|tg, th ∈ T} are a set of links between tasks,
which represent data and task dependencies. Each task tj is
characterized by a set of inputs INj � in0j , in1j , . . . , a set of
outputs OUTj � out0j , out1j , . . . , and a set of resource and
privacy requirements.

(1) Resource requirements RRj : RRj represents a set of
resources required to execute task tj, such as CPU,
memory, storage, and bandwidth. RRj � {rr0j , rr1j , . . .,

rro
j}, where rrc

j (0≤ j< n, 0≤ c< o) is the requirement
of task tj for the cth resource.

(2) Privacy requirements PRj: Let PD be a set of
private data of the user in an IoT application.
PRj � {pr0j , pr1j , . . ., pr

p
j } specifies a set of privacy

requirements for task tj, where prk
j (0≤j < n,

0≤k < p) is the kth privacy requirement of tj, it is
defined as a tuple <pdk

j , sdk
j , puk

j , OPk
jrek

j>, where
pdk

j∈PD is a private data item of the user, sdk
j ∈ [0,

1] is the sensitivity degree of pdk
j , it specifies the

trust degree that an edge device must have when it
uses pdk

j , sdk
j � 0 indicates the lowest sensitivity

and 1 the highest, puk
j specifies the purpose for

which the pdk
j can be used, OPk

j specifies a set of
operations that can be executed on the pdk

j , and
rek

j specifies the longest time that the edge device
can retain pdk

j .

3.2. System Model. A PITAE scenario usually consists of
multiple heterogeneous edge devices that communicate with
each other and collaborate to execute multiple tasks of an
IoTapplication. LetD� {d0, d1, ..,dm-1}represent a set of edge
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Figure 2: Privacy-aware IoT task assignment framework.

Table 1: Resource requirements and private data request for tasks.

Tasks
Resource requirements

Private data
CPU (GHz) Memory (GB) Storage (TB) Bandwidth (Mbps)

t0 1.4 4 0.6 18 Video, location, application form
t1 1.8 6 0.5 18 Video
t2 1.8 8 0.4 15 Face image
t3 1.8 8 0.4 15
t4 1.6 6 0.6 12 PII, location, application form
t5 1.2 2 0.2 10 Violation result

Table 2: Available resources provided by edge devices.

Edge
devices

Available resources
CPU
(GHz)

Memory
(GB)

Storage
(TB)

Bandwidth
(Mbps)

d0 1.2 2 0.2 12
d1 1.4 4 0.4 18
d2 1.6 6 0.6 18
d3 1.8 8 0.8 20
d4 2.0 10 1.0 22
d5 1.6 8 0.6 18
d6 1.8 10 0.8 20
d7 2.0 12 1.0 22
d8 2.2 14 1.2 25
d9 2.5 16 1.5 28
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devices, where di (0≤ i<m) is the ith edge device. Each edge
device di is characterized by a set of available resources and a
set of privacy policies.

(1) Available resources ARi : ARi � {ar0i , ar1i , . . . aro−1
i }

represents a set of available resources of di, where arc
i

(0≤ i<m, 0≤ c< o) is the cth resource of di.
(2) Privacy policies PPi :PPi � {pp0

i , pp1
i , . . ., pp

q−1
i }

represents a set of privacy policies of di, where ppl
i

(0≤ i<m, 0≤ l< q) is the lth privacy policy of di.
Each privacy policy ppl

i is defined as a tuple < pdl
i,

tdl
i, pul

i, OPl
i, rel

i >, where pdl
i ∈PD is a private data

item for which the policy is defined, tdl
i ∈ [0, 1] is the

trust degree of di, where 0 indicates complete no-
trust and 1 complete trust, the larger the value of tdl

i,
the stronger is the privacy protection provided by the
di, pul

i is the purpose for di using pdl
i, OPl

i is a set of
operations executed by di on the pdl

i, and rel
i is the

time for di to retain pdl
i.

Example 1. Figure 3 demonstrates a privacy-aware IoT task
assignment model including 3 tasks and 6 edge devices. &at
is, T� {t0, t1, t2} and D� {d0, d1, d2, d3, d4, d5}. In Figure 3,
circles represent IoT tasks, rectangles represent edge devices,
and dashed lines represent potential assignments between
tasks and edge devices. &e dashed rectangles show the
resources requirements and privacy requirements of each
task, and the available resources and privacy policies of each
device.&e prerequisite for whether a task can be assigned to
an edge device is that the device can satisfy the resource and
privacy requirements of the task.

3.3. Qualification Evaluation Model. To determine whether
the edge device di is qualified to execute the task tj, it is
necessary to evaluate the resource satisfaction and privacy
compatibility between di and tj. &e specific evaluation
process is as follows:

(1) Resource satisfaction evaluation. Considering that
RRj is a set of minimum resources required to fulfill
task tj, if the edge device di is a qualified edge device
for tj, then the available resources ARi of di must

satisfy the requirements RRj. &e resource satisfac-
tion evaluation fR

i,j is obtained by

f
R
i,j �

1, if ∀c ∈ o, ar
c
i ≥rr

c
j

0, otherwise,
 where ar

c
i ∈ARi,rr

c
j ∈RRj

(1)

(2) Privacy compatibility evaluation. &e privacy com-
patibility degree between the edge device di and the
task tj is measured by the average compatibility
degree of the privacy requirements of tj with the
corresponding privacy policies in di, and it is eval-
uated by

f
P
i,j �


p−1
k�0f

k
i,j

p
, (2)

where fk
i,j ∈[0, 1]; it represents the privacy com-

patibility degree between the kth privacy require-
ment prk

j of tj and the corresponding privacy policy
ppl

i in di, and p expresses the number of privacy
requirements of tj, which is an integer greater than or
equal to 0.

To evaluate the compatibility degree between prk
j and

ppl
i, firstly, it is necessary to ensure that the private data and

its usage purpose are consistent, e.g., pdk
j � pdl

i, puk
j � pul

i;
secondly, it is necessary to measure the compatibility degree
between prk

j and ppl
i in terms of the sensitivity attribute,

operation attribute, and retention time attribute. Accord-
ingly, we express prk

j ’s privacy attributes sdk
j , OPk

j , and rek
j

and ppl
i’s privacy attributes tdl

i, OPl
i, and rel

i as two three-
dimensional vectors. &e work in [32] adopts Euclidean
distance to evaluate the Security Service-Level Agreement
(Security-SLA) between cloud users and cloud service
providers. Inspired by this work, we employ the Euclidean
distance to measure the compatibility degree between the
two privacy attribute vectors. More specifically, considering
that the different privacy attributes play different roles in the
measurement process, we use the weighted Euclidean dis-
tance to reflect the difference in the importance of different
attributes. Based on the above analysis, the privacy com-
patibility degree fk

i,j is calculated by

f
k
i,j �

������������������������������������

w1 × f
k,sd
i,j 

2
+ w2 × f

k,OP
i,j 

2
+ w3 × f

k,re
i,j 

2


, if pd
k
j � pd

l
i ∧pu

k
j � pu

l
i,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where w1, w2, and w3 are three weight parameters,
w1 +w2 +w3 � 1. fk,sd

i,j , fk,OP
i,j , and fk,re

i,j are the compatibility
degrees of the sensitivity attribute, operation attribute, and
retention time attribute, respectively. &e compatibility
degree of sensitivity attribute is obtained by

f
k,sd
i,j �

td
l
i − sd

k
j , if td

l
i ≥ sd

k
j ,

0, otherwise.

⎧⎨

⎩ (4)

&e compatibility degree of operation attribute is ob-
tained by

Security and Communication Networks 5



f
k,OP
i,j �

OP
k
j



 − OP
l
i



 

OP
k
j




, if OP

l
i ⊆OP

k
j ,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

&e compatibility degree of retention time attribute is
obtained by

f
k,re
i,j �

re
k
j − re

l
i 

re
k
j

, if re
l
i ≤ re

k
j ,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Example 2. Assume that the evaluation results of resource
satisfaction and privacy compatibility between tasks and
edge devices in Figure 3 are shown in Figures 4(a) and 4(b),
respectively. Figure 4(c) shows the potential task assign-
ments that satisfy qualification requirements, where the
values on the dotted line represent the degree of privacy
compatibility.

3.4. Problem Definition. Despite the ever-increasing re-
sources of edge devices, they are still considered resource-
constrained and often unable to execute complex data
processing workflow [1]. Hence, the tasks of an IoT appli-
cation need to be assigned to multiple edge devices for
execution. During the task assignment process, if multiple
tasks are assigned to an edge device, the available resources
of the device may not be able to meet the resource re-
quirements of these tasks. Furthermore, when the device
undertakes multiple tasks at the same time, it will collect
multiple pieces of private data from different tasks and may
infer more privacy information through data mining and
machine learning techniques [33]. To meet resource con-
straints and protect user privacy, in this paper, we assign
only one task to each edge device.

Due to the dynamic and distributed nature of edge
environments, unpredictable link/device failures and churn
of mobile and portable devices often result in IoT

applications that are not able to run stably and reliably
[34, 35]. To enhance the reliability of the IoTapplications, we
consider assigning each task to multiple edge devices. that is,
the task is backed up to multiple edge devices.When a device
that undertakes the task cannot work, the backup device can
also ensure the task is executed properly.

In summary, whether a task can be assigned to an edge
device is a big issue. If and only if the device satisfies the
task’s resource requirements and privacy compatibility
degree constraint, then the task can be assigned to this
device. Given n tasks and m edge devices, the PITAE
problem aims to find a solution with maximum privacy
compatibility degree by assigning IoT tasks to qualified edge
devices. To illustrate the PITAE problem, specific data
structures can be formalized as follows:

(1) Lower bound vector of tasks B: It is an n-dimensional
vector, where B[j] (0≤ j<n) expresses howmany edge
devices must be assigned to task tj. B[j]> 1 means that
tj requires multiple edge devices for execution.
It is worth noting that the application developer does
not know the failure and churn rates of edge devices
when designing applications. Hence, how to properly
set B[j] is nontrivial, which is out of the scope of this
paper. We may need to conduct a thorough inves-
tigation of this topic in the future. Here, we point out
a few initial considerations that require attentions.
To enhance the reliability of the IoT applications,
each task generally needs to create 2-3 instances: a
main task and 1-2 task replicas, and the main task
and task replicas are assigned to different edge de-
vices, i.e., B[j]≤ 3. We present a B[j] setting scheme
as follows: firstly, the application developer pre-
liminarily estimates the average failure and churn
rates of edge devices based on experience. Secondly,
the application developer determines B[j] by com-
prehensively considering the average failure and
churn rates of the devices, and the criticality of the
task tj. &irdly, during the task assignment process, if
a feasible task assignment solution cannot be found
due to some tasks being restricted by B, the appli-
cation developer will adjust B for these tasks and start
a new round of task assignment.

RR0

AR0 AR1 AR2 AR3

PP3

AR4

PP4

AR5

PP5PP2PP1PP0

PR0

t0

d0 d1 d2 d3 d4 d5

t1 t2

PR1 PR2

RR1 RR2

Available resources:
Privacy policies:

Resources requirements:
Privacy requirements:

IoT tasks:

Edge devices:

Figure 3: An illustration of the privacy-aware IoT task assignment model.
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(2) Privacy compatibility matrix C : It is anm× nmatrix,
where C[i, j]� fP

i,j (0≤ i<m, 0≤ j< n) denotes the
privacy compatibility degree between the edge de-
vices di and the task tj.

(3) Evaluation matrix E: It is anm× nmatrix, where E[i,
j](0≤ i<m, 0≤ j< n) expresses whether the edge
device di satisfies the resource and privacy com-
patibility threshold constraints of task tj, and E[i, j]�

1 means yes and 0 no. E[i, j] is obtained by

E[i, j] �
1, if f

P
i,j ≥ th∧fR

i,j � 1,

0, otherwise,

⎧⎨

⎩ (7)

where th∈[0, 1] is the privacy compatibility
threshold, which specifies the minimum privacy
compatibility degree that the edge devices must have
when executing tasks.

(4) Assignment matrix A: It is an m× nmatrix, where A
[i, j](0≤ i<m, 0≤ j< n) ∈ {0, 1} expresses whether tj is
assigned to the edge device di (A[i, j]� 1) or not (A[i,
j]� 0).

Given B, C, and E, the PITAE problem is to find a matrix
A to Max:



m−1

i�0


n−1

j�0
C[i, j] × A[i, j]. (8)

subject to

A[i, j] ∈ 0, 1{ }(0≤ i<m, 0≤ j< n), (9)



m−1

i�0
A[i, j] � B[j](0 ≤ j< n), (10)



n−1

j�0
A[i, j]≤ 1(0≤ i<m), (11)

E[i, j] × A[i, j]> 0(0≤ i<m, 0≤ j<n), (12)

where Constraint (9) specifies that the decision variables are
binary; Constraint (10) guarantees that each task is assigned
B[j] edge devices; Constraint (11)ensures that each edge

device can only be assigned to one task; and Constraint (12)
ensures that each assigned edge device satisfies the resource
and privacy compatibility threshold constraints.

Example 3. In an IoT audit application, the resource re-
quirements of tasks and the available resources provided by
edge devices are shown in Tables 1–2. Assume that the
privacy compatibility threshold th is specified as 0.3, the
lower bound vector of tasks B� [1, 1, 2, 2, 1, 1], and the
privacy compatibility matrix is shown in Figure 5(a). &e
evaluation matrix is obtained by Equation (7), as shown in
Figure 5(b). Based on B and Figure 5(a) and 5(b), the as-
signment solution with the maximal privacy compatibility
degree (5.03) should be {d6, d3, {d7, d9}, {d4, d8},d2, d1}, and
the assignment matrix is demonstrated in Figure 5(c).

4. Solutions to the PITAE Problem

&e PITAE problem is a typical one-to-many task assign-
ment problem. If the exhaustive search method is used to
solve this problem, the solution space can be up to O (mn)
[36]. &erefore, we first develop a task assignment solution
based on the greedy search to solve this problem. &en, to
improve the effectiveness of task assignment, we propose a
task assignment solution based on the KM algorithm to find
the optimal solution to the PITAE problem.

4.1. Greedy Search-Based Task Assignment (GSTA) Solution.
&e GSTA solution selects B[j] the most qualified edge
devices for each task in the task set Taccording to the privacy
compatibility matrix C and the evaluation matrix E. Spe-
cifically, for each tj belonging to T and di belonging to D, it
first evaluates whether di satisfies the resource requirements
and privacy compatibility threshold constraints of task tj,
e.g., E[i, j]� 1. &en, it determines whether di has been
assigned a task, e.g., S[i]� 1. If yes, it skips di and examines
the next edge device; otherwise, it adds the privacy com-
patible degree C[i, j] to the candidate edge device vector V of
tj. Subsequently, it reversely sorts all candidate edge devices
in V according to their privacy compatibility degrees and
selects top B[j] candidate edge devices for tj from sorted
candidate edge device vector SV. Finally, it sets the as-
signment A[i, j] corresponding to the edge device di and task
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d4

d5

0 0 0

0 0 0

1 0 0

1 1

1 1 1

1

1 0 0

(a)
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0.31
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Figure 4: (a) Resource evaluation results. (b) Privacy evaluation results. (c) Potential task assignments that satisfy qualification
requirements.
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tj to 1, and updates the edge device selection vector S. &e
details of GSTA are described in Algorithm 1.

&e time complexity of Algorithm 1 is O(n×m+ n
×m× log2m), where O(m× log2m) is the time complexity of
a sorting operation.

4.2. KMAlgorithm-Based Task Assignment (KMTA) Solution.
In a data-intensive IoT application, its workflow is usually
composed of tens of tasks, rarely hundreds or thousands [1].
&e IoT audit application is a typical data-intensive IoT ap-
plication, andwe estimate its number of tasks to be on the order
of tens of magnitudes. Moreover, to enhance the reliability of
the application, each task generally needs to be assigned to 2-3
edge devices, e.g., B[j]≤ 3. &erefore, the total number of edge
devices required for an IoTaudit application should be around
tens to two hundred. On the other hand, with the widespread
application of the IoT technology, there are often hundreds of
IoTdevices connected to the edge network near the data source.
Based on the above considerations, in the PITAE scenario, we
believe that the number of edge devices can meet the needs of
IoTtasks, e.g.,m>n, and each task requires B[j] edge devices to
execute it, but each edge device can only be assigned to one
task.

&e well-known KM algorithm can quickly solve standard
task assignment problems, i.e., one-to-one task assignment
problems, and the time complexity is O(m3) [27, 28]. In
addition, the KM algorithm always finds the solution with the
smallest sum [29]. However, the PITAE problem needs to find
a solution with the maximum privacy compatibility degree.
Furthermore, the KM algorithm can always find a result for
the PITAE problem, but the result may not be a feasible
solution. For example, when the edge device di cannot satisfy
the resource requirements or the privacy compatibility
threshold constraints of tj, i.e., E[i, j]� 0, the KM algorithm
may produce incorrect task assignments, leading to an in-
feasible solution.

To deal with the limitations of the KM algorithm, the
KMTA solution improves the KM algorithm to solve the

PITAE problem by adding virtual tasks and adjusting the
privacy compatibility degrees between tasks and edge devices.
Concretely, first of all, for each di belonging to D and tj be-
longing to T, it evaluates whether di satisfies the resource
requirements and privacy compatibility threshold constraints
of tj, and adjusts the privacy compatibility valueC[i,j] according
to the evaluation result. More specially, if di passes the eval-
uation, e.g., E[i, j]� 1, it adjusts C[i, j] tompc-C[i, j]; otherwise,
it adjustsC[i, j] to

n−1
j�0B[j].&e adjustment operation ensures

that KMTA can find the solution with the maximum privacy
compatibility degree, because mpc is the maximum privacy
compatibility value in C, C[i, j]∈ [0, 1], and the privacy
compatibility degree of a solution never exceeds 

n−1
j�0B[j].

Secondly, it extends matrix C into an m rows and 
n−1
j�0B[j]

columnsmatrixC∗, where for each column j inC, there areB[j]
corresponding copy columns in C∗. If the number of rows of
C∗ is greater than the number of columns, i.e.,m>

n−1
j�0B[j], it

addsm− 
n−1
j�0B[j] virtual columns toC∗ and sets their privacy

compatibility value to 0. &irdly, it calls the KM algorithm to
obtain a temporary matrixH and forms the assignment matrix
A according to H. Finally, it checks whether A is a feasible
assignment solution. If each assignment in A is correct and
each task is assigned B[j] edge devices, it returns success;
otherwise, it returns failure.&e details of KMTA are shown in
Algorithm 2.

&e time complexity of Algorithm 2 is determined by the
following: (1) the time complexity of adjusting the C matrix
is O (m × n); (2) the time complexity of extending the C
matrix is O (m× n×B[j]) +O (m× (m− 

n−1
j�0B[j])); (3) the

time complexity of calling the KM algorithm and forming
the assignment solution is O (m3) +O (m× n); and (4) the
time complexity of judging the feasibility of the solution is O
(m× n) +O (n). &us, the overall complexity of Algorithm 2
is O(m3) +O (m× n×B[j]) +O(m2)+O(m× n) +O
(m− 

n−1
j�0B[j]) +O (n). In the presented scenarios, B[j] is a

constant (typically less than 10), and m> n. Consequently,
the time complexity of Algorithm 2 can be simplified as O
(m3).
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Figure 5: Matrixes. (a) &e privacy compatibility matrix. (b) &e evaluation matrix. (c) &e assignment matrix.
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Input:
T: the tasks set; D: the edge devices set; B: the lower bound vector;
C: the compatibility matrix; E: the evaluation matrix; S: the edge device selection vector.
Output:
A: the task assignment matrix.

(1) for each task tj in T do
(2) for each edge device di in D do
(3) if E[i, j]� 1 then
(4) if S[i]� 1 then;
(5) skip it and examine the next edge device;
(6) else
(7) V←C[i, j];
(8) end if
(9) end if
(10) end for
(11) SV← sorting V based on privacy compatibility degree;
(12) Select Top-B[j] edge devices from SV;
(13) Update A[i, j] and S[i];
(14) end for
(15) return A;

ALGORITHM 1: Greedy search-based task assignment.

Input:
T: the tasks set; D: the edge devices set; B: the lower bound vector;
C: the privacy compatibility matrix; E: the evaluation matrix.
Output:

Success: A; failure: no feasible A is obtained.
(1) for each edge device di in D do
(2) for each task tj in T do
(3) if E[i, j]� 1 then
(4) C[i, j]←mpc−C[i, j];
(5) else
(6) C[i, j]←

n−1
j�0B[j];

(7) end if
(8) end for
(9) end for
(10) for each edge device di in D do
(11) cindex← 0;
(12) for each task tj in T do
(13) while B[j]> 0 do
(14) C∗[i, cindex++]←C[i, j];
(15) B[j]←B[j]− 1;
(16) end while
(17) end for
(18) end for
(19) if m>

n−1
j�0B[j] then

(20) Add m− 
n−1
j�0B[j] virtual columns to C∗, and set their corresponding element values to 0;

(21) end if
(22) H←KM(C∗);
(23) Form the assignment matrix A based on H;
(24) if there is any incorrect assignment in A then
(25) return Failure
(26) end if
(27) if for all columns of matrix A satisfy 

m
i�0 A[i, j] � B[j] then

(28) return Success
(29) else
(30) return Failure
(31) end if

ALGORITHM 2: KM algorithm-based task assignment.
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5. Experiments

In this section, we conducted four sets of simulation ex-
periments to evaluate the effectiveness and efficiency of
KMTA and GSTA. As far as we know, there is no other
research directly related to our study. Hence, we implement
a “Random (RNDM)” approach as a benchmark to compare
with KMTA and GSTA. Given a set of tasks and a set of edge
devices, RNDM randomly assigns each task to B[j] edge
devices that satisfy the resource requirements and privacy
compatibility threshold constraints. All the experiments are
performed on aWindows platform equipped with Intel Core
i7-4790 @ 3.60GHz and 8GB RAM.

5.1. Experimental Setting. To comprehensively evaluate
GSTA and KMTA, we have simulated various PITAE
scenarios by changing the following parameters: (1) the
number of edge devices (m); (2) the number of tasks (n);
and (3) the privacy compatibility threshold (th). Specifi-
cally, in set #1, m changes from 30 to 300 with a step of 30,
n�m/3, and th is set to 0.1. In set #2, m changes from 50 to
500 with a step of 50, n �m/5, and th is set to 0.1. In set #3,
m and n are fixed at 150 and 50, respectively, and th changes
from 0.1 to 0.5 with a step of 0.1. In set # 1.4, m is fixed at
250, and the other parameters are set as in set # 1.3. Each
experiment is repeated 100 times, and the results are av-
eraged. &e detailed experimental settings are shown in
Table 3.

In sets #1–4, B[j] is randomly assigned from 1 to 3, and
the resource requirements of each task and the available
resources provided by each edge device are randomly
generated following the uniform distribution.&e details are
shown in Table 4.

In sets #1–4, each task is randomly assigned 0-10
pieces of private data, and the privacy requirements and
the privacy policies are randomly generated for private
data. Specifically, for a privacy requirement prk

j �<pdk
j ,

sdk
j , puk

j , OPk
j , rek

j>, sdk
j is assigned randomly with a value

in [0.00, 1.00], puk
j is assigned randomly from 10 different

purposes, OPl
j is randomly generated from an operation

set containing 5 different operations, and rel
j is assigned

randomly from 1 to 12months. For a privacy policy ppl
i

�< pdl
i, tdl

i, pul
i, OPl

i, rel
i >, the tdl

i, pul
i, OPl

i, and rel
i are the

same as the setting of corresponding privacy attributes in
prk

j .

5.2. Effectiveness Evaluation. &rough comparison with
RNDM, Figures 6 and 7 show the effectiveness of KMTA
and GSTA in experiment sets #1-4 and the influence of
three parameters, i.e., n, m, and th. On the whole, KMTA
can find the optimal solution for the PITAE problem, and
with the changes of n, m, and th, KMTA is significantly
better than GSTA and RNDM in terms of privacy com-
patibility degree. Compared to KMTA, GSTA’s privacy
compatibility degree is lower than that of KMTA, espe-
cially in the case of stricter th constraints, but it is still
significantly higher than RNDM in all cases.

Figure 6 illustrates the effect of increasing m on privacy
compatibility degree. As shown in Figure 6(a), as m in-
creases, the privacy compatibility degrees of all the ap-
proaches increase rapidly. In all cases, KMTA shows the
highest privacy compatibility degree, RNDM shows the
lowest privacy compatibility degree, and GSTA’s privacy
compatibility degree is slightly lower than that of KMTA.
&e reason is that KMTA always assigns B[j] qualified edge
devices to each task globally to obtain the highest privacy
compatible solution. Hence, it can find the optimal solution
to the PITAE problem. GSTA always assigns B[j] qualified
edge devices with the highest privacy compatibility for each
task locally, resulting in the privacy compatibility degree of
the solution it finds slightly lower than that of KMTA.
However, RNDM always randomly assigns each task to B[j]
qualified edge devices. Consequently, the solution it finds
has the lowest privacy compatibility degree. For example, in
Figure 6(a), the average privacy compatibility degrees of
KMTA, GSTA, and RNDM are 75.59, 74.33, and 42.28,
respectively.

In Figure 6(b), as m/n increases from 3 to 5, the average
range of candidate edge devices for each task also enlarges.
As a result, the privacy compatibility degrees of all the
approaches have improved to varying degrees, and KMTA is
still higher than GSTA and RNDM. For example, comparing
Figure 6(b) with Figure 6(a), the average privacy compati-
bility degrees of KMTA, GSTA, and RNDM increase by
4.11%, 3.87%, and 1.31%, respectively.

Figure 7 demonstrates the effect of th on the privacy
compatibility degree after fixing m and n. It can be seen
from Figure 7(a) that when th increases from 0.1 to 0.5, the
privacy compatibility degrees of KMTA and RNDM re-
main basically unchanged, but the privacy compatibility
degree of GSTA shows a clear downward trend. It is be-
cause as th increases, the number of qualified edge devices
for each task decreases. Due to that GSTA always selects
edge devices locally for each task, it is most affected by th.
For example, in Figure 7(a), the privacy compatibility
degrees of KMTA and RNDM are kept at about 45 and 18,
respectively, in all cases. However, GSTA’s privacy com-
patibility degree is reduced from 44.89 to 17.56. Whenm/n
increases from 3 to 5, and we compare Figure 7(b) with
Figure 7(a), the privacy compatibility degrees of all the
approaches show different degrees of improvement, but
the privacy compatibility degree of GSTA still decreases
with the increases of th. For example, in Figure 7(b), the
privacy compatibility degrees of KMTA and RNDM
maintains at about 47 and 19, respectively, in all cases.
However, GSTA’s privacy compatibility degree is reduced
from 46.91 to 23.43.

Table 3: Experimental setting.

m n th
Set #1 30, 60, . . ., 300 10, 20, . . ., 100 0.1Set #2 50, 100, . . ., 500
Set #3 150 50 0.1, 0.2, 0.3, 0.4, 0.5Set #4 250
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5.3. Efficiency Evaluation. Figure 8 shows the times taken by
KMTA, GSTA, and RNDM to find a solution. Since the
solving time of the PITAE problem is mainly affected by n
andm, we only compare the average execution time of all the
approaches in experiment sets #1-2. In general, because
KMTA is an optimal approach to solve the PITAE problem,
it takes more execution time than GSTA and RNDM. Es-
pecially, when m and n are relatively large, this trend be-
comes more obvious.

As shown in Figure 8(a), when m is relatively small, e.g.,
m< 120, all the approaches consume basically the same time

and increase slowly. However, when m≥ 120, KMTA con-
sumesmore time than GSTA and RNDM, and the consumed
time by KMTA increases rapidly. For example, whenm rises
from 120 to 300, the execution time of KMTA increases from
10.91ms to 320.77ms, while the execution time of GSTA and
RNDM is less than KMTA and remains below 15ms. &e
results observed from Figure 8(b) show the influence of
increasing m/n on time consumption. If we compare
Figure 8(b) with Figure 8(a), we notice that the consumed
time of all the approaches increases to different degrees. In
addition, similar to Figure 8(a), in Figure 8(b), when m is
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Figure 7: Effectiveness vs. number of edge devices. (a) Set #3. (b) Set #4.
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Figure 6: Effectiveness vs. number of edge devices. (a) Set #1. (b) Set #2.

Table 4: Resource requirements and available resources settings.

CPU (GHz) Memory (GB) Storage (TB) Bandwidth (Mbps)
Resources requirements [1, 2] [2, 8] [0.2, 1] [10, 20]
Available resources [1, 3] [2, 16] [0.5, 2] [10, 30]
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relatively small, all the approaches consume basically the
same time and increase slowly, while when m≥ 200, KMTA
consumes more time than GSTA and RNDM, and the
consumed time by KMTA increases rapidly. For example, in
Figure 8(b), whenm rises from 200 to 500, the time taken by
KMTA increases from 29.29ms to 840.79ms, while GSTA
and RNDM take less time than KMTA and keep the con-
sumed time below 40ms.

5.4.Discussion. From the above experimental results, we can
make the following conclusions.

(1) In terms of effectiveness, KMTA and GSTA have
significant advantages over RNDM. In addition, in
all cases, KMTA can find a solution with a higher
privacy compatibility degree than GSTA, especially
in cases with stricter privacy constraints; e.g., th is
relatively large, and the advantages of KMTA are
more obvious.

(2) In terms of performance, the execution time of GSTA
and RNDM is basically the same in all cases. In the
case wherem and n are relatively small, the execution
time of KMTA is basically the same as that of GSTA
and RNDM. However, in the case where m and n are
relatively large, the execution time of KMTA is much
longer than that of GSTA and RNDM.

(3) Although expanding m/n can improve the privacy
compatibility degrees of all the approaches, it also
brings more time consumption.

(4) In cases where m and n are relatively small or th is
relatively large, KMTA outperforms GSTA and
RNDM significantly. However, when m and n are
relatively large, the overall performance of GSTA is
better than that of KMTA and RNDM. In short,
KMTA and GSTA can beat RNDM in different cases.
&erefore, we can choose KMTA or GSTA to assign
tasks according to different m, n, and th scenarios.

6. Related Work

With the emergence of a large number of edge devices
with sensing, actuation, and computing capabilities in the
urban environment, it has become more complicated to
assign IoT tasks to edge devices for execution [8, 12].
Many research efforts have been focusing on task as-
signment based on vertical offloading technology and
horizontal offloading technology. &e former relies on a
centralized coordinator to place simple task processing
on local edge devices, while offloading complex data
analysis tasks to fog/cloud nodes. &e latter offloads tasks
to multiple edge devices that are as close as possible to the
data source, and these devices execute tasks in a dis-
tributed manner.

To serve IoT applications at the edge, Farhadi et al. [22]
proposed a joint optimization method for service placement
and request scheduling, and developed polynomial time
algorithms to solve the placement and scheduling problems.
Aiming at the task allocation problem in collaborative edge
and cloud environment, Long et al. [21] proposed a non-
cooperative game model between multiple agents and solved
the task allocation problem with QoS constraints through a
series of algorithms. Considering the latency and bandwidth
requirements of IoT applications, Antonio et al. [20] pro-
posed a QoS-aware application deployment method in fog
computing. &e proposed method models the deployment
requirements of IoT applications, describes the available
resources and quality of fog nodes, and develops optimi-
zation algorithms for the application deployment problem.
Cheng et al. [37] proposed a task assignment method in a
data sharing mobile edge computing system and designed
three algorithms to deal with the holistic and divisible task
assignment problem.

&e above work uses vertical offloading technology to
assign tasks for IoT applications. Recently, some new work
has also emerged in the aspect of horizontal task offloading.
&e work in [1] clusters heterogeneous edge devices to
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Figure 8: Average time consumption vs. number of edge devices. (a) Set #1. (b) Set #2.
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process data-intensive IoT applications. &e proposed
method first decomposes an IoT application into a set of
simple tasks, then automatically discovers qualified edge
devices, and finally assigns tasks to appropriate edge devices.
Similarly, Avasalcai et al. [2] proposed a decentralized re-
source management framework for deploying delay-sensi-
tive IoT applications at the edge of the network and found
deployment solutions that meet the requirements through
satisfiability modulo theory (SMT) technology.

&e above work mainly focuses on the task allocation
problem of resource and QoS constraints, and rarely con-
siders user privacy requirements. With the widespread
adoption of IoT applications, users are increasingly con-
cerned about the privacy of their personal data. Some re-
search contributions focus on the privacy-aware task
assignment for IoT applications.

Aiming at the privacy protection problem in socially
aware edge computing, Zhang et al. [23] proposed a pri-
vacy-aware task allocation method. &e proposed method
uses generalization techniques to reduce the accuracy of
private data and develops a game theory model to optimize
the QoS of the application while ensuring that the user’s
privacy requirements are satisfied. To protect user privacy
in IoT data, Mian et al. [24] proposed a privacy-aware task
offloading method in fog computing. &e method first
divides the IoT tasks into different small fragments
according to the security requirements of the data, then
these task fragments are offloaded to multiple fog nodes
that meet security requirements, and finally a dynamic
programming algorithm is used to obtain the task off-
loading solution that meets the security and delay re-
quirements. Considering the privacy leakage of sensing
data in mobile crowd sensing systems, Dai et al. [25]
proposed a privacy preservation task assignment scheme
and designed a user location privacy protection algorithm
based on the differential privacy method. To avoid the
privacy disclosure of the datasets due to data acquisition by
different operators, Xu et al. [26] took the privacy conflict
of different datasets as the optimization goal, formulated
the application deployment problem in cyber-physical
cloud systems as a multi-objective optimization problem,
and used an improved differential evolution technology to
solve it.

Although the above work has advantages, the privacy-
aware task assignment for IoT applications is still an open
issue. &e above work employs various privacy technolo-
gies to control access to private data, but does not consider
how the data will be used after being accessed, such as the
purpose of data use, the retention time of the data, and the
operations executed on the data. Our approach can fully
support these requirements and can also measure the
compatibility degree between privacy requirements and
privacy policies.

Group Role Assignment (GRA) [29, 30, 36, 38, 39] has
been proposed for modeling general assignment problems
by solving different engineering problems. &e solution to
the GRA provides inspiration to this research. &e creation
of a qualification matrix of GRA is a prerequisite way to
model various assignment problems in edge computing.

7. Conclusion

&e edge computing paradigm has a great potential to
support a wide variety of IoT applications. In this paper, we
propose a privacy-aware task assignment approach for IoT
applications, which assigns tasks to edge devices close to the
data source in a distributed manner, thereby reducing la-
tency and effectively protecting user privacy. Firstly, we
model the resource and privacy requirements of the tasks
and assess whether the edge devices satisfy the resource and
privacy constraints. Secondly, we formalize the PITAE
problem as an integer programming optimization problem
and propose two task assignment solutions to solve the
PITAE problem. Finally, we compare the proposed ap-
proaches with the baseline approach. Experimental results
show that (1) when m and n are relatively small or th is
relatively large, KMTA outperforms GSTA and RNDM
significantly; and (2) when m and n are relatively large, the
overall performance of GSTA is better than that of KMTA
and RNDM. In short, KMTA and GSTA can beat RNDM in
different cases.

For future work, we intend to extend our work with
QoS constraints, such as response time (communication
latency between edge devices and processing latency on
edge devices) and energy consumption (transmission en-
ergy between edge devices and processing energy on edge
devices), in order to provide a more effective task as-
signment solution that can meet diverse requirements. In
addition, considering the privacy protection requirements
of edge devices for various resource information and
willingness to undertake tasks, we also plan to integrate
these requirements into our current privacy model, so as to
achieve privacy protection for users and edge devices at the
same time.

Another direction is to specify and solve problems re-
lated to privacy protection in edge computing along with the
development of GRA with constraint (GRA+) model
[36, 38, 39], which provides different ways in modeling
various constraints, such as time, space, and coupling be-
tween agents (resources) and roles (tasks).
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