Hindawi

Security and Communication Networks
Volume 2022, Article ID 1443978, 17 pages
https://doi.org/10.1155/2022/1443978

Research Article

WILEY | Q@) Hindawi

IoT-DeepSense: Behavioral Security Detection of IoT Devices
Based on Firmware Virtualization and Deep Learning

Jin Wang ! Chang Liu ! Jiangpei Xu ,' Juan Wang)2 Shirong Hao ,“Wenzhe Yi(®,

and Jing Zhong (»*

Electric Power Research Institute of State Grid Hubei Electric Power Company, Wuhan 430072, Hubei, China
2School of Cyber Science and Engineering, Wuhan University, Wuhan, Hubei, China

Correspondence should be addressed to Juan Wang; jwang@whu.edu.cn

Received 15 October 2021; Revised 30 January 2022; Accepted 4 February 2022; Published 18 March 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Jin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, IoT devices have become the targets of large-scale cyberattacks, and their security issues have been increasingly serious.
However, due to the limited memory and battery power of IoT devices, it is hardly possible to install traditional security software, such
as antivirus software for security defense. Meanwhile, network-based traffic detection is difficult to obtain the internal behavior states
and conduct in-depth security analysis because more and more IoT devices use encrypted traffic. Therefore, how to obtain complex
security behaviors and states inside IoT devices and perform security detection and defense is an issue that needs to be solved
urgently. Aiming at this issue, we propose IoT-DeepSense, a behavioral security detection system of IoT devices based on firmware
virtualization and deep learning. IoT-DeepSense constructs the real operating environment of the IoT device system to capture the
fine-grained system behaviors and then leverages an LSTM-based IoT system behavior abnormality detection approach to effectively
extract the hidden features of the system’s behavior sequence and enforce the security detection of the abnormal behavior of the IoT
devices. The design and implementation of IoT-DeepSense are carried out on an independent Internet of things behavior detection
server, without modifying the limited resources of IoT devices, and have strong scalability. The evaluation results show that IoT-
DeepSense achieves a high behavioral detection rate of 92%, with negligible impact on the performance of IoT devices.

1. Introduction

In recent years, the Internet of things (IoT) has developed
rapidly and has been continuously expanded and applied in
the fields of smart homes, smart cities, industrial systems,
and smart medical products [1]. Statistics show that the
number of IoT devices will reach about 50 billion [2] by 2020.
These interconnected IoT devices also bring a lot of smart
applications, services, and data, resulting in more emerging
data-centric businesses [3].

With the rapid growth of the Internet of things appli-
cations and devices, attacks against the Internet of Things are
becoming more and more serious. For example, remote
attackers attack and damage patients’ implantable medical
devices [4], which may not only cause huge economic losses
to individuals but also endanger the safety of patients. Also,
with the widespread use of IoT devices in other key areas,

attackers may jeopardize public network security. For ex-
ample, in 2016, a distributed denial-of-service (DDoS) [5]
attack against domain name system provider Dyn Company
resulted in the inaccessibility of multiple websites such as
GitHub and Twitter. This attack is performed through a
botnet composed of a large number of IoT devices, including
IP cameras, gateways, and even baby monitors. Further-
more, in April 2021, the Mozi botnet that targets IoT devices
had controlled approximately 438,000 nodes for DDoS at-
tacks, data exfiltration, and remote command execution.
Each compromised node in the botnet is instructed to find a
new victim IoT device for infection [6]. Therefore, it is
foreseeable that the botnets will continue to expand rapidly
and cause more serious damage.

However, most enterprises and users lack privacy and
security awareness, and only focus on the realization of the
core functions of the product, while ignoring potential

mailto:jwang@whu.edu.cn
https://orcid.org/0000-0003-0507-225X
https://orcid.org/0000-0002-5058-322X
https://orcid.org/0000-0002-0818-7186
https://orcid.org/0000-0001-8813-7842
https://orcid.org/0000-0002-2593-2029
https://orcid.org/0000-0003-1096-2505
https://orcid.org/0000-0002-6342-974X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1443978

security issues. Unless the user initiates a firmware update,
IoT device vendors usually do not update and patch their
device security vulnerabilities. At the same time, due to
limited power consumption and resources, IoT devices are
usually unable to install and run traditional security soft-
ware, such as antivirus software and IDS, resulting in vul-
nerabilities in IoT devices (e.g., default passwords and
unpatched errors) that cannot be eliminated in a long time
[7]. Therefore, under the situation where the number of IoT
devices is increasing rapidly and security problems are
constantly emerging, it is of great significance how to
conduct security detection on the behavior of the IoT devices
to realize the IoT security defense.

At present, the research on the behavior security of IoT
devices mainly focuses on behavior detection schemes based
on network traffic. Network traffic-based detection can only
detect the security issues of IoT devices from the network
layer. It is difficult to obtain the internal behavior status of
the system and conduct an in-depth security analysis. Be-
sides, more and more IoT devices currently use encrypted
traffic, which also makes traffic-based security detection
more difficult.

The firmware virtualization technology simulates the
operating environment of the embedded system based on
the firmware image, realizes large-scale and automated
dynamic analysis of the embedded firmware binary file, and
then mines firmware vulnerabilities to implement the em-
bedded firmware security analysis. The firmware virtuali-
zation technology can simulate the real operating
environment of the firmware, which helps to obtain the
operating data and security status of the internal system
layer of the device and thus realize the behavior detection
and defense at the system level of the IoT device. Therefore,
we propose a method to perform system behavior detection
on IoT devices using firmware virtualization and combining
it with deep learning. Given the difficulty in obtaining
complex security behaviors and states inside IoT devices, the
system operating environment of IoT devices is simulated
based on firmware virtualization technology and then the
complex security behaviors and states inside IoT devices are
collected. Aiming at the problem that the internal behavior
information structure of IoT devices is complex and difficult
to detect, a deep learning-based IoT behavior security de-
tection scheme is proposed. In response to the demand for
risk mitigation of abnormal behaviors of the Internet of
things, the attack stage and security risks are analyzed and
determined, and the risk mitigation policies are presented.

In particular, our main contributions can be summarized
as follows:

(i) We propose a fine-grained dynamic system be-
havior capture mechanism to collect the complex
security behaviors and states inside the IoT devices
in real time.

(ii) We propose an LSTM-based IoT system behavior
abnormality detection model. The abnormal be-
havior detection model can effectively extract the
hidden features of the system’s behavior sequence
and well express the internal dependencies, to

Security and Communication Networks

successfully implement the security detection of the
abnormal behavior of the IoT devices.

(iii) We design and implement IoT-DeepSense, an IoT
device behavior security detection system that
combines firmware virtualization and deep learn-
ing. The evaluation results show that the system can
achieve a high behavioral detection rate of 92%, with
negligible impact on the performance of IoT devices.

The rest of the study is organized as follows. Section 2
introduces the background, and Section 3 describes our
system overview and the design details. The implementation
and evaluation of our system are described in Section 4. We
present related work in Section 5. Finally, we discuss lim-
itations and future work in Section 6 and conclude this study
in Section 7.

2. Background

In this section, we describe the background of firmware
virtualization and recurrent neural networks.

2.1. Firmware Virtualization. Recently, IoT device risk
vulnerabilities are increasing day by day, often with very
serious security consequences. However, due to the limited
resources of IoT devices, it is a problem to install security
monitoring software on IoT devices to obtain the security
states of IoT physical devices and defend them. Network
function virtualization (NFV) can detect and defend the
security states of [oT devices by constructing virtual security
functions. However, network security functions such as
virtual IDS and virtual firewall only obtain limited and
simple device security status by analyzing network traffic.
The firmware virtualization technology can build the op-
erating environment of the IoT device system based on the
IoT firmware virtualization, to obtain the complex and
comprehensive internal behaviors and states of the IoT
device.

Since most IoT devices are not X86/X64 architectures,
they cannot be emulated using VMware-like software like
standard desktop or server operating systems. However,
mainstream virtualization software (e.g., QEMU) can al-
ready support firmware virtualization of IoT devices with
MIPS or ARM architecture, so that IoT device firmware
(including operating systems and applications) can run in a
virtualized environment.

QEMU [8] is a fast processor emulator based on dynamic
binary conversion. Unlike traditional simulators that in-
terpret the target program by instruction, QEMU converts
multiple basic blocks at once. More importantly, QEMU
caches the converted blocks and uses block linking to link
them together. This keeps the executive program in the code
cache most of the time, thereby minimizing the overhead of
conversion.

For firmware emulation, in addition to instruction
conversion, address space conversion is also very important.
QEMU has two execution modes: system mode and user
mode. The implementation of address space conversion is
different in different execution modes. In system mode,

Security and Communication Networks

QEMU uses a software memory management unit (MMU)
to handle memory access. The software MMU maps the
client’s memory address (GVA) to the host memory address
(HVA). This mapping process is transparent to the guest
operating system, so the guest operating system can set the
GVA to client physical address (GPA) mapping and handle
page faults through the page table interface. QEMU adds
GVA-to-GPA conversion logic for each memory access. To
speed up the conversion, QEMU uses an address translation
cache (TLB) to cache the conversion result. Moreover, to
avoid invalid code cache and block linking whenever the
address translation changes, all converted blocks are indexed
using GPA, and block linking is only performed when two
basic blocks are within the same physical page. The mapping
from GPA to HVA is done using linear mapping
(HVA = GPA + offset). Contrary to system model simula-
tion, in user mode simulation, the host virtual address
(HVA) is equal to the client virtual address (GVA) plus a
constant offset. Therefore, the conversion in user mode
simulation is much faster than the conversion in system
mode simulation.

There are already several frameworks that support the
use of QEMU to implement an IoT virtualized environment.
Avatar achieves this goal by building a hybrid execution
environment that includes a processor emulator (QEMU)
and actual hardware. Avatar uses an emulator to execute and
analyze instructions while passing I/O operations to physical
hardware, but Avatar must obtain the physical hardware of
the device under test and must manually identify and in-
teract with the debug port on the device interface, reducing
the practicability of this architecture. FIRMADYNE added
hardware support for IoT firmware in the system mode
QEMU. FIRMADYNE supports the popular ARM and
MIPS architectures among IoT manufacturers. To obtain
hardware support, FIRMADYNE implements a complete
simulation system by modifying the kernel and drivers to
handle the abnormality of the Internet of things due to a lack
of actual hardware. Due to FIRMADYNE’s full-system
emulation, this study chooses to use FIRMADYNE to vir-
tualize IoT devices with firmware to obtain the real operating
environment of IoT devices.

2.2. RNN. Artificial neural network (ANN) [9] was inspired
by the biological learning system and loosely modeled its
basic functions. The biological learning system is a complex
network of interconnected neurons [10]. The most common
type of standard neural network is a feedforward neural
network. Here, the collection of neurons is organized hi-
erarchically: an input layer, an output layer, and at least one
intermediate hidden layer. Feedforward neural networks are
limited to static classification tasks. Therefore, they are
limited to providing a static mapping between input and
output.

To model the time prediction task, we need a dynamic
classifier. We need to extend the feedforward neural network
to dynamic classification. To obtain this property, we need
teedback on the signal of the previous time steps back to the
network. These networks with recursive connections for

processing sequence data are called recurrent neural net-
works (RNNs) [11]. The typical structure of RNN includes
three layers, namely the input layer, the output layer, and the
hidden layer. Because the gradient disappears or the gradient
explodes, the RNN is limited to learning about ten-time
steps. When we deal with short-term dependencies, recur-
rent neural networks can work well.

Long short-term memory recurrent neural network
(LSTM-RNN) [12] solves the problem of gradient disap-
pearance and gradient explosion during long sequence
training. The LSTM network is biologically reasonable to a
certain extent and can learn more than 1,000-time steps,
depending on the complexity of the network being con-
structed. In short, LSTM can perform better than ordinary
RNN in longer sequences. LSTM has achieved considerable
success and has been widely used in many problems, such as
natural language processing and speech recognition.

The basic LSTM neural network is composed of an input
layer, a hidden LSTM layer, and an output layer. However,
this architecture can be extended to deeper LSTMs, where
multiple hidden LSTM layers are stacked on top of each
other [13]. This is done by taking the output of each LSTM
cell and using them as the input of the cell at the corre-
sponding location in the next LSTM layer.

The LSTM [14] network uses a memory unit to replace
the basic unit in the hidden layer of the RNN. There are three
gates in the memory unit of the LSTM network, including
the input gate, the output gate, and the forget gate. Since IoT
device behavior information is collected and recorded in
chronological order and has temporal characteristics, LSTM
can be applied to IoT device behavior analysis scenarios.

3. System Design

3.1. System Overview. Due to the limited computing and
storage resources of IoT devices, it is difficult to install
monitoring software on real IoT devices to obtain the in-
ternal behavior state of the device, thereby performing se-
curity state detection and defense. To solve this problem, we
have proposed IoT-DeepSense, a behavioral security de-
tection architecture and system for IoT devices based on
firmware virtualization and deep learning. Using the firm-
ware virtualization technology, we simulate the real oper-
ating environment for each real Internet of things device and
then collect the complex security behaviors inside the In-
ternet of Things devices and generate device behavior logs.
Through abnormal detection and analysis of the device
behavior logs, we can realize the behavioral security de-
tection and defense of Internet of Things devices.

The overall architecture of IoT-DeepSense is shown in
Figure 1. The architecture includes a device behavior col-
lection module, an abnormal behavior detection module,
and an abnormal behavior analysis and risk mitigation
module. The device behavior collection module simulates
the real operating environment of the IoT device based on
the firmware virtualization technology, then collects the
fine-grained complex security behaviors inside the IoT de-
vice, and generates device behavior logs. The abnormal
behavior detection module performs abnormal behavior

Security and Communication Networks

Device Behavior Collection

Abnormal Behavior Detection

Logs
Virtualization Behavior Preprocessin
Device Collection P 8
Device Firmware
Virtual Security | 0 (e Log Parsing
Function l

Behavior Analysis and Risk Mitigation

Abnormal Model Training

Behavior

Risk Mitigation [+,

Behavior
Analysis

!

Abnormal Detection

FIGURE 1: System architecture of IoT-DeepSense.

detection on the device behavior log based on deep learning
technology and sends the detected abnormal behavior to the
behavior analysis and risk mitigation module. The behavior
analysis and risk mitigation module analyze the abnormal
behavior and propose risk mitigation policies.

3.1.1. Device Behavior Collection Module. This module
contains two sub-modules, the virtualization device module
and the behavior collection module. (1) Virtualization device
module: the virtualization device module uses HTTP or FTP
to download the firmware image of the IoT device from the
IoT device supplier support website and then uses the
firmware virtualization technology to generate the IoT
virtual device based on the firmware image, thereby simu-
lating the real operating environment of IoT devices. (2)
Behavior collection module: the behavior collection module
obtains the complex security behavior and states inside the
IoT virtual device in real time through the device log be-
havior collection script, including a timestamp, process
number, process name, system call name, and system call
input value and return value (if any), environment variables,
and other information. Then, the module records the system
behavior in the device behavior log file and sends the device
behavior log to the abnormal behavior detection module.

3.1.2. Abnormal Behavior Detection Module. This module
performs abnormal behavior detection on device behavior
logs based on deep learning. This module includes pre-
processing module, log parsing module, model training
module, and abnormal detection module. (1) Preprocessing
module: the preprocessing module is responsible for data
cleaning and the deduplication operations of device be-
havior logs. (2) Log parsing module: the log parsing module
is responsible for converting unstructured device behavior
logs into structured device behavior logs, then further
extracting meaningful information, and finally generating
system behavior event sequences. (3) Model training
module: the model training models the system behavior
event sequence based on the long- and short-term memory
(LSTM) model. (4) Abnormal detection module: for the

newly collected unknown system behavior, it will be con-
verted into a sequence of system behavior events through a
preprocessing and log parsing module and then predicted
using a deep learning model.

3.1.3. Behavior Analysis and Risk Mitigation Module. The
module analyzes abnormal behavior to obtain fine-grained
abnormal behavior information, such as abnormal file op-
erations and abnormal executable files. The risk mitigation
module implements risk mitigation policies including device
isolation, traffic filtering, and user notification, which ef-
fectively mitigate the security risks brought by abnormal
behaviors.

3.2. Dynamic Behavior Collection. Based on firmware vir-
tualization, we have designed a scheme for capturing the
dynamic behavior of IoT devices as shown in Figure 2. The
purpose of the solution is to collect the system behavior
generated during the operation of the IoT system, and hence,
we virtualize an IoT virtual device for each IoT real device
and simulate the real operating environment of the IoT
device, and then, we track and record the security behavior
and states generated in the simulated IoT operating envi-
ronment. The collected behavior log file contains the system
behavior in chronological order: each line includes a
timestamp, process number, process name, system call
name, system call input value and return value (if any), and
other information such as environment variables. The
chronologically recorded system behavior information al-
lows us to construct various feature vectors to characterize
the behavior of IoT devices with different accuracy.

3.2.1. Virtualization Device Based on Firmware. The system
virtualizes an IoT virtual device for each IoT real device and
then simulates the real operating environment of the IoT
device. We collect complex system behaviors and states
inside IoT devices in the real operating environment of the
Internet of things and generate system behavior logs from
the system behaviors and states. The virtualization device is

Security and Communication Networks

. Binwalk i i Mips
Fitmware File Arch}t'ectl}re p Simulation
System Identification Arm
A
Behavi .
cravior Virtual Device Virtual Device Behavior
Collection | Logs
Scripts n 8
A QEMU 4
v
Tap
Host O TCP/IP Stack
I L , NIC
Bridge

FIGURE 2: Dynamic behavior capture of IoT devices.

based on FIRMADYNE. FIRMADYNE is an automated
dynamic analysis system for Linux-based IoT firmware. In
QEMU system mode, hardware support for [oT firmware is
added to implement full-system simulation to provide
support for popular ARM and MIPS architectures in IoT
device firmware. The process of virtualized equipment is
mainly divided into four steps.

(1) Download the firmware image. A Web crawler is
used to download the firmware image of the target
device from the IoT provider website. For dynamic
websites that are difficult to automatically crawl, the
vendor’s FTP website is used. For the collected files,
we use Binwalk to check the format of non-firmware
files for file filtering. Binwalk is a well-known
firmware decompression tool that can extract vari-
ous data from binary through pattern matching.

(2) Extract the file system. A custom file extraction
program is built based on the API of the firmware
extraction tool Binwalk, which is used to extract the
kernel and root file system. Then, the extracted file
system and kernel are compressed into TAR pack-
ages and stored for standardization and normali-
zation operations.

(3) Device architecture identification. After extracting
the root file system from the firmware image, the
system recognizes the architecture and endianness of
the target device. Currently, firmware virtualization
supports emulating ARM little-endian platforms,
MIPS big-endian platforms, and little-endian plat-
forms. For each firmware image, the QEMU system
emulator uses the modified kernel that matches its
corresponding architecture to guide the file system
extracted in the second step.

(4) Simulation. In the simulation phase, the modified
kernel tracks and records system calls to the file
system, network, and other related kernel subsys-
tems to infer the device system and network

configuration. After collecting the information, this
information is fed back to our simulation framework
to develop a more accurate QEMU configuration for
the system. Finally, the system configures the
matching network environment to communicate
with the simulation firmware.

When configuring the IoT virtual device network, the
network TAP device on the host is first instantiated, which is
associated with one of the analog network interfaces (such as
eth0) in the firmware. For firmware mirroring that uses
VLANS, we assign the corresponding VLAN ID to the TAP
interface to successfully communicate with the simulated
network service. Next, the TAP interface is configured with
an IP address that is on the same subnet as the IP address
assigned by the firmware to the emulated interface.

This network configuration limits the network functions
of ToT virtual devices and prevents them from accessing
external networks. Although it can successfully implement
automatic dynamic analysis and vulnerability detection of
embedded firmware, it cannot make the IoT virtual device
perform monitoring tasks. To solve this problem, we add
bridges and routes to the IoT virtual device network con-
figuration, so that the IoT virtual device can access
the external network. First, a virtual bridge is instantiated on
the host. An interface of the virtual bridge is connected to
the host’s network card (ens33). The host network card serves
as one end of the bridge and connects to the external network.
The other interface of the bridge is connected to the TAP
device. The TAP device serves as the interface at the other end
of the bridge and connects to the network interface of the
virtual device of the Internet of things, thereby realizing the
connection of the two networks at both ends of the bridge. The
IP address of the IoT virtual device is modified to correspond
to the IP of the real IoT device, and a default route is added.

3.2.2. System Behavior Collection. Virtual IoT devices based
on firmware virtualization simulation are all based on Linux.

The system call is an interface provided by the Linux kernel.
In IoT devices, the function of system calls mainly includes
network communication, creation of new processes, I/O
operations, and file operations. Malicious IoT devices and
trusted IoT devices have different system behaviors, such as
malicious devices requesting more permission to frequently
access sensitive resources or frequent I/O operations,
resulting in different system call frequencies. In addition,
because the system behavior of an IoT device usually in-
volves multiple system calls in sequence, a single system call
cannot be considered independent. The system call sequence
reveals the dynamic behavior of the application, and dif-
ferent system call sequences reflect different behaviors.
Therefore, the process information and the frequency, se-
quence, and parameters of system calls during the operation
of the IoT virtual device can all characterize its dynamic
behavior. The following introduces the four types of dy-
namic characteristics of process information and system call
frequency, sequence, and parameters in detail.

(1) Process Information. When the Internet of things device
is running, the process information inside the system will
reflect the system-related behavior information. For ex-
ample, when the IoT device becomes the Bot host controlled
by the Mirai botnet, the IoT device will have an additional
malicious process during its operation (e.g., mirai.mips,
where mips indicates that the IoT device is based on a MIPS
architecture). The process communicates with the C&C
server and operates according to malicious commands
issued by the server. Therefore, whether the IoT device is
attacked by malware can be detected through the process
information. This shows that process information can be
used as an important feature of behavior detection.

(2) System Call Frequency. The system call frequency rep-
resents the number of occurrences of each type of system call
when the Internet of things device runs within a specific
time. The frequency of system calls that occur during the
execution of the Internet of things system carries infor-
mation about related behaviors. When an IoT device is
maliciously attacked, the device may use some specific
system calls more frequently than normal. For example,
under DDoS attacks, system calls related to I/O operations
made by IoT devices may be much more frequent than
normal. This indicates that the increased frequency of system
calls may be a sign of malicious behavior.

(3) System Call Sequence. The system call sequence describes
the local time relationship between system calls within a
limited time range. System calls are fine-grained operating
system information. The system call sequence reflects the
execution path of the Internet of things device during op-
eration. Different system call sequences reflect different
behaviors. Because the functions of IoT devices are relatively
fixed and single, the system call sequence has a certain
regularity. For example, Table 1 shows the system call se-
quence information generated by the execution flow of
motion [15]. Motion is a highly configurable program for
monitoring video signals from multiple types of cameras.

Security and Communication Networks

The main loop consists of a series of blocks. Each cycle
begins with the camera capturing image frames. When
motion is detected, the current motion frame is saved to the
file system. Then, the application also independently saves
snapshots at regular intervals (e.g., every 5 seconds). The two
modules, save motion frame and save snapshot, use the same
program flow to save the image to a file, thereby generating
the same system call sequence as shown in the table.
After that, some predefined functions (e.g., waiting for
the camera client to connect) may trigger external programs.
This main loop repeats at the specified frame rate (e.g., 3
frames per second). Depending on the function, some blocks
may not be executed in every cycle. When the system is
maliciously attacked, it will destroy the original regular
system call sequence. Therefore, the system call sequence can
be used to extract features for malicious behavior detection.

(4) System Call Parameters. Some abnormal behaviors of IoT
devices are not directly reflected in the execution path of the
device, but in the form of abnormal parameters. For ex-
ample, the attacker forged a small piece of code to make the
system call sequence the same as the normal system call
sequence [16], but by modifying the file path parameters,
the device information was leaked. As shown in Table 2,
the current motion frame is leaked to the desired location in
the file system, while the generated system call sequence still
looks legitimate. We only modify the location of the saved
file (FilePath =“/path/to/Ideal location for attackers”),
which makes the motion frame data leaked. Since the code
blocks we added to use the same program routines as the
“Save Motion Frame” and “Save Snapshot” code blocks, the
system call sequence patterns generated by these three code
blocks are the same. At the same time, the cross-block
conversion does not generate a new pattern. If only one legal
block is executed (save motion frames), the resulting se-
quence is still legal, because the inserted block (leaked
motion frame) looks like another unexecuted block (save
snapshot). The only way the system call sequence can detect
such malicious execution is to learn the time relationship
between two legal blocks through a pattern long enough.
However, since the image size may vary greatly, this de-
tection method is highly unlikely. Therefore, we need to
obtain the specific location of the read-write file and the file
name and other information from the system call param-
eters, to accurately detect abnormal behavior of the Internet
of things.

Besides the above four types of dynamic characteristics
including process information and system call frequency,
sequence, and parameters, other hidden behavior features of
IoT systems need to be mined to achieve more accurate IoT
behavior security detection. The method for obtaining fine-
grained system behavior information executed by the IoT
virtual device in firmware is as follows.

When IoT virtual devices use QEMU for software
simulation, to realize full software simulation, a custom pre-
built kernel for ARM and MIPS architecture is used to
replace the kernel extracted from the firmware image.
During the custom pre-built kernel compilation process, an
analysis module was added to the custom Linux kernel

Security and Communication Networks

TaBLE 1: System call sequence.

Time Function System call sequence
T1 Get time gettimeofday—gettimeofday
T2 Get frame (ioctl)—rt sigprocmask—ioctl-ioctl-rt sigprocmask
T3 Get sport frame open—fstaté4—mmap2—write— . .. —write—close—-munmap—clone—write
T4 Save snapshot open—fstat64—mmap2—write— ... —write—close-munmap—clone—write unlink—symlink
T5 Wait for connection Select (accept—ioctl-write)—(write-munmap—close)—(mmap2—gettimeofday)
T6 Frame rate control gettimeofday—(nanosleep)
TaBLE 2: Image leakage under the same system call sequence.
Time Function System call sequence
T1 Save sport frame open—fstaté4—mmap2-write— ... —write—close-munmap—clone—write
T2 Leak sport frame open—fstaté4—mmap2—write— ... —write—close-munmap—clone—write
T3 Save snapshot open—fstat64—mmap2-write— ... —write—close-munmap—clone—write

module, which uses the kernel dynamic probe (kprobes)
framework to track multiple system calls, thereby helping to
debug and simulate the original IoT system environment.
Operations such as assigning MAC addresses, creating
bridges, restarting the system, and executing programs are
all monitored by the firmware virtualization framework to
properly configure the simulated network environment.

Since the modified kernel can intercept system calls to
the file system, network, and other related kernel subsys-
tems, we can obtain the system call information of all
processes executed in the firmware by setting the relevant
mask of the kernel system call parameters.

By setting the corresponding bits for these system calls,
each time the system is called, the system records the in-
formation about the system calls in the system behavior log.
We can set the corresponding bit in the firmadyne.syscall
parameter at startup to transfer information so that the IoT
virtual device outputs the system behavior during the system
operation and records it in the system behavior log file. The
IoT dynamic behavior capture solution saves the collected
IoT system behavior records into behavior log files, which
contain chronological system behavior. Each line entry is a
system behavior, including a timestamp, process number,
process name, system call name, system call input, return
value (if any), environment variables, and other information.
Recording system behavior information in chronological
order enables us to construct various complex features,
characterize various behaviors of IoT devices with different
precisions, and provide a basis for implementing abnormal
behavior detection.

3.3. Abnormal Behavior Detection. The fine-grained be-
havior logs of IoT devices record the system behavior of [oT
devices when they are running. Therefore, behavior logs are
one of the most valuable data sources for anomaly detection.
In addition, due to the complexity and a huge number of
behavior logs, manual detection of abnormal behavior be-
comes infeasible. The keyword matching method based on
explicit keywords (e.g., “Error”) and the regular expression
method based on structural features can only detect a single
abnormal behavior log, and it is difficult to detect most

behavior log anomalies. These anomalies can only be
inferred based on their behavior log sequence, which con-
tains multiple behavior logs that violate conventional rules.
Therefore, we need an automatic anomaly detection method
based on the system behavior log sequence.

As shown in Figure 3, we propose a deep learning-based
abnormal behavior detection scheme for real-time abnormal
detection of the behavior logs of the IoT system in this study.
The system behavior collected during the normal operation
of the Internet of things system has a certain periodicity and
stability. The solution is based on the system behavior logs
collected by the dynamic behavior capture module during
the normal operation of the IoT device, and the deep
learning method is used to learn the effective behavior
characteristics of the IoT system from a large number of fine-
grained system behaviors, thereby realizing the abnormal
behavior of the IoT real-time detection without any modi-
fication to the existing infrastructure.

The abnormal behavior detection scheme based on deep
learning mainly includes two stages, the training stage and
the detection stage. During the training phase, the system
preprocesses the IoT behavior log files to obtain the normal
system behavior execution flow. Then, through the log
parsing module, the unstructured behavior log is parsed into
a sequence of system behavior events. The system behavior
event sequence is used as the input of the abnormal behavior
detection model, which learns the complex features of the
system behavior event sequence and then constructs the
abnormal behavior detection model. In the real-time de-
tection phase, the system generates an IoT system behavior
log at that moment and then generates a new system be-
havior sequence through preprocessing. Through log anal-
ysis, the system behavior sequence is parsed into a system
behavior event sequence. Finally, the trained abnormal
behavior detection model is used to detect whether the
system behavior is normal. If it is detected as abnormal
behavior, the system behavior will be sent to the abnormal
behavior analysis module for further analysis.

3.3.1. Preprocessing and Log Parsing. To collect the data set,
we simulated the normal usage of IoT devices. Our data

Training Stage

I —
System
behavior

sequence

System behavior
event sequence

T1:log1
T2:log2
T3:log3
T4:log 4
T5:log 5
T6:log 6
T7:log 7

Logs

Logs
08 Parsing

Preprocessing

OOOO
OO
OOOG
OO

Security and Communication Networks

Detection Stage

—
System behavior System
event sequence behavior
Logs sequence
Parsing
LSTM f
Model Preprocessing
Behavior Logs
Analysis

FIGURE 3: Anomaly detection scheme based on deep learning.

collection method is as follows: firstly, the IoT device is
started and allowed to perform any initial configuration or
firmware update. Secondly, when the IoT device is in a stable
state, we interact with the device through smart applications.
We also provide some idle time for the device to commu-
nicate without user intervention. According to the activity of
the device, we captured tens of thousands of system be-
haviors from each device and recorded them in the system
behavior log file.

For the characteristics of the system behavior log col-
lected based on firmware virtualization in this study, we
preprepared it from the following aspects to improve the
efficiency of log analysis.

(1) System behavior cleaning. In the system behavior
log, many system behaviors only contain constant
strings, and there are no internal parameters. The
repeated occurrence of these system behaviors will
result in a large number of duplicate messages in the
system behavior log. Many system behavior log
messages will appear repeatedly at the same time. We
delete these types of system behaviors to reduce data
redundancy, thereby greatly improving the efficiency
of subsequent log parsing.

(2) Delete information related to firmware simulation.
During the simulation process of the IoT virtual
device, system behavior information related to the
device simulation process will appear in the behavior
log. This information can reflect the system behavior
of the device during the simulation, but it cannot
reflect the system behavior of the device during
operation. We delete the system behavior informa-
tion related to the equipment simulation process to
reduce the impact on the analysis of system opera-
tion behavior.

In general, the behavior log records the fine-grained
system behavior of the IoT device, and the current security
status information of the IoT device can be obtained by
analyzing the behavior log. System behavior log files are
unstructured text, which increases the difficulty of analyzing
system behavior. To realize automated system behavior
analysis, the system behavior log must be analyzed first, to

parse the original system behavior log data into a system
behavior event sequence. Therefore, we first structure the
unstructured system behavior log into several parts (e.g.,
date, time, and content), then extract meaningful infor-
mation from these parts, and finally generate a sequence of
system behavior events.

To achieve the goal of automated log analysis, academia
and industry have proposed many data-driven methods,
including frequent pattern mining (LogCluster [17]), iter-
ative partitioning (IPLoM [18]), layering clustering (LKE
[19]), longest common subsequence calculation (Spell [20]),
and parse tree (Drain [21]). These log analysis methods can
automatically generate common event templates based on
log data. Log parsing should make full use of the inherent
structure and characteristics of log messages to obtain good
parsing accuracy, instead of directly applying standard al-
gorithms such as clustering and frequent pattern mining
[22]. Among several parsing methods, Drain uses a fixed-
depth tree structure to represent log messages and effectively
extract event templates. This method uses the characteristics
of logs and performs well in many log parsing situations.

Due to the complex structure of the behavior log and rich
event templates, the above methods still cannot accurately
parse the behavior log, and considering the accuracy, ro-
bustness, and efficiency of several log analysis methods, we
further improved Drain to implement the system behavior
log analysis. The following describes the analysis steps in
detail.

During log parsing, an unstructured system behavior log
file containing free text log messages is used as input. The
unstructured system behavior logs we collected consist of a
constant part and a variable part. The constant section
displays the event template of the log message and remains
unchanged for each log event. The variable section shows the
parameters of the system during dynamic operation, which
may change between different events. For the characteristics
of the behavior log format, a regular expression function is
written to split the log message. We structure the behavior
log message into headers with Time, Syscall, PID, and
Content.

When the log message is parsed, a structured system
behavior log and a system behavior event template with

Security and Communication Networks

summary event counts are output. The content of structured
system behavior in the structured system behavior log file is
shown in Table 3. System behavior is structured to include
event ID, PID information, system calls, event templates,
event template-related event behavior list, and other system
behavior content. The content of the system behavior event
template file includes the event ID, the content of the event
template, and the number of occurrences of the event
template in the entire system behavior log file.

To distinguish each system behavior, we generate an
identifier EventID for each system behavior. We use UTF8 to
encode the important content of the structured system
behavior (PID name, system call, event template, and event
parameter list) and then use MD5 to encrypt the encoded
content into a string of 8-bit length, and finally, for each
encrypted character strings are mapped to one-to-one
decimal numbers as EventID of each system behavior.

The system processes the structured system behavior log
file to output the sequence of corresponding system behavior
events for each PID. As shown in Table 4, the sequence of
system behavior events executed by the process with PID 623
is 4, 5,6, 6,7,8,9, 10, 11, 12, 13, 14, and 15. Only three
system behavior event sequences are illustrated in the table,
and all system behaviors in the system behavior log are
similarly operated. Finally, the system behavior event se-
quence is processed, PID-related information is deleted, and
the system behavior event sequence is generated as shown in
Table 5. The system behavior event sequence represents a
collection of system behavior events executed by an IoT
system program, and the system uses it as an input of an
anomaly detection model.

3.3.2. Model Training. The log parsing process generates a
collection of system behaviors representing the execution of
IoT system programs. Once the system behavior log entries
are parsed into a sequence of system behavior events, the
sequence of system behavior events will reflect a specific
execution order execution path. Each data in this data set are
mapped to each system behavior one by one.

The collection S={sy, 53, $3, S, . .,5,,} is used to represent
the system behavior sequence data set, and s; represents the
system behavior at position i in the current system behavior
sequence. Obviously, s; is one of the #n possible system be-
haviors in the set S and is strongly dependent on the latest
system behavior collection that appeared before s;. There-
fore, we model anomaly detection in the system behavior
sequence as a multi-class behavior classification problem,
where each different system behavior defines a class. We
trained the anomaly detection model as a multi-class clas-
sifier in the latest context. The input is the historical record
of recent system behavior, and the output is the probability
distribution of n system behaviors in the system behavior set
S, indicating the probability that the next system behavior in
the sequence is s;€ S(i=1, 2,.. ., n).

Suppose t is the sequence ID of the next system behavior
to be displayed. The input used for classification is the
window w of the h most recent system behaviors, ie.,
W={S;_p» St—h+ 1> - - - St—2 St—1}, Where each s; in S is the system

9
TaBLE 3: Example of structured system behavior.
EventID 22
Syscall Sys socket
PID 372
PIDName snmpd
EventTemplate Family
ParameterList [“27,717,707]
TaBLE 4: PID and system behavior event sequence.
PID Event sequence
623 4,5,6,6,7,8,9,10,11,12,13,14,15
647 3,2,5,6,2,2,2,4
649 1,2,3,2,6,6,6,8,9,6,2,4,5,6,3

TaBLE 5: System behavior event sequence.
4566789101112131415
32562224
123266689624563

behavior contained in the system behavior set S. Due to the
repeatability of the system behavior, the same system be-
havior may appear several times in the window w.

The training phase relies on the system behavior gen-
erated by the normal execution of the IoT device system. For
each system behavior log sequence of length k in the training
data, the system update uses s;eS(i=1,2,..., n) as the
probability distribution of the next system behavior. For
example, suppose that a small amount of system behavior
logs generated by normal execution are parsed into a series
of system behavior events: {ss, sg, $11, $2, S26> S6> $3}. Assuming
that the window size h is 4, the input sequence and output
label pairs of the training model will be {s, sg, 511, 52 — 26}
{s8> S11> 525 S26 — Se}»> and {s11, S5, S26, S — 3}

The output of the training phase is the conditional
probability distribution P(s;=s; |<S;_pny 1+ Si— 25— 1>)
(for each system behavior, s; € S(i=1,2,. . .,n)). The detection
stage uses this model to predict and compare the predicted
system behavior with the actual system behavior.

Inspired by recent research, we found that the abnormal
behavior detection of the Internet of things in this study is
naturally applicable to the LSTM-RNN model. The system
behaviors generated by IoT devices can be organized in
chronological order. Our anomaly detection model based on
LSTM is shown in Figure 4, where the purpose and pa-
rameter settings of each layer are as follows.

(1) Input layer: after preprocessing and log analysis, the
normal system behavior will be converted into a
system behavior event sequence. We will use the
parsed normal system behavior event sequence as the
input layer data. Then, we group h consecutive
system behaviors to form a system behavior window.
Using the system behavior window, we can model
the temporal relationship of the behavior of adjacent
systems.

(2) LSTM layer: the input layer inputs system behavior
to the LSTM layer. In each step, system behavior is

10

Security and Communication Networks

! Input Layer |
| I
I 1
: Sl—h st—h+1 st—Z St—l :
] 1
e I e e !
| I
v A 4 A A
LSTM c LSTM c c LSTM c LSTM
Block Block [> ... — Block Block
h h h h
v v v v
FC FEC | FC FC
v v v v
Softmax Softmax | eeeees Softmax Softmax

FIGURE 4: Behavior detection model based on LSTM.

assigned to the LSTM unit. In a single-layer LSTM,
the output of the LSTM cell includes the cell state and
the hidden state, and the hidden state and the cell
state of the LSTM cell are transmitted to the next
LSTM cell. Taking 2-layer LSTM as an example, the
hidden state of each LSTM cell is also transferred to
the stacked lower LSTM cell as its input.

(3) FC layer: we have placed a hidden full-connection
(FC) layer between the LSTM layer and the softmax
layer, whose size is equal to the number of system
behavior categories.

(4) Softmax layer: we output the fully connected layer to
the softmax layer for standardization. The output of
the softmax layer is a probability distribution for
each system behavior, and the probability distribu-
tion indicates how likely each system behavior be-
comes the next system behavior.

The loss function in training is categorical cross-entropy.
The optimizer is Adam. In addition, the size of the epoch is
50. After training 50 epochs, the neural network converges.

3.3.3. Abnormal Behavior Detection. Our LSTM-based ab-
normal behavior detection model can learn the compre-
hensive and complex associations and patterns contained in
a series of system behaviors generated by the execution path of
the IoT virtual device system. In the process of abnormal be-
havior detection, we assume that the IoT virtual device is trusted,
the data and operating environment in the IoT virtual device are
ensured to be trusted and safe, and the system behavior collected
based on the IoT virtual device is also trusted, and the attacker
cannot carry out the attack and change the information of the
system. For example, Intel SGX [23] technology can be used to
provide data storage, data transmission, and run-time security
protection for IoT virtual devices.

In summary, our system can detect attacks that cause
abnormal behavior in the system’s behavior sequence, which
can lead to abnormal behavior in the system behavior log.
For example, a password blasting attack may perform Telnet
or SSH login operations for password verification multiple
times, which is reflected in the system behavior log. The
category system behavior will increase dramatically; for
example, malware will download malware on the Internet of
things device and gain control of IoT devices, which is re-
flected in the malware process in the device system. The
malware process will appear to delete files, change network
configuration, and other malicious operations, resulting in
abnormal system behavior sequences. For example, some
attacks will leave traces in the system behavior log. The
attack may cause the IoT system to stop working, so the
corresponding system behavior sequence ends early or
abnormal system behavior occurs.

To realize the real-time abnormality detection of the
system behavior of the IoT device, the system will collect the
system behavior regularly (in seconds). Then, preprocessing,
log analysis, and other processes are carried out, and finally,
the system behavior set at this stage is obtained. Behavior
SieS(i=1,2,. .., n) is normal or abnormal, w={s,_j,
St—h41> -+ St—2 S;_1}is sent to the LSTM-based abnormal
behavior detection model as its input, and finally the model
outputs the probability distribution of each system behavior:
P(s;=si|w) = {s1:p1, $2:P2>- - o> SpiP}-

This probability distribution describes the probability
that each system behavior from the system behavior set S
becomes the next system behavior when based on normal
IoT system behavior. In fact, S; may be multiple system
behaviors. For example, if the camera and the server are in
communication, the system behavior S; of the camera may
be “send video information to the server” or “receive con-
figuration information of the server.” In different behavioral
contexts, both are normal system behaviors.

Security and Communication Networks

The abnormal behavior detection model based on LSTM
can learn information about the behavior of multiple sys-
tems that can be the next system behavior in the model
training phase. In the detection phase, we sort them
according to the probability of the possible system behavior
Si, and if the value of system behavior is among the first p
candidate values, they are regarded as normal values.
Otherwise, the system behavior is marked as abnormal
execution, and then, the abnormal behavior is provided to
the abnormal behavior analysis and risk mitigation module
for subsequent analysis and other steps.

3.4. Behavior Analysis and Risk Mitigation. 10T attacks are
generally divided into multiple stages, and attacks at dif-
ferent stages will cause different device abnormal behavior.
When the behavior analysis module obtains the abnormal
behavior, it first obtains fine-grained abnormal behavior
content from the structured system behavior log file
according to the behavior event ID. According to the content
of abnormal behavior, different risk mitigation policies are
performed.

We propose a general risk mitigation method that is very
flexible in different situations. The key idea is that we design
a virtual security function for each real IoT device. This
virtual security function performs device monitoring tasks,
performs abnormal behavior detection, and manages the
communication between the IoT real device and the In-
ternet. This module is also responsible for generating and
enforcing restricted network access for connected devices.
Based on the analysis results of abnormal behavior, it blocks
malicious access in real time to reduce the risk of abnormal
behavior of the Internet of things. At the same time, the
virtual security function also has an isolation function,
which controls the access of IoT devices to other IoT devices
in the intranet, to prevent one device from being com-
promised and endangering other devices in the same net-
work segment. This can potentially prevent vulnerable IoT
devices from being maliciously triggered by accidental access
traffic while ensuring that the system can promptly warn
administrators of risks. We propose the following risk
mitigation policy, which aims to maintain as many IoT
device functions as possible while minimizing security risks.

3.4.1. Network Isolation. The goal of network isolation is to
prevent IoT devices with abnormal system behavior from
communicating with other devices. To this end, the virtual
security function divides the user’s network into two virtual
networks: an untrusted network and a trusted network.
When the IoT device is running, the behavior security de-
tection system will detect the behavior of the IoT device
system in real time. The required network isolation level is
determined based on the abnormal detection results. IoT
devices with normal system behavior have been placed in a
trusted network. IoT devices that have detected abnormal
behavior are placed in an untrusted network and are strictly
isolated from other devices.

According to the different risks caused by abnormal
device behavior, we have designed three different isolation

11

levels for IoT devices. (1) Strict isolation level: the IoT device
is not allowed to communicate with other IoT devices, and
the device does not have Internet access rights. (2) Limited
isolation level: this allows devices to communicate with
other devices in untrusted network coverage and a limited
set of remote targets on the Internet (e.g., cloud services
from vendors). (3) Trusted isolation level: this allows the
device to communicate with other devices in the trusted
network coverage and unrestricted Internet access. Network
isolation at the device level granularity ensures that when
threatened, any vulnerable device cannot infect other devices
in the trusted network. The virtual security function can
intercept the traffic in the network and ensure that it is
filtered according to the required isolation level.

3.4.2. Flow Filtering. 'The goal of traffic filtering is to prevent
attackers from communicating with vulnerable devices or
exposing data. Traffic filtering is performed by virtual se-
curity functions and can target specific protocols or end-
points to minimize the impact of the functions of the affected
devices.

3.4.3. User Notification. In some cases, network isolation
and traffic filtering are insufficient to provide adequate
protection. For example, if the IoT device has been attacked
by malware, the malware prevents the device from auto-
matically restarting the device to delete the malware in
memory. In this case, the effective measure to protect the
security of IoT devices is to manually restart or delete the
devices at risk. Therefore, the purpose of the user notification
is to help the user identify the problematic device, then warn
the user that there is a device that cannot overcome the
security vulnerability, and ensure that the user restarts or
deletes it.

4. Implementation and Evaluation

4.1. Implementation. We evaluate the performance of IoT-
DeepSense using the physical machine with an Intel i7-6700
CPU. The machine has 8 GB of memory, 500 G of hard disk,
and runs Ubuntu 16.04.

We build a firmware virtualization environment based
on FIRMADYNE. We have successfully conducted device
simulations and tested multiple firmware versions of
NETHEAR WNAP320, WNDAP350, WNDAP360, and
WNAP210 series devices. The behavior detection model of
IoT-DeepSense is implemented based on PyTorch.

4.2. Data Set. We simulate a normal and several attacked
IoT environment, capture the system behaviors separately,
and then use the collected system behaviors as the data set of
the following experiment. The types of attacks we simulate
mainly include IoT malware (Mirai and BrickerBot), DDoS
(TEN), and password cracking (Hydra). Mirai is a classic
DDoS attack, and BrickerBot is a permanent denial-of-
service attack. TEN is an open-source DDoS tool that can
perform various DDoS attacks, such as ICMP flooding, SYN

12 Security and Communication Networks
TABLE 6: System behaviors in our data set.

Type Normal Mirai BrickerBot Hydra TFN Total

Number of system behaviors 42600 4830 4800 2722 1756 56708

Data size 29M 350K 347K 200K 128 K 3.9M

flooding, UDP flooding, and Smurf attacks. Hydra is an
open-source tool for brute force password cracking that
provides options for attacking login names of various
protocols. Table 6 shows the type and the corresponding
number of system behaviors in our data set.

4.3. Functional Evaluation

4.3.1. Behavior Collection. To test the effectiveness of the IoT
behavior capture solution, we successfully performed device
simulation based on multiple firmware versions of NET-
GEAR WNAP320, WNDAP350, WNDAP360, and
WNAP210 series devices. According to the activity of the
device, we collect the system behavior generated by each IoT
virtual device running normally for 10 days. Then, we
conduct an IoT attack on each device and collect the ab-
normal system behavior generated by each IoT virtual device
under different types of attacks. The system behavior of each
IoT virtual device is recorded in the corresponding system
behavior log file.

Table 6 shows the system behavior information of the
IoT virtual device captured by the behavior capture scheme.
We successfully captured the system behavior of the device
in a normal scenario with a data size of 2.9 M and a number
of 42,600. In addition, we successfully captured different
abnormal system behavior in different attack scenarios. It is
found that the information contained in the fine-grained
system behavior logs is very rich. For example, in the Mirai
attack scenario, the system behavior log details that BusyBox
executes a file transfer instruction to download the malware
(mirai.mips) to the IoT device, then set file permissions on
the malware, and finally run the malware. After the malware
is successfully executed on the IoT device, the mirai.mips
process is generated, so the mirai.mips process and its
corresponding process operations appear in the system
behavior log. In the scenario of the BrickerBot attack, the
system behavior logs recorded in detail the BusyBox process
executing a series of commands to destroy the device.

It can be seen from this that our system behavior capture
scheme successfully captures the system’s fine-grained be-
havior, and these fine-grained system behaviors can reflect
the state of the system. The system behavior collected by the
system behavior capture scheme is used as the data set of the
abnormal behavior detection scheme. The data set contains
the normal system behavior of each device of about 40,000
and the abnormal system behavior of about 15,000. The
training set of the model includes all normal system behavior
(approximately 24,000), and the validation set and test set
contain normal system behavior (approximately 8,000) and
abnormal system behavior (approximately 75,00). In addi-
tion to some basic system behavior characteristics (e.g., the
number of system behaviors, number of system calls, PID,

and parameters), there are some hidden characteristics (e.g.,
the timing characteristics of system behavior) in the system
behavior data set. To learn this rich feature information, we
model the system behavior based on deep learning to per-
form abnormal detection.

4.3.2. Abnormal Behavior Detection. Abnormal behavior
detection is a binary classification problem. We label the
classification results as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). TP is the
abnormal system behavior accurately determined by the
abnormal behavior detection model. TN is accurately de-
termined normal system behavior. If the method determines
a certain system behavior as abnormal, but the system be-
havior is normal, we mark the result as FP. If this method
determines a certain system behavior as normal, but the
system behavior is abnormal, we mark the result as FN.

In addition to the number of FP and FN, the ability of the
classification method is usually evaluated by standard in-
dicators such as precision, recall, and F1 score.

Precision represents the percentage of true abnormal
behavior among all detected abnormal behaviors. The cal-
culation method is as follows:

TP

' 1
TP + FP ()

precision =
Recall represents the percentage of abnormal behavior in
the detected system behavior:
TP
= —— 2
T TP AN @)
The F1 score value is the harmonic average of precision
and recall:

2 % precision * recall
F1=

(3)

precision + recall

(1) Effect of the Value of h. We first test the window value h of
different sizes, that is, the effect of system behavior sequence
length on the classification results. We record the classifi-
cation performance of IoT behavior anomaly detection
classification models under different window sizes. The test
results are shown in Figure 5(a). When the window size is 6,
the anomaly detection classification model has a good
classification effect compared with the models with other
window sizes, with a high recall rate of 93.2%, a precision of
90.9%, and an F1 score of 92.03%. When the length of the
system behavior sequence is too short, the sequence cannot
cover all the characteristics of malicious behavior and
normal behavior. When the system behavior sequence is
very long, the deep learning network cannot store more
information.

Security and Communication Networks

13

09F - o B
0.8 + 5 . 4
L [X 1 = 9%7r i]
=) =) o 06F]
2 07} : : : : : B 2 07 ¢ 1 2 05F b
B ; ; ; ; ; g S 04} y
= 06} R R IRRE R = 06} 1 = sl i
05F- - : : : : ce 05 .
ol ol
3 4 5 6 7 8 9 8 9 10 11 12 13 14 Precision Recall F1 Score
The Value of h The Value of p
Il SVM 1 M
—a — Precision —& — Precision I Pca B LsT™M
- m— Recall -m— Recall
—e— F1 —e— F1
(a) (b) (c)
20 1000 10
900 + 9+ E
2 SN 4 . 800 | 1 8t 1
2
= E 700 - - 7L A
B12f g 600 - 1 3 6t 1
= = L | by L]
- : : : ; : 5 50 % 5
L B B B B B B i 1 - 4 3 L o
g 8 £ 400 2 4
£ : : . : : % 300 + R 3+ E
4t . 4 . . . 2 200 F . 2t g
: ’ : : : 100 + : B 1F E
0 i i i i i () 1 1 1 1 0
100KB 200KB 500KB 1MB 1.5MB 2MB 3MB 0 120 240 360 480 600 20 40 60 80 100
Log Size Number of System Behaviour Time (s)
3 CPU
[1 Memory

(d)

(e)

®

FIGURE 5: Performance test result. (a) Effect of the value of h. (b) Effect of the value of p. (c) Comparison with other algorithms. (d) Time cost
of log parsing. (e) Time cost of behavior detection. (f) The consumption of CPU and memory.

(2) Effect of the Value of p. In the process of abnormal
behavior detection, the next system behavior after the
predicted window w is sorted according to the probability
from large to small. If the system behavior is among the first
p system behaviors, it is regarded as a normal value. Oth-
erwise, the system behavior is regarded as abnormal
behavior.

It is worth noting that many factors need to be considered
when setting the candidate value p. If the candidate value p is
set too large, some abnormal behavior information will be
ignored, which may bring hidden dangers to the security of
future IoT devices. If the candidate p is set too small, the
normal system behavior may be judged as abnormal behavior
information, which will interfere with abnormal detection. To
test the influence of the candidate value p, we recorded the
model anomaly detection results in the case of different
candidate values p. The result is shown in Figure 5(b). When
p = 10, the overall model has a great classification effect with a
precision of 91.0%, F1 score of 90.5%, and recall rate of 90.1%,
so we choose the value 10 as the size of the candidate value p.

(3) Comparison with Other Algorithms. Through the above
analysis of the influence of the window size h and the in-
fluence of the candidate value p, we determined that we
chose h=6 and p = 10 as the parameters of our abnormal

behavior detection model. In addition, we also determined
that when the hidden layer is 3 layers, compared with other
hidden layers, LSTM has the best performance. We compare
LSTM with some representative log-based anomaly detection
works, using support vector machine (SVM), principal
component analysis (PCA), and invariant mining (IM). All
these algorithms can be used to implement log-based anomaly
detection and perform well. Figure 5(c) shows the comparison
results of these four algorithms in terms of precision, recall,
and F1 score. The results show that when the LSTM algorithm
performs system behavior classification, the F1 value reaches
92%, which has a good classification effect.

This is because LSTM considers the sequence information
of the system behavior sequence, and the other algorithms
cannot capture this important information. The abnormal
system behavior data set may contain a small amount of
normal system behavior, which will affect the overall detec-
tion effect of the model, but in general, the abnormal behavior
detection model can play a better behavior detection effect.

4.4. Performance

4.4.1. Behavior Log Parsing Performance. To measure the
processing efficiency of behavior log parsing, we recorded

14

the running time required to complete the entire parsing
process. We parse system behavior log files of different sizes
and record the parsing time. The result is shown in
Figure 5(d), the system behavior resolution time increases as
the size of the system behavior log increases. There are about
1,500 system behavior records in the average 100 kB system
behavior log. The average 100 kB file, that is, 1,500 system
behavior parsing, takes 0.5 seconds. It can be seen that the
parsing time of the system behavior log is basically
negligible.

In the training phase of the abnormal behavior detection
model, a large amount of normal system behavior needs to
be collected for training, so a large amount of normal system
behavior needs to be analyzed. In our experiments, we
collected system behavior logs generated by each device
running normally for 1 hour for training. The system be-
havior log size is about 3 MB, the system behavior is about
40,000, and it takes about 17s of parsing time. The time
consumed by this process is completed before the model
training. When the model training is successful, real-time
detection of system behavior will not require such a large
number of system behavior logs to be parsed. Therefore, the
performance of parsing behavior logs is basically negligible.

4.4.2. Behavior Detection Performance. After the system
behavior log is prepared and parsed, we perform model
training on the system behavior event sequence, the window
size is 6, the predetermined value p is 10, and the number of
hidden layers is 3 to train the model. The time consumption
of model training is about 3,101 s. After the deep learning-
based abnormal behavior detection model is trained, the
system performs real-time detection on the IoT system
behavior based on the model. The efficiency of detection is
an important indicator of the detection effect, which reflects
the time spent in detecting abnormal system behavior. Since
the Internet of things is a system that requires timeliness, we
do not want the abnormal behavior detection system to
cause excessive time consumption in the detection process,
thereby affecting the experience of using IoT devices.

To test the time consumption of the system in the process
of detecting abnormal behavior, we recorded the time it took
to detect different amounts of system behavior. Figure 5(e)
shows the time used for abnormal behavior detection under
different system behaviors. The results show that the time of
abnormal behavior detection increases with the increase in
the number of system behaviors, but the average detection
time per 100 system behaviors is about 150 ms, which is
within the acceptable range.

4.4.3. CPU and Memory Resource Consumption. We build
virtual security functions for each device on the IoT behavior
detection server. This virtual security function needs to
perform behavior capture, anomaly detection, risk mitiga-
tion, and other functions during operation, so it needs to
occupy a certain amount of CPU and memory resources for
calculation. Figure 5(f) shows the amount of CPU and
memory resources used during the abnormal behavior de-
tection process of the virtual security function running

Security and Communication Networks

stably for 100 seconds. The results in the figure show that the
virtual security function takes up an average of 6.2% of CPU
resources and an average of 5.1% of memory resources,
which are within the acceptable range.

5. Related Work

5.1. IoT Behavior Security. Although the Internet of things
has great potential, it also faces many security challenges
[24]. Unfortunately, the security and privacy risks of IoT
devices have not received enough attention. Due to a large
number of IoT devices and a lack of defense capabilities, they
are very attractive targets [25]. For example, IoT devices are
used as robots to launch DDoS or spam, smart meters are
attacked to reduce utility bills, and handheld scanners are
hacked to enter logistic companies.

Most previous research on IoT security and privacy has
focused on the use of firewalls [26], intrusion detection [27],
access control strategies [28-30], and software patches [31]
to protect the IoT infrastructure from attacks. These measures
cannot guarantee the behavior security of IoT devices. For
example, firewall rules can hardly guarantee that the door is
locked when the user is not at home. In addition, the analysis of
IoT devices and environments focuses on ensuring the security
of IoT applications by analyzing source code. For example,
some systems [32] infer the context of the application through
run-time prompts to enforce permissions based on that
context or require the user to authorize through the interface
[33], while other systems apply static models to check for
violations. Unfortunately, the current dynamic method is not
enough to identify violations, while the static method [34] lacks
accuracy and only implements limited strategies.

At present, there has been a lot of research on the be-
havior security of the Internet of things. HoMonit [35] is
used for detecting abnormal behavior on the smart home
platform, using side-channel information leakage in the
wireless communication channel (packet size and packet
interval) to infer the type of communication events between
the smart device and the hub and then compare the inferred
sequence of events with the expected program logic to
identify inappropriate behavior without any modification to
the existing infrastructure. IoTMon [36] is an IoT device
physical interaction control system that can discover any
possible physical interaction and generate all potential in-
teraction chains across applications in the IoT environment.
IoTMon also evaluates and mitigates the security risks of each
discovered interaction chain between applications based on
its physical influence. FlowFence [37] uses the taint tracking
technology to track the information flow of sensitive data in
the Internet of things applications, to ensure that the au-
thorized users can use the data safely and legally to prevent the
leakage of sensitive information. MCshield [38] is a DDoS
defense framework. This framework deploys multiple smart
filters at the edge of the attack source/target network to filter
malicious traffic by learning DDoS behavior.

5.2. Firmware Virtualization. Avatar [39] is a framework
that supports dynamic security analysis of embedded system

Security and Communication Networks

firmware. The framework performs dynamic analysis by
running firmware on actual hardware. Although this method
is very accurate, it has significant problems. Firstly, Avatar
must obtain the physical hardware of the device under test,
which puts a huge financial burden on developers. Secondly,
Avatar needs to manually identify and interact with the
debug port on the device interface, which reduces the
scalability of this technology, especially for consumer de-
vices that may not support hardware debugging. How to run
the firmware in a virtualized environment and analyze the
security of IoT devices is an important task. To solve this
problem, FIRMADYNE [40] proposed a complete system
simulation that relies on software, so as to realize the large-
scale and automated dynamic analysis of embedded firm-
ware binaries. FIRMADYNE solves the inherent challenges
of dynamic analysis of embedded systems, such as the
presence of hardware-specific peripherals, the use of non-
volatile memory, and the creation of dynamically generated
files. Costin [41] provides an extensible automated firmware
dynamic analysis framework, using pure software simulation
to find vulnerabilities in embedded devices. The framework
can test the firmware Web application security issues
through simulation. FIRM-AFL [42] is the first high-
throughput grey box fuzzer for IoT firmware. It proposes a
new technology for enhanced process simulation to solve the
performance bottleneck caused by QEMU system mode
simulation. P2IM [43] presents an abstract model for the I/O
behaviors of the processor-peripheral interfaces to enable
peripheral-oblivious emulation of MCU devices. uEMU [44]
builds a general model for each peripheral to learn how to
correctly emulate firmware execution at individual pe-
ripheral access points. It takes the image as input and
symbolically executes it by representing unknown peripheral
registers as symbols. During symbolic execution, it infers the
rules to respond to unknown peripheral accesses.
However, the existing research work on the behavior of
IoT devices focuses on the security detection of the network
behavior and application behavior of IoT devices, and there
is no comprehensive consideration of the behavior of IoT
devices at the system level. Due to limited resources, it is
difficult for IoT devices to obtain monitoring system-level
behavior by installing monitoring software. Firmware vir-
tualization technology can solve this problem. By simulating
the real operating environment of the firmware, the oper-
ating data and security status of the system layer inside the
device can be obtained, to perform system-wide security
status detection and defense and provide a new idea for
solving the problem of behavior security of the Internet of
things devices. However, the current work in this area is
mainly focused on the dynamic analysis and vulnerability
mining of IoT devices, failing to consider the behavioral
security detection of IoT devices. Therefore, we propose a
behavior security detection system for IoT devices based on
firmware virtualization and deep learning in this study.

5.3. Log-Based Anomaly Detection. Anomaly detection plays
an important role in the management of modern large
distributed systems. Logs that record system run-time

15

information are widely used for anomaly detection. Lang
et al. [45] used the SVM algorithm, a commonly used su-
pervised classification method, to build a failure prediction
model based on event logs. However, supervised methods
require lots of manual efforts to construct data and labels, so
unsupervised methods are more practical. Xu et al. [46]
proposed an unsupervised method for detecting anomalous
sequences of events using PCA, but PCA is data-sensitive so
the detection accuracy of PCA will vary on different data
sets. Lou et al. [47] converted log sequences into event count
vectors and then used IM to mine invariants within vectors.
The mined invariants would reflect the normal workflow of
the detected system. Then, they used these invariants to
detect anomalies in system logs. If the invariant relationship
of the log session did not hold, it would be judged as an
abnormal session.

6. Discussion and Future Work

This study designs and implements an IoT device behavior
safety detection system based on firmware virtualization and
deep learning. It implements IoT device behavior security
detection based on fine-grained real-time dynamic system
behavior, analyzes abnormal behavior, and proposes cor-
responding risk mitigation strategies. However, there are
limitations in the design of this article, and further research
and improvement are needed in future work.

(1) Due to the wide variety of IoT devices, firmware
virtualization technology only supports firmware
images that emulate fixed architectures (ARM and
MIPS) and fixed systems (Linux). Even if the firm-
ware image meets the appealing architecture and
system conditions, there may be problems with in-
complete image files and image encryption, resulting
in a considerable number of IoT devices that cannot
successfully simulate virtual IoT devices based on the
device firmware and thus cannot obtain the IoT
device’s fine-grained dynamic behavior. Hence,
firmware virtualization in a more in-depth way
should be studied to realize a more general simu-
lation method of the real operating environment of
IoT devices, to better simulate IoT virtual devices.

(2) There are many types of IoT attack methods, and
some attack types can achieve security detection and
defense through security tools such as intrusion
detection systems (e.g., Snort) and firewalls. System
behavior can be used as a supplement to network
behavior, thereby improving the framework for the
secure detection of IoT device behavior. We expect to
be combined with software-defined security in the
future to generate multiple virtual security functions
for each type of IoT device or each IoT device. The
virtual security function can be used to detect and
defend against a variety of IoT attacks against the
network layer, or it can be based on firmware
virtualization to simulate a real system environ-
ment to detect and defend against [oT system-level
attacks.

16

(3) For the training process of abnormal behavior model
based on deep learning, the training data set comes
from the system behavior collected when the IoT
device is initially connected to the network to
maintain stable operation. However, in the actual
environment, the system behavior of IoT devices may
change due to reasons such as firmware updates. This
change leads to the incompleteness of the previously
trained model. In future work, we will further im-
prove model accuracy and system performance.

7. Conclusion

In this study, we design and implement IoT-DeepSense, an
IoT device behavior security detection system based on
firmware virtualization and deep learning. Based on firm-
ware virtualization technology, we build the real operating
environment of the IoT system to capture the fine-grained
system behaviors, then conduct security detection of the IoT
device behaviors based on deep learning, analyze the ab-
normal behavior, and mitigate the risk according to the
detection results. The implementation of the entire system is
carried out on a separate IoT behavior detection server,
which does not require modification of IoT devices with
limited resources and is highly scalable. The evaluation
results show that our abnormal behavior detection model
has a good effect with an F1 score of 92%.

Data Availability

To test the effectiveness of the IoT behavior capture solution,
we successfully performed device simulation based on
multiple firmware versions of NETGEAR WNAP320,
WNDAP350, WNDAP360, and WNAP210 series devices.
According to the activity of the device, we collect the system
behavior generated by each IoT virtual device running
normally for 10 days. Then, we conduct an IoT attack on
each device and collect the abnormal system behavior
generated by each IoT virtual device under different types of
attacks. The system behavior of each IoT virtual device is
recorded in the corresponding system behavior log file.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 61872430 and in
part by the Hubei Key Research and Development Program
under Grant 2020BAA003 and the National Basic Research
Program of China (973 Program) under Grant
2014CB340600.

References

[1] L Lee and K. Lee, “The internet of things (iot): applications,
investments, and challenges for enterprises,” Business Hori-
zons, vol. 58, no. 4, pp. 431-440, 2015.

Security and Communication Networks

[2] G. Davis, “2020:Life with 50 billion connected devices,” in
Proceedings of the 2018 IEEE International Conference on
Consumer Electronics (ICCE), p. 1, Las Vegas, NV, USA, 2018.

[3] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an
analysis of security issues, challenges, and open problems in
the internet of things,” in Proceedings of the 2015 IEEE World
Congress on Services, pp. 21-28, IEEE, New York, NY, USA,
July 2015.

[4] B. Edge, “Hacking the human heart,” 2016, http://bigthink.
com/future-crimes/hacking-the-human-heart.

[5] Wikipedia, “Dyn cyberattack,” 2016,
securityintelligence.com/posts/internetof-threats-iot-
botnets-network-attacks/.

[6] D. McMillen, “Internet of threats: iot botnets drive surge in
network attacks,” 2021, https://www.euronews.com/2016/10/
22/what-we-know-about-the-dyn-cyber-attack.

[7] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The effect of

iot new features on security and privacy: new threats, existing

solutions, and challenges yet to be solved,” IEEE Internet of

Things Journal, vol. 6, no. 2, pp. 1606-1616, 2018.

F. Bellard, “Qemu, a fast and portable dynamic translator,”

USENIX Annual Technical Conference, FREENIX Track,

vol. 41, p. 46, 2005.

[9] M. van Gerven and S. Bohte, “Editorial: artificial neural
networks as models of neural information processing,”
Frontiers in Computational Neuroscience, vol. 11, p. 114,
2017.

[10] R. C. O’Reilly and M. J. Frank, “Making working memory
work: a computational model of learning in the prefrontal
cortex and basal ganglia,” Neural Computation, vol. 18, no. 2,
pp. 283-328, 2006.

[11] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and
S. Khudanpur, “Recurrent neural network based language
model,” in Proceedings of the Eleventh Annual Conference of
the International Speech Communication Association, Chiba,
Japan, September 2010.

[12] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and]. Schmidhuber,
“Kalman filters improve Istm network performance in
problems unsolvable by traditional recurrent nets,” Neural
Networks, vol. 16, no. 2, pp. 241-250, 2003.

[13] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 6645-6649, IEEE, USA, May 2013.

[14] K. Greff, R. k. Srivastava, J. Koutnik, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: a search space odyssey,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 28, no. 10, pp. 2222-2232, 2016.

[15] Motion, “Motion,” 2019, https://motion-project.github.io/.

[16] M. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha,
“Learning execution contexts from system call distribution for
anomaly detection in smart embedded system,” in Proceedings
of the Second International Conference on Internet-of-Things
Design and Implementation, pp. 191-196, Pittsburgh, USA,
April 2017.

[17] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering
and pattern mining algorithm for event logs,” in Proceedings
of the 2015 11th International Conference on Network and
Service Management (CNSM), pp. 1-7, IEEE, Barcelona,
Spain, November 2015.

[18] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios,
“Clustering event logs using iterative partitioning,” in Pro-
ceedings of the 15th ACM SIGKDD International Conference

https://

[8

http://bigthink.com/future-crimes/hacking-the-human-heart
http://bigthink.com/future-crimes/hacking-the-human-heart
https://securityintelligence.com/posts/internetof-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internetof-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internetof-threats-iot-botnets-network-attacks/
https://www.euronews.com/2016/10/22/what-we-know-about-the-dyn-cyber-attack
https://www.euronews.com/2016/10/22/what-we-know-about-the-dyn-cyber-attack
https://motion-project.github.io/

Security and Communication Networks

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

on Knowledge Discovery and Data Mining, pp. 1255-1264,
Paris, France, June 2009.

Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly de-
tection in distributed systems through unstructured log
analysis,” in Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, pp. 149-158, IEEE, Washington,
DC, USA, 2009.

M. Du and F. Li, “Spell: streaming parsing of system event
logs,” in Proceedings of the 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 859-864, IEEE,
Barcelona, Spain, December 2016.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: an online log
parsing approach with fixed depth tree,” in Proceedings of the
2017 IEEE International Conference on Web Services (ICWS),
pp- 33-40, IEEE, Honolulu, HI, USA, June 2017.

J. Zhu, S. He, J. Liu et al., “Tools and benchmarks for auto-
mated log parsing,” in Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 121-130, IEEE,
Montreal, QC, Canada, May 2019.

V. Costan and S. Devadas, “Intel sgx explained,” JACR
Cryptology ePrint Archive, vol. 2016, no. 86, 118 pages, 2016.
T.Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: rethinking
network security for the internet-of-things,” in Proceedings of
the 14th ACM Workshop on Hot Topics in Networks, pp. 1-7,
Philadelphia, PA, USA, November 2015.

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A
survey on internet of things: architecture, enabling technol-
ogies, security and privacy, and applications,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1125-1142, 2017.

S. Kubler, K. Frimling, and A. Buda, “A standardized ap-
proach to deal with firewall and mobility policies in the iot,”
Pervasive and Mobile Computing, vol. 20, pp. 100-114, 2015.
B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and
S. C. de Alvarenga, “A survey of intrusion detection in in-
ternet of things,” Journal of Network and Computer Appli-
cations, vol. 84, pp. 25-37, 2017.

W. He, M. Golla, R. Padhi et al., “Rethinking access control
and authentication for the home internet of things (iot),” in
Proceedings of the 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 255-272, Baltimore, MD, USA,
August 2018.

S. Qiu, D. Wang, G. Xu, and S. Kumari, “Practical and
provably secure three-factor authentication protocol based on
extended chaotic-maps for mobile lightweight devices,” IEEE
Transactions on Dependable and Secure Computing, vol. 2020,
Article ID 3022797, 1 page, 2020.

C. Wang, D. Wang, G. Xu, and D. He, “Efficient privacy-
preserving user authentication scheme with forward secrecy
for industry 4.0,” Science China Information Sciences, vol. 65,
no. 1, pp. 1-15, 2022.

O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai,
“Incentivized delivery network of iot software updates based
on trustless proof-of-distribution,” in Proceedings of the 2018
IEEE European Symposium on Security and Privacy Work-
shops (EuroSe&PW), pp. 29-39, IEEE, London, UK, April 2018.
Y. J. Jia, Q. A. Chen, S. Wang et al., “Contexlot: towards
providing contextual integrity to appified iot platforms,”
NDSS, vol. 2, no. 2, p. 2, 2017.

Y. Tian, N. Zhang, Y.-H. Lin et al., “Smartauth: user-centered
authorization for the internet of things,” in Proceedings of the
26th {USENIX} Security Symposium ({USENIX} Security 17),
pp- 361-378, Baltimore, MD, USA, 2017.

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

[46]

(47]

17

Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: automated iot
safety and security analysis,” in Proceedings of the 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
pp. 147-158, 2018.

W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“Homonit: monitoring smart home apps from encrypted
traffic,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1074-1088,
Toronto, ON, Canada, October 2018.

W. Ding and H. Hu, “On the safety of iot device physical
interaction control,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pp- 832-846, Toronto, ON, Canada, October 2018.

E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “Flowfence: practical data protection for
emerging iot application frameworks,” in Proceedings of the
25th {USENIX} Security Symposium ({USENIX} Security 16),
pp- 531-548, Austin, TX, USA, August 2016.

N. Dao, T. V. Phan, J. Kim, T. Bauschert, S. Cho, and D. Do,
“Securing heterogeneous iot with intelligent ddos attack be-
havior learning,” IEEE Systems Journal, pp. 1-10, 2017.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Av-
atar: a framework to support dynamic security analysis of
embedded systems’ firmwares,” NDSS, vol. 14, pp. 1-16, 2014.
D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards
automated dynamic analysis for linux-based embedded
firmware,” NDSS, vol. 16, pp. 1-16, 2016.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic
firmware analysis at scale: a case study on embedded web
interfaces,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pp. 437-448,
Xi’an, China, June 2016.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“Firm-afl: high-throughput greybox fuzzing of iot firmware
via augmented process emulation,” in Proceedings of the 28th
{USENIX} Security Symposium ({USENIX} Security 19),
pp- 1099-1114, Santa Clara, CA, USA, August 2019.

B. Feng, A. Mera, and L. Lu, “P2im: scalable and hardware-
independent firmware testing via automatic peripheral in-
terface modeling,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20), pp. 1237-1254, USENIX
Association, Santa Clara, CA, USA, September 2020.

W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware
emulation through invalidity-guided knowledge inference,”
in Proceedings of the 30th USENIX Security Symposium
(USENIX Security 21), USENIX Association, Santa Clara, CA,
USA, November 2021.

Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure pre-
diction in ibm bluegene/l event logs,” in Proceedings of the
Seventh IEEE International Conference on Data Mining
(ICDM 2007), pp. 583-588, IEEE, Omaha, NE, USA, 2007.
W. Xu, L. Huang, A. Fox, D. Patterson, and M. 1. Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pp. 117-132, Big Sky, MT, USA,
October 2009.

J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Ming invariants from
console logs for system problem detection,” in Proceedings of
the USENIX Annual Technical Conference, pp. 1-14, Boston,
MA, USA, June 2010.

