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In recent years, blockchain technology has been developing rapidly. More and more traditional industries are using blockchain as
a platform for information storage and financial transactions, mainly because of its new characteristics of non-tamperability and
decentralization compared with the traditional systems. As a representative of blockchain 2.0, Ethereum has gained popularity
upon its introduction. However, because of the anonymity of blockchain, Ethereum has also attracted the attention of some
unscrupulous people. Currently, millions of contracts are deployed on Ethereum, many of which are fraudulent contracts
deployed by unscrupulous people for profit, and these contracts are causing huge losses to investors worldwide. Ponzi contracts
are typical of these contracts, which mainly reward the funds invested by later investors to early investors, and later investors will
have no gain. However, although there are some studies for identifying Ponzi contracts on Ethereum, there is some room for
progress in the research. *erefore, we propose a method to detect Ponzi scheme contracts on Ethereum-CTRF. *is method
forms a dataset by extracting the word features and sequence features of the smart contract’s code and the features of transactions.
*e dataset is divided into a training set and a test set. Oversampling is performed on the training set to deal with the problem of
positive and negative sample imbalance. Finally, the model is trained on the training set and tested on the test set. *e ex-
perimental results show that the model has significantly improved recall compared with existing Ponzi contract
detection methods.

1. Introduction

Blockchain technology was proposed by Nakamoto [1], and
since its introduction in 2008, it has received widespread
attention. Due to its decentralized and tamper-evident
features, blockchain technology has now been applied in the
fields of finance, healthcare, and social governance. Based on
these advantages, blockchain technology will have even
broader application prospects in the future.

In the field of financial transactions, the underlying
blockchain technology-based electronic cash systems (Bit-
coin and Ethereum) have attracted many investors. How-
ever, they have also attracted many unscrupulous people.
Owing to the inherent anonymity and tamper-evident na-
ture of the blockchain, the Bitcoin and Ethereum platforms
have also become a breeding ground for unscrupulous
transactions to take place. On the Silk Road website, which
was shut down in 2013, as much as $300,000–$500,000 per

day was traded in Bitcoin regarding drugs and private data,
and at the time of Silk Road’s closure in 2013, approximately
9.5 million Bitcoins worth $1.2 billion had been traded on
Silk Road [2].

Ethereum is known as Blockchain 2.0, which mainly
solves the problem of lack of scalability of Bitcoin system;
however, while people add new features to Ethereum, new
risks are also introduced. Phishing, fraud, theft, and other
illegal criminal activities launched by taking advantage of the
flaws in the Ethereum blockchain technology have emerged.
On June 17, 2016, the DAO of Ethereum was attacked by
hackers. *e attacker exploited a vulnerability in a contract
written by the DAO to transfer more than 3 million Ether
coins equivalent to $60 million from its asset pool to its sub-
DAO [3].

Among the plethora of scams, Ponzi schemes, a classic
scam in the real world, are also happening on the blockchain.
Ponzi schemes on Bitcoin usually actively advertise their on-
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chain projects on social media as having high rewards and
low risk to attract investors. Ponzi schemes on Ethereum are
smart contracts written in the high-level programming
language, Solidity [4]. *ey are generally packaged as in-
vestment projects or gambling games that also promise huge
returns to investors. Some Ponzi schemes even create their
promotional websites to attract investors through aggressive
marketing campaigns. Usually, investors know little about
blockchain, and it can be difficult for them to tell which are
meaningful smart contract investment projects and which
are smart contracts disguised as high-yield investment
schemes. According to Chainalysis, scams on Ethereum
from 2017 to 2019 affected millions of people and caused
$4.3 billion worth of losses. *e majority of these came from
Ponzi schemes, accounting for 92% of the total. *e number
of victims of Ethereum Ponzi scams alone was 2.4 million,
with the average amount transferred by victims being $1,676
[5]. According to Bartoletti et al., 191 smart Ponzi schemes
active on Ethereum raised almost $500,000 from more than
2,000 different users from August 2015 to May 2017 [6].

It is evident from reading the previously mentioned
studies that there is an urgent need to strengthen the reg-
ulation and monitoring of the blockchain market. Although
there are some studies in this area, they do not focus on the
recall value of the experimental results. In fraud detection
applications, as in many fields with unbalanced class dis-
tributions, it is more important to correctly classify the true
classes (i.e., the “Ponzi” classes in our problem) than to
correctly classify the majority classes. *erefore, the recall is
more important than the precision of the prediction.

We have achieved good results by dealing with the data
imbalance problem and by setting up a large number of
experiments in different environments with more effective
features. *e recall values have improved compared to
existing studies. To summarize, our contributions are as
follows:

(1) dealing with the imbalance between positive and
negative samples of the dataset by expanding positive
samples and oversampling,

(2) evaluation and comparison of models for classifying
Ethereum Ponzi schemes, ultimately our model has a
higher recall,

(3) ssessment of feature contribution.

2. Related Work

In terms of Ponzi scheme research on Bitcoin. Vasek and
Moore analyzed the supply and demand of Bitcoin-based
Ponzi schemes, identified 1780 Ponzi schemes, and derived
the determinants affecting the life cycle of Bitcoin Ponzi
schemes [7]. Boshmaf et al. analyzed MMM, one of the
oldest Ponzi schemes on Bitcoin, and proposed analytical
criteria and metrics for the Ponzi scheme of crypto-
currencies [8]. It is worth mentioning that they counted the
daily Gini coefficients of MMM to measure the income gap
between investors. Bartoletti et al. designed a set of relevant
characteristics to classify Bitcoin Ponzi schemes, such as
average amount invested by users, maximum daily trading

volume, number of active days of contracts, number of users,
and Gini coefficients. Metrics such as F-score and AUC were
then used to evaluate the effectiveness of different supervised
learning classification algorithm models and finally suc-
ceeded in finding 31 of the 32 Ponzi schemes [9]. Although
the imbalanced dataset was treated by them, the model may
still suffer from overfitting by reason of the large gap be-
tween positive and negative sample size, so there is still room
for improvement in their experiments.

In the study of Ponzi schemes on Ethereum, Zheng et al.
surveyed the challenges and recent advances in smart
contracts, giving a complete picture of the challenges smart
contracts by dividing the smart contract lifecycle into four
phases: creation, deployment, execution, and completion,
where scams like Ponzi contracts are classified as the last
phase of the contract’s lifecycle, and most scams cause harm
to contract users during the contract completion phase [10].
Chen et al. analyzed the current problems of Ethereum from
three perspectives: vulnerability, attack, and defense. In the
paper, the Rubixi contract is used as an example to classify
Ponzi contracts as an attack means in the application layer of
Ethereum [11]. Hu et al. analyzed the transaction behavior
pattern between Ponzi contracts and other scam contracts to
classify contracts from the perspective of transactions [12].
Jung et al. used the 0-day model to analyze the model based
on the bytecode features of the contract and finally deter-
mined whether the contract is a Ponzi contract [13].
However, they did not consider the transaction features of
the contract in their experiments, which may lead to a
decrease in accuracy compared with the model that incor-
porates transaction features. Yujian and Bo classified Ponzi
contracts into tree-shaped, chain-shaped, waterfall-shaped,
and handoff-shaped by analyzing the Ponzi contract source
code. *ey proposed that the similarity between contract
bytecodes can be measured by using NLD [14] (Normalized
Levenshtein Distance) and setting the corresponding
threshold to determine whether two contracts are similar
and whether the contract is a Ponzi contract. Subsequently,
they measured the impact of Ponzi contract on Ethereum by
counting the total transaction amount [6]. Sun et al. were
inspired by the flowchart of traditional test domain code; the
bytecodes generated during the operation of a Ponzi con-
tract are concatenated and plotted as a tree of invocation
behaviors. *e model is trained by comparing the similarity
of the behavior trees [15]. Fan et al. solved the prediction bias
problem which was made of target leakage during training
and improved the generalization ability of the model by
analyzing the imbalance and repetition of Ponzi contracts in
the dataset [16]. Chen et al. extracted the transaction features
from the transaction data of smart contracts and combined
them with the opcode of smart contracts in extracted opcode
frequency features and used XGBoost to train these data
features. Eventually, 434 Ponzi contracts were found by
detecting contracts deployed before May 7, 2017 [17].

Although the aforementioned studies achieved good
results, most of their experiments aimed at improving the
model accuracy without considering improving the recall of
the model. In contrast, our CTRF (Code and Transaction
Random Forest) model improves the recall of the model by
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adding sequence features of the opcodes to the code features
and extracting more efficient features of transactions.

3. Smart Ponzi Contracts

*edefinition of smart contract can be traced back to 1994 by
Szabo [18]. It was first defined as an alternative to traditional
paper contracts and a digital representation of the transaction
agreement to help the parties to fulfill the contractual project.
However, due to the immaturity of the technology and the
lack of a trustworthy platform for execution, smart contracts
did not attract much attention. *e establishment of
blockchain and the rise of decentralized platforms have
brought smart contracts back into the public eye. Ethereum is
known as blockchain 2.0 differs from blockchain 1.0 in that
Ethereum has a Turing-complete programming language
[19]. Developers can implement smart contracts in the high-
level programming language Solidity or Golang and compile
them for deployment on the EVM (Ethereum virtual ma-
chine) [4]. Smart contracts are the basis for implementing
blockchain-based information systems in various domains. It
can execute transactions without a trusted third party by
triggering conditions through program code. For example,
the following is a simple example of a smart Ponzi con-
tract–0x83Fccc659EeeeE98ca9764B7B34409347DFbc98b
from the source code; we can know that every investment
received by the contract will transfer 1% of the balance to the
contract creator, and this contract every 5900 blocks
(24 hours) will pay 5% of the balance of the contract to the
investor.

pragma solidity 0̂.4.24;
contract ethernity {

address pr� 0 x 587a38954a
D9d4DEd6B53a8F7F28D32D28E6bBD0;

address ths� this;
mapping (address�> uint) balance;
mapping (address�> uint) paytime;
mapping (address�> uint) prtime;
function () external payable {
if ((block.number-prtime[pr])>� 5900){

pr.transfer(ths.balance/100);
prtime [pr]� block.number;

}
if (balance[msg.sender] !� 0){

msg.sender.transfer ((block.number-paytime
[msg.sender])/5900∗5);balance[msg.sender]/100∗5);

}
paytime[msg.sender]� block.number;
balance[msg.sender] +�msg.value;

}
}

*e smart contract runs on the EVM. After compiling
the smart contract code into bytecode and uploading it to
Ethereum through transactions, Ethereum will automati-
cally return the generated contract account address, and
finally, investors can interact with the contract through
transactions [20]. *e code of smart contracts can imple-
ment a wide variety of functions, which provides investors
with a wealth of investment options. However, this can also
confuse investors, who may fall into the trap of scams
without being fully familiar with these smart contracts.

*e Ponzi scheme was invented by Charles Ponzi, an
Italian businessman, in which he promised investors a 40%
profit return within three months. After attracting investors,
he paid the new investors’ money as a return to those who
initially invested and then enticed more people to invest. He
eventually attracted 30,000 investors in seven months. *e
more official definition from the SEC (United States Secu-
rities and Exchange Commission) is “A Ponzi scheme is an
investment fraud that involves the payment of purported
returns to existing investors from funds contributed by new
investors. Ponzi scheme organizers often solicit new in-
vestors by promising to invest funds in opportunities
claimed to generate high returns with little or no risk. With
little or no legitimate earnings, Ponzi schemes require a
constant flow of money from new investors to continue.
Ponzi schemes inevitably collapse, most often when it be-
comes difficult to recruit new investors or when a large
number of investors ask for their funds to be returned” [21].

From the definition, the typical feature of the Ponzi
scheme is to pay the existing investors the so-called returns
with the funds provided by the new incoming investors.
Compared with other financial frauds, Ponzi schemes are
characterized by many victims, wide impact, deep damage,
high concealment, and serious social harm. In the Ethereum
smart contract, the Ponzi scheme has some new
characteristics.

(1) *e most obvious thing is that it is based on the
anonymity of the blockchain; people cannot know
the real identity of the contract initiator. For the
unscrupulous this greatly reduces the risk of them
committing a scam, but for the average contract user,
the risk of their money being compromised is greatly
increased.

(2) Ponzi contracts are simpler and more efficient than
traditional Ponzi schemes. *e scammers only need
to deploy Ponzi contracts to Ethereum and they can
effortlessly reap the benefits when transactions
occur.

(3) Ponzi contracts are easier to replicate and imple-
ment. By reviewing the Ponzi contract code, we
found that many of the contract codes are identical.

(4) Due to the anonymity of blockchain and the diffi-
culty of traceability, the defrauded funds cannot be
successfully recovered, leaving the investors to suffer
losses.
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4. Methodology

4.1. Dataset. *e dataset used in this paper is based on the
open-source shared address set [6, 17, 22]. One of the
publicly available address sets in [17] originally contained
3590 common contract addresses and 200 Ponzi contract
addresses and three incorrect addresses. In our experiments,
we eliminated two non-Ponzi contract addresses that were
not successfully deployed and found two addresses with
exactly opposite labels to other address sets. After careful
inspection of the contract source code, the corrected address
set situation is as follows: 3586 common contract addresses
and 202 Ponzi contract addresses, a total of 3788 smart
contracts, where the ratio of positive to negative cost is 1 :18.
We labeled this address set as D1.

Since the gap between the positive and negative sample
ratios in D1 is too large, we first dealt with the positive and
negative sample imbalance by expanding the positive
sample data. *e publicly available address set in [6]
contains 184 Ponzi contracts, and after removing two of
the duplicate addresses, its correction includes 182 Ponzi
contract addresses. We collected another 50 Ponzi con-
tract addresses from [22]. *e address sets of [6, 22] are
combined and then deduplicated against D1 to finally
obtain 96 Ponzi contract addresses, which are added to D1
to obtain the expanded address set D2. *e expanded
address set D2 contains 3586 ordinary contract addresses
and 298 Ponzi contract addresses, totaling 3884 smart
contracts, where the ratio of positive to negative samples
is 1 : 12.

*e address dataset remains unbalanced after
expanding the positive samples. Besides expanding the data
from the perspective of the data source, the other two
solutions to deal with the imbalance of the dataset at
present are oversampling and undersampling. Over-
sampling means balancing the positive and negative sample
ratios by generating samples from minority classes. And
undersampling means reducing the samples of most classes
to balance the positive and negative sample ratios. Here, we
chose SMOTE oversampling based on oversampling; the
basic idea of SMOTE algorithm is to analyze the minority
class samples and synthesize new minority class samples
added to the dataset according to the KNN algorithm, thus
enriching the number of minority class samples and
avoiding the problem of overfitting caused by oversampling
by copying minority class samples in the past [23]. As in
Figure 1, we constructed the feature dataset in two main
ways.

(1) Get the bytecode of the contract by Etherscan, then
disassemble the bytecode into opcode, and finally
convert it into code features.

(2) Obtain the transactions of the contract and calculate
the corresponding transaction features, such as life
time and Gini coefficient.

*e D1-code dataset and D2-code dataset are obtained
by extracting opcode features on D1 and D2, respectively.
*e D1-codeAndTran dataset and D2-codeAndTran dataset

are obtained by merging the opcode features and transaction
features. *e experiments are mainly focused on these four
datasets. *e datasets have been open-sourced in this paper,
which can be found at https://github.com/BuptHxz/
DetectionOfPonziContract.

4.2. Feature Extraction

4.2.1. Code Feature. Initially, we wanted to get the code
features of the contracts by getting the internal imple-
mentation logic and keywords directly from the source code.
But since the code of most of the contracts in the dataset is
not publicly available, we only got the code features of a very
small fraction of the contracts, which made it impossible to
build a complete dataset. Although most of the contracts’
code is not available, we can get the contracts’ bytecode,
which is compiled from the code, through Etherscan.io. And
according to Kiffer et al. [24, 25], the similarity between
contracts can be effectively detected by detecting the simi-
larity of contract bytecode. *erefore, we started from the
bytecode and got the code features of the contracts by
disassembling and other techniques.

As described in Section 2, if developers want to run a
contract on Ethereum, they first need to write a smart
contract by Solidity, and then, the code is transformed into
bytecode after compiling the code with the corresponding
specific version of the compiler. Finally, the compiled
bytecode is deployed to Ethereum. *e bytecode is repre-
sented by a string of hexadecimal codes. *e following is the
compiled bytecode of the Solidity code shown in Section 3.

“bytecode”:“608060405260008054600160a060020a031990
811673587a38954ad9d4ded6b53a8f7f28d32d28e6bbd0179091
55600180549091163017905534801561004457600080fd5b5061
0178806100546000396000f30060806040526000805473ffffffffff
ffffffffffffffffffffffffffffff1681526004602052604090205461170c43
91909103106100b55760005460015473fffffffffffffffffffffffffffffffff
fffffff918216916108fc9160649116310490811502906040516000
60405180830381858888f1935050505015801561008b573d6000
803e3d6000fd5b506000805473ffffffffffffffffffffffffffffffffffffffff16
81526004602052604090204390555b336000908152600260205
2604090205415610128573360008181526002602090815260408
08320546003909252909120546108fc9160649161170c4391909
103040204600502908115029060405160006040518083038185
8888f19350505050158015610126573d6000803e3d6000fd5b50
5b3360009081526003602090815260408083204390556002909
15290208054340190550000a165627a7a72305820bccf7dff930c
d8237a3d56127f741c545a3f33447c34351f3009e937ea335baf0
029”

Transaction

Bytecode

Transaction
Feature

Code
Feature

DataSet

Ethereum
Smart Contract

Opcode

Figure 1: Flowchart of feature extraction.
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*ese bytes correspond to EVM operations and thus
instruct the EVM to run the code. To make it easy to dis-
tinguish them, Ethereum officials convert these bytes into
corresponding easy-to-remember opcodes (Opcodes) and
record them in the Yellow Book [20]. For example, 0x60
converted to Opcode is PUSH1; 0x80 converted to Opcode is
DUP1. *e corresponding partial conversions are shown in
Table 1.

*e bytecode can be converted to an opcode sequence as
follows.

“opcodes”: “PUSH1 0x80 PUSH1 0x40 MSTORE
PUSH1 0x00 DUP1 SLOAD PUSH1 0x01 PUSH1 0xa0
PUSH1 0x02 EXP SUB NOT SWAP1 DUP2 AND PUSH20
0x587a38954ad9d4ded6b53a8f7f28d32d28e6bbd0 OR
SWAP1 SWAP2 SSTORE PUSH1 0x01 DUP1 SLOAD
SWAP1 SWAP2 AND ADDRESS OR SWAP1 SSTORE
CALLVALUE DUP1 ISZERO PUSH2 0x0044 JUMPI
PUSH1 0x00 DUP1 REVERT JUMPDEST POP PUSH2
0x0178 DUP1 PUSH2 0x0054 PUSH1 0x00 CODECOPY
PUSH1 0x00 RETURN STOP PUSH1 0x80 PUSH1 0x40
MSTORE PUSH1 0x00 DUP1 SLOAD ...”.

By counting the number of bytecodes corresponding to
ordinary contracts and Ponzi contracts, we find that there
are significant differences between Ponzi contracts and
ordinary contracts in the number of some bytecodes, as
shown in Figure 2. It shows the comparison of the average
number of opcodes between Ponzi contracts and ordinary
contracts. It is clear that Ponzi contracts and ordinary
contracts have the same trend in the number of opcodes and
overall Ponzi contracts have fewer opcodes than ordinary
contracts. By looking at the numerous source codes, we
found that Ponzi contracts tend to implement all the
functions through less code, while ordinary contracts
functions are more abundant and therefore have more code
and a higher average number of opcodes.

We obtained the sequence of opcodes corresponding to
the contract bytecodes by disassembling the bytecodes into
opcodes. *en, we computed the code features of each
contract by using the bag-of-words model [26]. *ere are
opcodes such as PUSH1, PUSH2, DUP1, and DUP2, which
we combine into one opcode such as PUSH and DUP, and
then, do the statistics, and finally, we select a total of 77 code
features by combining the calculations.

However, the features extracted by the bag-of-words
model do not take into account the sequence of opcodes and
ignore the semantic information of opcodes. *erefore, we
use the Doc2Vec model to obtain the sequence features and
semantic features of the opcodes to make up for the defi-
ciency of the bag-of-words model in extracting the special
diagnosis [27]. *e final code features are 77 features
extracted by the bag-of-words model and 20 features
extracted by the Doc2Vec model.

4.2.2. Transaction Features. According to the characteristics
of Ponzi schemes, it is known that most of the later investors
incurred losses, and only some early investors may get the
gains. Past studies tend to extract the features of trading
from the perspective of Ethereum, and we added some new

features on top of this. For example, in the Gini coefficient,
as the funds of later investors in a Ponzi scheme are often
transferred to the accounts of earlier investors, this char-
acteristic of an unbalanced distribution of funds will make
the Gini coefficient larger. *e Gini coefficient is a number
between 0 and 1. *e closer the Gini coefficient is to 1, the
more unbalanced the distribution of funds is, and the closer
it is to 0, the more balanced the distribution of funds is.

We selected the following transaction characteristics:

(1) Bal: the balance of the contract after the last trade
(2) TotalGet: the number of all ETH received by the

contract
(3) TotalSend: the number of all ETH sent by the

contract
(4) MaxSend: the maximum amount of ETH sent in a

single contract
(5) AvgFee: the average cost of all transactions in the

contract
(6) LifeTime: the survival time of the contract
(7) GetDivSend: TotalGet/TotalSend
(8) AddrGetProfit: the number of addresses that receive

proceeds from the addresses traded with the contract
(9) Gini: Gini coefficient

4.3. CTRF Model. We proposed CTRF (Code and Trans-
action Random Forest) to identify and classify our contracts.
*e specific CTRF model structure diagram is shown in
Figure 3.

In the data preprocess phase, we first obtained the
contract transactions and bytecode and then disassembled
the bytecode to obtain the contract opcodes. Inspired by
NLP, we used the bag-of-words algorithm to obtain the word
features of the opcodes and then used the Doc2Vec algo-
rithm to obtain the sequence features of the opcodes. *e
word features of the opcode and the sequence features to-
gether form the code features of the contract. For transaction
features, we chose such as Gini coefficient to represent the
contract.

In the model train phase, we first synthesized a new
sample of Ponzi contracts by SMOTE oversampling, thus
solving the positive and negative sample imbalance problem.
Subsequently, we composed decision trees by randomly
selecting the code features and transaction features of the
contract and used the idea of integrated learning to statis-
tically vote on the results using a forest composed of decision
trees to obtain the classification results. Finally, we got our
training model.

In the model test phase, we inputted the test set into our
model trained in the previous phase to finally get the
classification results of the contract.

In order to improve the recall value of themodel as much
as possible, we did the following. First, we solved the
problem of imbalance in the number of positive and negative
samples in the dataset by expanding the samples of Ponzi
contracts. *en, we extracted the word features and
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sequence features of the code inspired by NLP in the feature
extraction stage, and designed more effective transaction
features to represent the Ponzi contracts better. Next, we
performed SMOTE oversampling on the positive samples of
the dataset to further increase the samples of a few classes
and to avoid the overfitting problem of the model. We then
penalized its classification errors more severely by increasing

the weights of the Ponzi contract classes in the training phase
of the model.

*e dataset for this experiment contains a total of
3884 data, which is not enough for deep learning. We
tested some deep learning algorithms on the D2 dataset,
and the result is that the overfitting of the model leads to
poor generalization ability. For this paper, we need to
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Figure 3: CTRF model.

Table 1: Examples of converting bytecode to opcode.
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Figure 2: *e average number of opcodes for ordinary contracts vs. Ponzi contracts.
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divide the samples into Ponzi contracts and ordinary
contracts, which is equivalent to a dichotomous problem.
*erefore, we chose KNN, CNN, DT, SVM, and XGBoost
to compare with CTRF and used these six models to
experiment on the D1-code dataset, D2-code dataset,
D1-codeAndTran dataset, and D2-codeAndTran dataset,
respectively. KNN classification algorithm is one of the
simplest methods in data mining classification tech-
niques. *e so-called K nearest neighbors, which
means K nearest neighbors, means that each sample can
be represented by its closest K neighbor values to achieve
classification. *e CNN algorithm is widely used in the
field of graph classification, but in recent years it has also
been applied to the field of NLP. So, we applied CNN to
detect Ponzi contract for comparing with CTRF. DT
(decision tree) is a tree-structured algorithm that starts
from the root node according to the corresponding
features and thus selects branches until it reaches the leaf
nodes, taking the category stored in the leaf nodes as the
decision result. SVM (support vector machine) is a class
of generalized linear classifier that performs binary
classification of data in a supervised learning manner,
where the decision boundary is the maximum margin
hyperplane solved for the learned samples, and the el-
ements are classified after this plane is finally deter-
mined. XGBoost is one of the Boosting algorithms. *e
idea of boosting algorithm is to integrate many weak
classifiers to form a strong classifier. Since XGBoost is a
boosting tree model, it is integrating many tree models to
form a very strong classifier. And the tree model used is
the CART regression tree model.

5. Experimental Results and Feature Analysis

5.1. Experiment Setting. Datasets. To compare the validity of
the datasets and features, we did experiments on four main
datasets.

(1) D1-code: code features extracted from the corrected
Chen’s address set as the dataset

(2) D1-codeAndTran: a dataset consisting of code fea-
tures and transaction features extracted from the
modified Chen’s dataset

(3) D2-code: code features extracted from the expanded
dataset as a dataset

(4) D2-codeAndTran: a dataset consisting of code and
transaction features extracted from the expanded
dataset

We conducted independent experiments on these four
datasets: first cross-validating to find the best experimental
parameters, then using 70% of the dataset for training and
30% for testing, and finally conducting 20 experiments to
calculate the average results.

Evaluation Metrics. In this paper, precision, recall, and
F-score are used as the evaluation criteria for the ex-
perimental results. Among them, precision is the pro-
portion of all contracts judged as a certain category that
are contracts of that category. *e recall is the proportion

of the number of detected Ponzi contracts to the total
number of Ponzi contracts. *e F-score is a summation
of the precision and recall values. *e solution formula
for the three selected metrics is shown in (1)–(3).

Precision �
true positive

true positive + false positive
, (1)

Recall �
true positive

true positive + false positive
, (2)

F − score � 2 ×
Precision

Precision + Recall
. (3)

True positive is the number of Ponzi contracts that are
correctly determined. False positive is the number of non-
Ponzi contracts that are misclassified as Ponzi contracts.
False negative is the number of Ponzi contracts that are
misclassified as non-Ponzi contracts.

5.2. Results Summary. Table 2 summarizes the results of the
corresponding features of the original and expanded datasets
under different methods. After analyzing the data in the
table, we got the following conclusions.

It is clear that CTRF outperforms other algorithms in
terms of precision and recall, and CTRF and XGBoost also
outperform the original dataset D1 on the D2 dataset after
our positive sample expansion. Although KNN, CNN, DT,
and SVM perform well in terms of recall, their precision is
poor.

D1-code. Since we added the sequence feature of the
opcode, the experimental results improve the recall value by
11% and the F1 value by 7% compared with those in [28].
*is indicates that sequence features of the opcode can help
the model to identify more Ponzi contracts.

D1-codeAndTran. *e recall value obtained in the experi-
ment of Chen et al. was 0.69 [28]. In contrast, we achieve a
recall of 0.85, which is a full 16% improvement. Our selected
transaction features are better than those selected by Chen
et al., and the recall of the experiment improves slightly after
the inclusion of the transaction features. *e addition of
transaction features does enhance the model’s identification
of Ponzi contracts.

D2-code. After expanding the data, the recall value is im-
proved by 3%. *is means the imbalance between positive
and negative samples affects the effect of the model.
*erefore, CTRF shows a higher recall value in the D2
dataset after we expand the positive sample and oversample
it.

D2-codeAndTran. After adding transaction features to the
extended dataset, the experimental results are slightly im-
proved compared with those on the extended dataset D2-
code without transaction features, where the recall value is
improved by 2%. It proves that our extracted transaction
features such as Gini coefficients can indeed help the model
identify more Ponzi contracts.
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5.3. Feature Analysis. We obtained the corresponding
feature importance rankings by analyzing the performance
of the CTRF model on the four datasets, as shown in
Table 3.

On D1-code and D2-code, our operand sequence
features (D2V) extracted by Doc2Vec can better help the
model to identify the Ponzi contracts. Among the more
important word features extracted by bag-of-words are LT
and log.

LT represents less than judgment in EVM. After cal-
culation, we concluded that on average each Ponzi contract
has 14 LT opcodes, while each non-Ponzi contract has only
11 on average. And most of the Ponzi contracts have fewer
opcodes corresponding to them than non-Ponzi contracts.
Only the number of LT opcode is more in Ponzi contracts
than in non-Ponzi contracts, which is why LT opcode is so
important for detecting Ponzi contracts. *e importance of
LT opcode is also reflected in the Ponzi contract code. We
observed a large number of Ponzi contracts and found that
when most of them receive a transfer from an external

account, they will determine whether the amount of the
transfer is less than the minimum investment threshold set
by the contract. If it is less than that, the investment will be
swallowed directly and no subsequent returns will be made
to the investor.

During the training process of the D2-codeAndTran
dataset, the importance of our newly added transaction
features is located in the top positions, and according to
the test results, the newly added transaction features make
the model outperform the D2 code, which ultimately leads
to a 2% improvement in the recall value. It is worth
mentioning that in [28] after Chen et al. added transaction
features to the dataset, the accuracy of the model im-
proved slightly, but the recall of the model decreased by
4%. In our experiments, on the other hand, we have
significantly improved the recall of the model by adding
transaction features such as Gini coefficients. Compared
with the transaction features extracted by Chen et al., our
extracted transaction features are more helpful for the
model to identify Ponzi contracts.

Table 2: *e experimental results on four datasets.

Metric KNN CNN DT SVM XGBoost CTRF
Precision D1-code 0.518 0.486 0.500 0.586 0.918 0.953

D2-code 0.501 0.630 0.551 0.543 0.926 0.933
D1-codeAndTran 0.485 0.621 0.571 0.642 0.907 0.929
D2-codeAndTran 0.478 0.705 0.611 0.545 0.918 0.928

Recall D1-code 0.803 0.583 0.836 0.836 0.811 0.847
D2-code 0.813 0.773 0.812 0.788 0.863 0.875

D1-codeAndTran 0.787 0.683 0.721 0.852 0.828 0.852
D2-codeAndTran 0.801 0.761 0.863 0.763 0.873 0.891

F-score D1-code 0.628 0.530 0.626 0.689 0.862 0.897
D2-code 0.619 0.694 0.657 0.643 0.893 0.903

D1-codeAndTran 0.601 0.651 0.638 0.732 0.865 0.889
D2-codeAndTran 0.598 0.732 0.715 0.635 0.894 0.909

Table 3: *e importance of the twenty most significant features.

D1-code D2-code D1-codeAndTran D2-codeAndTran
1 LT LT LT LT
2 SLOAD LOG LOG maxSend
3 LOG CALLDATALOAD AND totalSend
4 GAS SLOAD maxSend addrGetPro
5 AND CALL SLOAD avgFee
6 CALLDATALOAD AND MSTORE LOG
7 SSTORE RETURN totalSend Gini
8 CALL STOP CALLDATALOAD AND
9 MSTORE SUB MUL SLOAD
10 MUL GAS SSTORE CALL
11 GT MSTORE SHA CALLDATALOAD
12 SHA MUL GAS RETURN
13 DUP RETURNDATASIZE SUB totalGet
14 RETURN CALLDATASIZE DUP GAS
15 SUB SSTORE GT STOP
16 STOP GT STOP SUB
17 TIMESTAMP CALLVALUE avgFee MSTORE
18 ADD CODECOPY CODECOPY SHA
19 MLOAD MLOAD CALL GT
20 OR EXTCODESIZE ISZERO MUL
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6. Conclusion

Nowadays, the issue of on-chain security on Ethereum is
attracting more and more attention. Some researches on
Ethereum security have also emerged. In this study, we
extracted the classification model CTRF for the identifica-
tion and analyzed of Ponzi schemes on Ethereum. First, we
relied on increasing the number of positive samples to get
the original dataset D1 and the expanded dataset D2 and
then extracted the code features and transaction features of
the two datasets, respectively, to get four datasets D1-code,
D2-code, D1-codeAndTran, and D2-codeAndTran, and
each dataset is divided into training and testing sets
according to the ratio of 7 : 3. *e training set of the four
datasets is then oversampled to deal with the problem of
positive and negative sample imbalance. Finally, the cor-
responding models are trained on each of the four training
sets and tested on the test set to obtain the test results.

From the test results, the expanded dataset D1-
codeAndTran, the recall value is improved by about 16%
compared with the results in [28]. And the model is still able
to produce good results without transaction features, and
adding our extracted transaction features improves the recall
value of the model identification.

In the future, we will make a deeper study on the
identification of Ethereum Ponzi contracts. We expect to
extract serialized features from the bytecodes of contracts
from a deep learning perspective, and then, train them.
*en, by comparing the similarity of bytecode sequences
between contracts, we can identify Ponzi contracts. In ad-
dition, we also expect to build an Ethereum Ponzi contract
detection platform to identify and record Ponzi contracts on
Ethereum, so as to prevent investors from being cheated. In
conclusion, in the future, we will continue our research on
Ponzi contracts on Ethereum and maintain the safe and
stable development of the Ethereum system.
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