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Logs is an important source of data in the field of security analysis. Logmessages characterized by unstructured text, however, pose
extreme challenges to security analysis. To this end, the first issue to be addressed is how to efficiently parse logs into structured
data in real-time.,e existing log parsers mostly parse raw log files by batch processing and are not applicable to real-time security
analysis. It is also difficult to parse large historical log sets with such parsers. Some streaming log parsers also have some demerits
in accuracy and parsing performance. To realize automatic, accurate, and efficient real-time log parsing, we propose Spray, a
streaming log parser for real-time analysis. Spray can automatically identify the template of a real-time incoming log and
accurately match the log and its template for parsing based on the law of contrapositive. We also improve Spray’s parsing
performance based on key partitioning and search tree strategies. We conducted extensive experiments from such aspects as
accuracy and performance. Experimental results show that Spray is much more accurate in parsing a variety of public log sets and
has higher performance for parsing large log sets.

1. Introduction

In today’s Internet environment, applications, operating
systems, and network devices will generate a variety of real-
time logs, which play an important role in the field of cyber
security. With the continuous evolution of means for net-
work attacks, more and more attacks cannot be intercepted
by firewalls. Legitimate users of an intranet may also operate
corresponding internal systems illegally. As a result, many
computer systems need to make security responses through
attack identification, anomaly detection, and alarm gener-
ation by analyzing log data. Massive log-based research on
security analysis has been conducted whose results have
been used in log audit [1], intrusion detection [2], anomaly
detection [3, 4], user behavior analysis [5], and network fault
diagnosis [6], among others. [7] proposes a technique for
extracting sensitive information from unstructured data. In
addition, a large number of products for security analysis of
logs have been put on the market, such as Splunk [8] and
OCEANS [9].,ey realize interactive analysis by loading IPS

logs, application logs, and other heterogeneous data to help
experts discover anomalies and security events rapidly.

System developers, however, usually write log print
statements in the form of free text in the source codes.
,erefore, raw log messages are essentially unstructured or
semi-structured data. With these raw logs unprocessed,
generally, we can only do simple keyword searches, but
cannot effectively analyze the security issues hidden in the
logs. ,erefore, we need to parse the raw log data before
analysis.

Log parsing is a process of discovering the log template
corresponding to each log message (each template corre-
sponds to a log print statement in the system), extracting
variable parameters, and finally parsing unstructured or
semi-structured log messages into structured log events.

Conventional rule-based [10, 11] log parsers require
professionals to manually create massive complex regular
expressions (each regular expression [12] corresponds to a
log template) and add them to the parsing rule set. In the
process of log parsing, log messages are matched with the
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regular expressions in the rule set one by one. Such ap-
proaches have many demerits, including (1) users need to
know all the template structures of a log; (2) creating massive
regular expressions for complex systems is labor consuming
and error-prone; and (3) when updating the system or
application, it is necessary to update the parsing rule set at
the same time to ensure the accuracy of log parsing.

Current automatic log parsers mostly work by batch
processing log data, i.e., comprehensively computing all
contents of raw log messages and exporting the parsing
results in batches. All contents of the log data must be
available before being parsed. As the data set needs to be fully
loaded, this batch processing mode is restricted by com-
puting resources. It may even fail to work if the historical log
set is too large. For easy and unified management of logs
from multiple sources, we usually employ some data ac-
quisition tools (for example, Apache Flume [13] or Ismael
[14]) to stream the real-time logs to the Kafka [15]. ,e log
data will be cached in the form of message queues. It is also
difficult to parse these real-time streaming logs by batch
processing.

In this paper, we propose Spray, a streaming log parser
for real-time analysis. At first, in our design, incoming log
messages are tokenized to form a token list. Different from
the tokenization by other log parsers, we save each separator
used for tokenization as a separate token and classify these
tokens after tokenization. Second, considering logs of the
same template may have variable lengths, we filter the
templates initially by computing the similarity between
tokenized logs and their templates based on the longest
common subsequences (LCS). ,en, we accurately deter-
mine the relationship between logs and their templates based
on the law of contrapositive in discrete mathematics, to
extract log variables and update log templates. In addition,
we use two strategies: key partitioning and search tree, to
improve Spray’s parsing performance. Finally, we conduct
extensive experiments with a wide range of log data to
evaluate Spray and compare it with other parsers, such as
Drain [16], Spell [17], IPLoM [18], and MoLFI [19]. ,e
experimental results show that, for 16 public log sets [20],
Spray is more accurate, and for a greater number of log sets,
Spray has higher parsing performance.

,e rest of the paper is structured as below: Section 2
outlines the related studies on log parsers. Section 3 details
the log parser proposed, including the parsing process and
performance optimization strategies. Section 4 is the ex-
periments and analyses, including multiple evaluates indi-
cators, such as accuracy, performance, and effectiveness.
Section 5 gives a summary of this paper.

2. Related Works

ELK [14], composed of Elasticsearch, Logstash, and Kibana,
is the most active real-time log analysis platform in the open-
source community. It parses unstructured or semi-struc-
tured log messages into structured data based on the user-
defined regular expressions. Splunk [8], a kind of com-
mercial software with a high market share in the field of log
analysis, parses common types of log messages by virtue of

prebuilt regular expressions. Both of them, as the main-
stream in the industry, still employ the conventional rule-
based log parsers and do not support the automatic parsing
of unknown logs.

However, automatic log parsers have been extensively
studied in the academic circle and can fall into two cate-
gories: batch processing and streaming.

,e log parsers based on batch processing include LFA
[21], LogCluster [22], LogSig [23], LogMine [24], [25, 26],
IPLoM [18], and MoLFI [19], among others. LFA and
LogCluster believe that a log statement contains two types of
characters: variables and constants. As constants are fixed
and frequently occur, log parsing can be interpreted as the
mining of frequent items. LogSig and LogMine follow the
idea of clustering. Log templates form a natural pattern of a
log message set, based on which log parsing can be modeled
as the clustering of log messages. In [25, 26], static analysis
techniques are employed to obtain log template information
from program source codes. IPLoM uses an iterative par-
titioning strategy that partitions log messages into groups
based on the message length, token location, and mapping
relationship. MoLFI reveals that log parsing is to determine
the trade-off between generality and specificity of log pat-
terns and further interpret log parsing as multiobject
optimization.

Since streaming or similar log parsers read and parse log
messages one by one, such operations will not use too much
CPU and memory as the number of logs increases, making it
possible to process a nearly unlimited number of logs. Such
log parsers mainly include Drain [16], Spell [17, 27], and
Agrawal [28]. In the parsing process, Drain builds a parsing
tree with a fixed depth and assigns the incoming log mes-
sages to the depth layer and token layer of the parsing tree in
sequence before transferring these messages to the similarity
computation layer for final parsing. ,is technique cannot
accurately parse the log data with the same template but with
different lengths. Spell is the first parser that proposes to
match a log message with its template based on the LCS and
optimizes the time complexity. Heavy reliance on the re-
lationship between the LCS and log templates affects the
accuracy of this technique. ,rough distributed processing,
Logan partitions and assigns log data files to different
template extraction tasks for parsing, realizing concurrent
log parsing. ,is technique, however, has a drawback—the
templates may be inconsistent in template extraction tasks.
Although the solution is given, that is, hard merge and soft
merge, it cannot guarantee real-time parsing. Besides, the
parser needs to partition batches of log files for concurrent
operations. ,erefore, this is only a log parser similar to
streaming.

3. Methodology

Spray is a streaming log parser for real-time analysis. It
works in four main stages: tokenization, similarity
computation, template filtering, and template updating
and merging. In addition, we also design the key parti-
tioning and search tree strategies to improve Spray’s
performance.
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3.1. Tokenization. Tokenization consists of three steps, as
shown in Figure 1. In the first step, each time when a raw log
message is entered, we identify common variables from it
and replace them with the wildcard character “∗” through
some simple regular expressions based on the domain
knowledge (for example, IP, time, etc.).

In the second step, we segment the logs with common
punctuation marks (such as space and comma) as the
separators, to form a token list. Different from the toke-
nization by other log parsers, we save each separator used for
tokenization as a separate token because separators often act
as an important reference for determining a log template.

In the third step, based on their nature, Spray further
classifies these split tokens into the following types: (a) space
tokens; (b) known variable tokens with identified wildcard
characters “∗”; and (c) unknown tokens.

3.2. Similarity Computation. For a tokenized log, Spray will
traverse the current log template set (the generation process
of templates will be described in detail in Section 3.4) and
compute the similarity between the log and the templates in
turns.

A log message contains two types of tokens: constant and
variable. We consider a log message or template as a se-
quence and each token it contains as an element of the
sequence. When some log messages belong to the same
template, the constant tokens in these log messages are in a
fixed order of sequence. Moreover, the constant and variable
tokens in log messages may be separated by each other,
resulting in discontinuous constant tokens. Based on the
above two characteristics of the constant tokens in log
messages, i.e., orderliness and discontinuity, we choose to
use LCS [17] for similarity computation. During this process,
we skip space tokens because of their high proportion and
low impact and compute only the remaining two types of
tokens.

Similarity �
lengthlcs

lengtht

. (1)

We compute the LCS (E, T) of the log E and template T
and then obtain its similarity, as shown in (1), where lengthlcs
is the number of tokens of the LCS, and lengtht is the
number of tokens in the template T after all space tokens are
excluded. If the similarity exceeds the threshold, it means the
similarity between E and T meets the minimum
requirements.

3.3. Template Filtering. Even after similarity computation,
we still cannot guarantee that a log with a similarity greater
than the threshold belongs to a certain log template. For
example, the log “A B 1C D 2” does not belong to the
template “∗ ABC D” although their similarity exceeds the
threshold. For this, we need to single out the right template
from those meeting the similarity threshold requirements.

When the log message E belongs to the template T, after
calculating the LCS of E and T, we cannot guarantee that all
the tokens belonging to LCS belong to the constant part, but

we can be sure that all the tokens not belonging to LCS
belong to the variable part. ,erefore, we can use the tokens
in the LCS as the separators to divide E and T into the same
number of variable subsequences.

Based on the characteristics of log messages, we can
make the following hypothesis: if a log message E belongs to
a template T, all the variable subsequences in E share the
same structure with their counterparts in the template T.

According to the hypothesis, we can reason backward
based on the law of contrapositive in discrete mathematics.
,e contrapositive law is described as follows: given that
proposition P can deduce proposition Q, then the negation
of proposition Q can deduce the negation of proposition P.

,us, we have four propositions:

(1) Proposition 1: the log message E belongs to the log
template T.

(2) Proposition 2: all the variable subsequences in the log
message E share the same structure with their
counterparts in the template T.

(3) Proposition 3: not all the variable subsequences in
the log message E share the same structure with their
counterparts in the template T.

(4) Proposition 4: the log message E does not belong to
the log template T.

According to our hypothesis, we can infer that “Prop-
osition 1 ⇒ Proposition 2.” Given that Proposition 4 is the
negation of Proposition 1 and Proposition 3 is the negation
of Proposition 2, we can deduce that “Proposition 3 ⇒
Proposition 4,” according to the law of contrapositive.
,erefore, the proposed template filtering is based on
Proposition 3. If Proposition 3 is true, Proposition 4 can be
deduced. ,at is to say, when not all the variable subse-
quences in the log message E share the same structure with
their counterparts in the template T, the log message E does
not belong to the log template T.

In the tokenization process, we have classified the split
tokens into (a) space tokens, (b) known variable tokens, and
(c) unknown tokens. Based on the LCS, we break down the
remaining tokens into multiple token subsequences and
label their structures (as “a” or “aca,” for example). Here we
compare the labeled values of these variable subsequences
one by one. In this process, as long as any one pair of
structures are different, we consider that the log E does not
belong to the template T. Figure 2 visually illustrates the
comparison process.

We divide the comparison situation into two cases. For
the first case, if the labeled values of two structures have the
same character length, we compare whether each pair of
characters are both space token or both not in turn, such as
the example in Figure 2.

For the second case, if they have different character
lengths, we divide the structures of variable subsequences in
the template into five types: “b,” “ab,” “aba,” “ba,” and
others. ,e first four types correspond to the structures
“[abc]+,” “a[abc]+,” “a[abc]+a,” and “[abc]+a” of the var-
iable subsequences in the log. ,e fifth type does not match
any of the labeled structures. Structures are labeled in the
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form of regular expressions, where “+” means the character
before the mark occurs once or more times, and “[abc]”
indicates “a” or “b” or “c,” see Figure 3.

In the four types where the variable lengths are not equal,
as shown in Figure 3, to determine whether a variable
subsequence in the log has the same structure as its coun-
terpart in the template, we check whether it starts or ends
with the space character (“a”). In the log message output
statement of the program, since the first and last characters
of all variables are not spaces, space tokens immediately
before and after the variables are extremely important and
can be used as the basis to determine whether the variable
structures are equal.

Variables can be extracted during the comparison
process. When the comparison is over and the matching
template is found, the parsing of this log is completed.

3.4. Template Updating and Merging. ,rough the previous
process, if the matching template is found, the corre-
sponding log can be parsed. However, in order to extract the
log template, we also need to update and merge the

templates because these templates are unknown and the
template list is also empty at the beginning.

If a log does not match any template, we will save the
incomplete parsing results of this log as a new template and
include it in the template list. ,e new template may contain
the variable locations found during tokenization, labeled as
“∗.”

If a log matches a template, we may need to update the
template. ,e template is updated only when the number of
tokens between two adjacent LCS tokens of the template is
the same as that of the log. In this case, we label non-space
tokens as “∗” (for example, if the log “A B 1C D 2” matches
the template “A B 3C D∗,” the template is updated to “A B ∗
C D∗”).

,en, how do we update the template if the number of
tokens of the template is different from that of the log? We
propose to merge the templates. If a log template is updated,
we parse and compare the updated template with others in
the template list (same as the process for parsing log mes-
sages as described above). If the updated template matches a
template, we merge them into one. For example, after we
input two logs “A B 1 2C D” and “A B 3C D” with the same

a aca a aca ab

a aca a aca ab

true true true true true true

Log

Contrast

Template

LCS: Received block of size from

LCS: Received block of size from

(10.251.90.81)
Received
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block

block

 blk_1600228140214754078 of
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size
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*blk_9016567407076718172 57348922
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Figure 2: Comparison of labeled value of each variable subsequence one by one.
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Figure 1: Tokenization process of Spray.
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template, Spray parses them and generates two new log
templates “A B 1 2C D” and “A B 3C D.” When we input
another log “A B 4C D,” Spray matches it with the template
“A B 3C D,” so the template is updated to “A B ∗ C D.” At
this moment, Spray compares the updated “A B ∗ C D” with
the template “A B 1 2C D.” If they match, it will merge them
into a template “A B ∗ C D.” After that, if we input the logs
with potentially different numbers of tokens such as “A B 5C
D” and “A B 6 7C D,” Spray can parse them all based on the
above template.

3.5. Key Partitioning. To reduce the times of matching be-
tween logs and templates, we employ the key partitioning
strategy. ,is strategy splits the log messages that meet
different key conditions into different partitions. Each
partition has a template sublist (in which the number of
templates is smaller than the total). ,us, we only need to
match the logmessages with the templates in the sublist.,is
largely reduces the number of computations and enhances
the parsing performance.

In order to ensure the accuracy of parsing, we need to
avoid including log messages that belong to the same
template into different partitions. ,erefore, we must find
the appropriate key to guide the partitioning process.

In [16], three conclusions are made: (1) the log messages
that belong to the same template have the same length; (2)
the token at the beginning of the log message is more likely
to be a constant; and (3) the tokens containing numbers
should be excluded to determine whether a token is a
constant. As Spray can parse logs that belong to the same
template but have different lengths, we abandon the first
conclusion. In addition, we strengthen the third conclusion
by specifying that the tokens containing only upper- and
lowercase letters should be considered when determining
whether a token is a constant.

To sum up, Spray selects a token as the key based on the
following rule: for each log message, Spray finds the first
token containing only upper- and lowercase letters by
checking from the beginning to the end. If the token meeting
the above conditions cannot be found in some log messages,
Spray assigns them to an additional partition.

3.6. Search Tree. As the parsing proceeds, the number and
structure of log templates tend to be stable. ,erefore, for

most incoming log messages, their templates have been
included in the template list and do not need to be updated.
As the LCS-based similarity computation is characterized by
high time complexity, parsing each incoming log following
the above procedures will result in relatively poor parsing
performance.

To further improve the parsing performance, we design a
search tree as shown in Figure 4 to save the template list. ,e
template list referred to is the list after key partitioning. Each
node of the tree saves a constant, and the variable structure
between this constant and its previous constant. As a result,
template filtering can be executed in the search tree based on
the law of contrapositive.

If the matching template is singled out through the
search tree, we will skip similarity computation and template
updating, and output the parsing results directly. Figure 5
shows the complete execution process of Spray after the
search tree is incorporated.

4. Experiments and Analysis

To verify Spray’s effectiveness, we conducted experiments to
compare Spray with existing log parsers, including MoLFI
[19], Drain [16], Spell [17], and IPLoM [18]. Spray, Drain,
and Spell are streaming log parsers, while MoLFI and IPLoM
are batch processing log parsers.

We first conducted accuracy experiments based on 16
public log sets [20] and then tested performance with larger
log sets. We included all of the above five parsers for ac-
curacy experiments and selected tree streaming log parsers,
Spray, Drain, and Spell, for performance experiments. ,e
experimental results show that Spray is better in terms of
both accuracy and parsing performance. We also propose a
new effectiveness evaluation method on the basis of [28],
which also proves that Spray is better.

4.1. Accuracy Rate. ,e accuracy rate of log parsing is the
ratio between the number of logs correctly parsed and the
total number of logs in the log set.,eoretically, the accuracy
rate should be calculated in such a manner that the parsing
results are equal to those given in the ground truth. For
example, however, the variable “blk_10737435122731” in the
HDFS log set is expressed as “blk_∗” in the ground truth, but
most log parsers parse it as “∗”. Obviously, this cannot be

a a[abc]+ [abc]+ a[abc]+[abc]+

ab

release: tag="*" * close, * bytes sent, 
* bytes received, lifetime * node *have been found. Targeting domains:*

and nodes:*Template

release: tag="View Lock"
* close, * bytes sent, 
* bytes received, lifetime < 1 sec

node node-1-master 
node-2have been found.

Targeting 
domains:node-D[0/5] and nodes:*Log

eg.

The structures of 
the matching 

variables in logs

The structures of 
variables in 

templates
b aba b c

Figure 3: Four types with unequal variable lengths.
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considered a parsing error.,erefore, we think this situation
is also correct when we compute the accuracy rate.

First, we selected several thresholds to test their impact
on the accuracy rate of Spray, with the results shown in
Figure 6.

It can be found that the change in threshold values has
little impact on Spray’s parsing results. ,is is because Spray
will run a template filtering process after computing the
similarity. ,is process realizes more accurate matching
between logs and templates. When the threshold is smaller
than 0.6 or greater than 0.8, the accuracy rate reduces for
some log sets. In existing log parsers, the threshold is taken

as 0.5 inmost cases, because the number of variable tokens in
a log message can hardly reach half that of the log message.
Considering the role of separators, Spray regards separators
as tokens. As separators are more likely to be constants, we
choose 0.7 as the threshold of Spray.,e experiments proved
that 0.7 is more rational for Spray.

Next, we compared Spray with several parsers in terms of
the accuracy rate on 16 log sets, as shown in Table 1.

According to the results in Table 1, Spray has the highest
accuracy rate on 14 log sets and the second-highest accuracy
rate on the remaining 2 log sets. On 6 log sets, such as HDFS,
Apache, and Windows, the accuracy of Spray exceeds 0.95.

Constant: "IPC"
Variable_structure: null

Constant: "Server"
Variable_structure: "a"

Constant: "listener"
Variable_structure: "a"

Constant: "on"
Variable_structure: "a"

Constant: ": "
Variable_structure: "ab"

Constant: "starting"
Variable_structure: null

Constant: null
Variable_structure: null

Constant: "Responder"
Variable_structure: "a"

Constant: ": "
Variable_structure: null

Constant: "starting"
Variable_structure: null

Constant: null
Variable_structure: null

Root

Template list:
"IPC Server Responder: starting"

"IPC Server listener on *: starting"

Input:
"IPC Server listener on 62260 : starting"

Output:
Template: "IPC Server listener on * : starting"

Variables: [ "62260" ]

Figure 4: Search tree for saving log templates.

Template update process

Start
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and tokenization
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Similarity 
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Template filtering 
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Meet 
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Update template

Create new template

Merge templates

Update search tree 
and template list

Output the parsing 
result End

true

true

true

false

false
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Fast search

Figure 5: Complete execution process of Spray.
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In contrast, for other parsers, only Drain achieves an ac-
curacy of 0.95 on HDFS and Zookeeper log sets. On MoLFI,
Spell, and IPLoM, no log set achieves an accuracy rate higher
than 0.90.

Spray has higher accuracy than other parsers mainly
because (1) Spray considers the role of separators in log
message tokenization, especially the impact of space
characters on log parsing; (2) Spray can parse the log
messages belong to the same log template but with varying
lengths; and (3) Spray realizes the accurate matching be-
tween logs and their templates based on the law of
contrapositive.

4.2. Performance and Effectiveness. Parsing performance is
another important indicator to measure the quality of log
parsers. Without efficient log parsing, if logs are generated
faster than they are parsed, the real-time incoming logs will
pile up. ,erefore, we evaluated the parsing performance of
Spray by comparing it with the two other streaming log
parsers, Drain and Spell.

4.2.1. Time Complexity Analysis. Suppose the average length
of log messages and templates of a log set is L, and the
number of templates is N.

Hadoop
HDFS
OpenStack
Spark

Zookeeper
BGL
HPC
Thunderbird

Linux
Mac
Windows
Android

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu
ra
cy

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 1
Threshold

Apache
HealthApp
OpenSSH
Proxifier

Figure 6: Impact of different thresholds on Spray’s accuracy rate.

Table 1: Accuracy rates of several log parsers.

Spray MoLFI [19] Drain [16] Spell [17] IPLoM [18]
Hadoop 0.9515 0.1530 0.6125 0.1205 0.1305
HDFS 0.9985 0.4835 0.9965 0.2780 —
OpenStack 0.9925 — 0.2070 0.0110 —
Spark 0.9195 0.2080 0.9025 0.6370 0.6380
Zookeeper 0.9890 0.7480 0.9615 0.7185 0.4720
BGL 0.8655 0.6850 0.8055 0.1420 0.3510
HPC 0.9095 0.6320 0.8125 0.5075 0.6375
,underbird 0.8210 0.0325 0.8815 0.7380 0.4690
Apache 1.0000 0.2695 0.6935 0.2695 0.6935
HealthApp 0.7750 0.1665 0.6080 0.1520 0.1550
OpenSSH 0.7310 0.0615 0.5065 0.1210 —
Proxifier 0.6780 — 0.5035 — —
Linux 0.2695 0.0295 0.2665 0.1095 0.1700
Mac 0.6690 0.0440 0.3935 — —
Windows 0.9875 0.0030 0.7460 0.0010 0.0010
Android 0.8570 0.0790 0.9065 0.1925 \
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For Spray, the average depth of the search tree is half the
template length, i.e., L/2. With key partitioning, the average
number of templates in each partition is logN, so the number
of paths in the search tree is logN. Based on the depth L/2
and number of paths logN of the search tree, the log
messages with an average length L can successfully match the
templates in the search tree, and the time complexity is O
(Llog (LlogN)). ,erefore, for parsing a log, the time
complexity of Spray is approximately O (Llog (LlogN)).

Similarly, the time complexity of Drain and Spell can be
obtained as shown in Table 2.

For Spray and Drain, their time complexity cannot be
determined if the magnitude of LlogN and N cannot be
determined. However, it is known that their time complexity
is lower than that of Spell. It can be inferred from time
complexity alone that, compared with Drain and Spell, the
parsing performance of Spray is less affected by the number
of templates N in the log set.

4.2.2. Performance Comparison. To compare the perfor-
mance of these parsers more accurately, we conducted ex-
periments using the same log sets. ,e log sets used are
shown in Table 3.

During the experiments, these parsers run in single-
threaded mode, and the software and hardware used are
shown in Table 4.

,e performance test results of these parsers on several
log sets are shown in Figure 7, where (a) shows the parsing
time used and (b) reflects the throughput (number of logs
parsed per second).

From Figure 7(a), it can be seen that the more the log
sets, the longer the time consumed by all three parsers.
Specifically, Spray consumes less time than Drain and
Spell for handling all log sets. According to Figure 7(b),
Spray has the best performance, and its average
throughput can be 10,000 entries per second, compared to
only 4,000 and 2,000 entries per second, respectively, for
Drain and Spell.

According to the evaluation results stated in [20], Drain
and Spell are high-performance techniques among the
existing 13 log parsers. In general, the performance of Spray
is better than that of Drain and Spell, so it can be considered
that Spray has high parsing performance.

4.2.3. Effectiveness. To evaluate the effectiveness of parsers
on large data sets, we have to define the regular expressions
for log sets with conventional rule-based techniques to
obtain the ground truth. ,is is highly labor consuming and
error prone. To avoid this, [28] proposes a new effectiveness
indicator, as shown in.

Loss(T) � (T · length)
θ

+
1

T · length
× 

T·length

i�0

avgTokensLost ti( 

ti · length
.

(2)

,is indicator defines two calculable values: T.length
and avgTokensLost. If T.length (number of templates) is

too large, it means massive templates in the log are not
properly identified. ,e larger the value of avgTokensLost
(the difference between the average length of each template
and that of its matching log), the greater the possibility that
the constant tokens in the log are parsed to variables.
,erefore, the lower Loss is, the more effective log parsing
is.

T.length and avgTokensLost represent different di-
mensions (generally, T.length is high while avgTokensLost
is low). If these two values are to be added up, at least one of
them must be subject to exponentiation (for example, θ in
(2)). ,is indicator, however, needs to be adjusted for
different log sets, which means (2) is not universal.
,erefore, it would be better if we do the computation by
multiplying these two values. However, an adjustment
needs to be made considering that this technique may not
be applicable in some cases. For example, for Drain, a log is
always assumed to have the same length as its template (i.e.,
avgTokensLost is always 0). ,erefore, the product will
always be 0 if these two values are multiplied. For that
reason, we replace avgTokensLost with avgVarTokens, i.e.,
the average number of variable tokens identified in each
log, as shown in.

avgVarTokens �
1
n

× 
n

i�0
varTokens(i). (3)

,erefore, we introduce a new method for calculating
the effectiveness evaluation indicator as shown in.

Loss(T) � (T · length)
(1/2)

× avgVarTokens2. (4)

Table 2: Time complexity of several log parsers.

Method Time complexity
Spray O (Llog (LlogN))
Drain [16] O (LlogN)
Spell [17] O (Llog (LN))

Table 3: Log sets used for performance test.

Log sets Number of entries
Linux 25567
Apache 56482
Zookeeper 74380
HealthApp 253395
SSH 655147
Android 1555005
BGL 4747963

Table 4: ,e information of software and hardware.

OS CentOS Linux release 7.7.1908
Core 3.10.0–1062.18.1.el7.x86_64
CPU Intel (R) Xeon (R) CPU E5-2680 v4 @ 2.40GHz
Memory 256GB
Disk Mechanical hard disk
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We continue to calculate Loss of Spray, Drain, and Spell
based on the log sets listed in Table 4. ,e results are shown
in Table 5.

Based on the results in Table 5, Spray does better in
parsing more log sets, with the lowest Loss for 5 of 7 log sets.
For Zookeeper log set, Spray achieves a slightly higher Loss
than Spell while for SSH log set, its Loss is only higher than

that of Drain. For HealthApp log set, Drain generates too
many templates, making its Loss much greater than those of
the other two parsers. As excessive parsing leads to excessive
extraction of variables, Spell has a higher Loss than those of
the other two parsers for Apache, SSH, Android, and BGL
log sets.

5. Conclusion and Future Works

To realize automatic, accurate, and efficient real-time log
parsing of unstructured log text, we propose Spray, a
streaming log parser for real-time analysis in this paper. ,is
parser innovatively realizes accurate matching between logs
and their templates based on the law of contrapositive after
tokenizing the incoming log messages and computing the
similarity, thus obtaining accurate parsing results. In ad-
dition, we use two strategies: key partitioning and search tree
for high parsing throughput. We conducted extensive
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Figure 7: Parsing performance of several parsers. (a) Take up time. (b) ,roughput.

Table 5: Comparison of loss.

Log sets Spray Drain [16] Spell [17]
Linux 139.90 175.48 166.14
Apache 4.76 11.67 16.28
Zookeeper 9.55 14.02 9.25
HealthApp 7.38 710.58 250.42
SSH 77.69 58.16 104.64
Android 864.54 1059.30 1302.23
BGL 43.67 155.23 814.77
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experiments from such aspects as accuracy, time complexity,
performance, and effectiveness. ,e experimental results
show that Spray has the highest accuracy rate on 14 log sets
and the second-highest accuracy rate on the remaining 2 log
sets. In terms of parsing performance, Spray realizes an
average throughput of 10,000 entries per second, higher than
those of Drain and Spell. From the aspect of effectiveness,
Spray has the lowest Loss for most log sets. ,erefore, we
believe Spray has better accuracy and parsing performance
and can parse large real-time logs effectively.

In the future, we plan to automatically tag the semantics
of log variables and automatically assign field names to the
extracted variables in log messages.,is will not only help us
understand the semantics represented by log variables but
also facilitate the direct use of the analysis platform for
structured data analysis.

Data Availability

,e log data supporting this log parser are from previously
reported studies and data sets, which have been cited.
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