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.e coin-tossing protocol is an important research area in cryptography. It generates a random bit with uniform distribution even
if some participants might fraud. However, traditional coin-tossing protocol could not solve the situation of multiparty. It only
divides participants into two parts. In this paper, a new kind of multiparty strict coin-tossing protocol based on the eigenvalue of
matrix was proposed. First, matrix tampering attacks can be resisted. On the other hand, collusion attack which was caused by the
addition of the Lagrange interpolation formula could be overcome. .e analysis shows that the correctness and security of both
protocols was guaranteed. Based on the above statements, comparing with the classic coin-tossing protocols, the proposed scheme
has the advantage of resisting parties aborting, low complexity, and practicability.

1. Introduction

In network communication that the communicating party is
not in the same geographical position, once the judgment
needs to be made, both parties should compare the guessing
result and ensure the information is not disclosed at the
same time. .e coin-tossing protocol can be seen as an
application case for secure multiparty computation.

In cryptography, suppose Alice and Bob throw coins,
and before the results are revealed, neither side wants to let
the other one knows their own result, which is one of the
important models for multiparty confidential computing [1].
Obviously, as there is no third-party arbitration, the fairness
based on fraud prevention has become the most important
consideration for the coin-tossing protocol.

Many scholars have conducted research on the coin-
tossing protocol. In 1982, Blum introduced the problem of
tossing a fair coin through a modem [2]. In 1990, Ben et al.
proposed a coin throw problem in Reference [3]. In 2003,
Lindell et al. raised the fair coin-tossing protocol of two-
party [4]. Kun et al. raised the coin-tossing protocol based on
knapsack problem [5].

Apparently, these protocols are limited to two parties
and have not solved the problem of multiparty participation

in coin-tossing. On the other hand, they did not solve the
problem that all the participants have to decide their order in
a fair way rather than be divided into two parts.

In this paper, based on the matrix eigenvalues and ei-
genvectors, we have first proposed a new kind of strict
multiparty coin-tossing protocol. Furthermore, we applied
the Lagrange interpolation formula to design an improved
strict multiparty tossing protocol which can resist collusion
attacks. At last, analysis of both protocols and specific ex-
amples are proposed.

2. Basic Knowledge

2.1. Coin-Tossing Protocol. .e definition of coin-tossing
protocol is as follows:

Definition 1. [6] Coin-tossing protocols are protocols that
generate a random bit with uniform distribution, although
some corrupted parties might try to bias the output. .e
coin-tossing protocol is used as a building block in many
cryptographic protocols.

Secure multiparty computation allows distrustful parties
to compute it correctly and privately [4, 7, 8]..e coin-
tossing protocol raises questions of fairness and how
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corrupted parties can influence the scheme [9, 10]..is is the
problem we are going to discuss in the following section.

2.2. Eigenvalue and Eigenvector. .e eigenvalue and ei-
genvector are defined as follows:

Definition 2. [11] Let A be a n-order matrix, if the number λ
and n-dimensional nonzero column vectors p make the
equation be established.

Ap � λp. (1)

.en, the number λ is called the eigenvalue of the matrix
A, and the nonzero vector p is called the eigenvector of A
corresponding to the eigenvalue λ. Equation (1) can also be
written as follows:

(A − λE)p � 0. (2)

Equation (2) is a homogeneous linear system of n
equations with n unknowns.

2.3. Lagrange Interpolation Formula. Let n + 1 distinct in-
terpolation points (nodes) xj, j � 0, 1 . . . n, be given, to-
gether with corresponding numbers fj, which may or may
not be samples of a function f. Unless stated otherwise, we
assume that the nodes are real, although most of the results
and comments generalize to the complex plane. Let n

denote the vector space of all polynomials of degree at most
n. .e classical problem addressed here is that of finding the
polynomial p ∈ n that interpolates f at the points xj, i.e.,

p xj  � fj, j � 0, . . . , n. (3)

.e problem is well-posed, i.e., it has a unique solution
that depends continuously on the data. Moreover, as
explained in virtually every introductory numerical analysis
text, the solution can be written in the Lagrange form [12]:

p(x) � 
n

j�0
fjlj(x),

lj(x) �


n
k�0,k≠j x − xk( 


n
k�0,k≠j xj − xk .

(4)

.e Lagrange polynomial lj corresponding to the node
xj has the following property:

lj xk(  �
1, j � k,

0, otherwise,
j, k � 0, . . . , n. (5)

2.4. Meaning of Strict Multiparty. We could compare the
protocols described in Section 3 to the grouping process of a
soccer game. A group of players are fairly and randomly
divided into team A and team B. .is process only divides
the participants into two parts, but does not draw the strict
order.

.erefore, considering the order of all participants, we
could define the meaning of the word “strict.” Its work
process is more like drawing lots. All players need to decide
their order in a fair way. We associate this idea with the
matrix and propose a kind of the strict multiparty coin-
tossing protocol.

3. Classic Coin-Tossing Protocols

3.1. Blum’s Coin-Tossing Protocol. Suppose two sides of the
communication are Alice and Bob. .ey execute the fol-
lowing protocol [13]:

Step1: Alice chooses a random bit a and sends a
commitment c� commit(a) to Bob.
Step2: Bob chooses a random bit b and sends it to Alice.
Step3: Alice sends the bit a to Bob together with de-
commit(c).
Step4: If Bob does not abort during the protocol, Alice
outputs a⊕b, otherwise she outputs a random bit.
Step5: If Alice does not abort during the protocol and c
is a commitment to a, and then Bob outputs a⊕b,
otherwise he outputs a random bit.

3.2. Coin-Tossing Protocol Based on Quadratic Residue.
Suppose two sides of the communication are Alice and Bob.
.e protocol is as follows [14]:

Step1: Bob chooses large prime numbers p, q and
calculate n � pq, then chooses random number a that
satisfied with Jacobi symbol [15] (a/n) � 1 and sends n,
a to Alice.
Step2: Alice guesses if a is the quadratic residue of n.
Telling the result to Bob.
Step3: Bob tells Alice she is right or not and sends p, q

to Alice.
Step4: Alice checks p, q’s parity and calculates n � pq.

3.3. Coin-Tossing Protocol Based on One Way Function.
Suppose two sides of the communication are Alice and Bob.
.ey both hold a one way function f(x) and do not know
f− 1(x). .e protocol is as follows [16]:

Step1: Bob chooses a random number x and sends Alice
y � f(x).
Step2: Alice guesses the parity of x and tells the result to
Bob.
Step3: Bob tells Alice she is right or not and sends x to
Alice.

4. Multiparty Coin-Tossing Protocol Based on
the Eigenvalue

Suppose there are n participants who are marked as
Pi(i � 1, 2 . . . n). .e protocol is based on finite field Zq

where q> n and a secret matrix A which is held by P1. It is
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worth mentioning that matrix A has the following two
properties:

(1). A is a n-order matrix.
(2). .e eigen equation ofA has no multiple roots which

means A has n different eigenvalues.

Suppose A’s eigenvalues are λi(i � 1, 2 . . . n) and cor-
responding eigenvectors are pi (i � 1, 2 . . . n). .e content of
the protocol is as follows:

Step 1: Participant P1 chooses a secret n-order matrix
A. P1 announces the main diagonal of A and all ei-
genvectors pi (i � 1, 2 . . . n).
Step 2: Participants Pi(i � 2 . . . n) randomly select an
eigenvector from p i (i � 1, 2 . . . n) and the last one
belongs to participant P1. None of the eigenvectors
could be chosen twice.
Step 3: Participant P1 announces the secret matrix A.
All participants calculate λi(i � 1, 2 . . . n) of their own
according to equation (1).
Step 4: Sort λi(i � 1, 2 . . . n) in ascending sequence,
then each participant could get the corresponding
order.

As can be seen from the above protocol, the final order of
each participant depends only on the size of the eigenvalues.
It could not prevent multiple participants in the conspiracy
from exchanging eigenvectors to adjust the order. .is
means that this protocol cannot resist collusion attack. We
use the Lagrange interpolation formula to make up for this
security hole.

5. Improved Multiparty Coin-Tossing Protocol
Based on the Eigenvalue

Suppose there are n participants who are marked as
Pi(i � 1, 2 . . . n). .e protocol is based on finite field Zq

where q> n and a secret matrix A which is held by P1. It is
worth mentioning that matrix A has the following two
properties:

(1) A is a n-order matrix.
(2) .e eigen equation of A has no multiple roots which

means A has n different eigenvalues.

Suppose A’s eigenvalues are λi(i � 1, 2 . . . n) and cor-
responding eigenvectors are pi (i � 1, 2 . . . n) . .e content
of the protocol is as follows:

Step 1: Participant P1 chooses a secret n-order matrix
A. P1 announces the main diagonal of A and all ei-
genvectors pi (i � 1, 2 . . . n).
Step 2: Participants Pi(i � 2, · · · n) randomly select an
eigenvector from pi (i � 1, 2 . . . n) and the last one
belongs to participant P1. None of the eigenvectors
could be chosen twice.
Step 3: Participant P1 announces the secret matrix A.
All participants calculate λi(i � 1, 2 . . . n) of their own
according to equation (1).

Step 4: All participants Pi(i � 1, 2 . . . n) randomly se-
lect constant ni ∈ Zq to form (i, ni)(i � 1, 2 . . . n) and
calculate polynomial according to equation (3):

p(x) � 
n

i�1
nili(x),

li(x) �


n
k�1,k≠i (x − k)


n
k�1,k≠j (i − k).

(6)

As there are n points in total, so p(x) is a (n − 1)-th
degree polynomial at most:

p(x) � a0 + a1x + · · · + an−1x
n−1

, a0, a1 . . . an−1 ∈ Zq .

(7)

We choose the coefficient of the nonzero minimum
degree term in p(x), suppose it is aj.
Step 5: All participants Pi(i � 1, 2 . . . n) calculate:

si � λiaj(i � 1, 2 . . . n). (8)

Sort si(i � 1, 2 . . . n) in the ascending sequence, then
each participant could get the corresponding order of
themselves.

6. Instance of the Protocol

.e protocol is based on finite field Z23. Suppose there are 6
participants who is marked as Pi (i � 1, 2, 3) and a secret
matrix A is held by P1. A is a 6-order matrix which is
designed as follows:

A �

5 13 18 0 4 6

2 18 17 20 4 7

0 17 0 21 0 8

2 12 17 22 4 11

2 20 20 0 5 1

2 12 17 20 5 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

All eigenvalues and related eigenvectors pairs (λi, pi)

(i� 1, 2, . . ., 6) are as follows:

λ1, p1(  � 1, (1 1 0 1 0 1)
Τ

 ; λ2, p2(  � 2, (1 1 1 0 1 1)
Τ

 ,

λ3, p3(  � 3, (0 1 0 1 1 1)
Τ

 ; λ4, p4(  � 4, (1 0 1 0 1 0)
Τ

 ,

λ5, p5(  � 5, (1 1 0 1 1 1)
Τ

 ; λ6, p6(  � 6, (1 0 1 1 0 1)
Τ

 .

(10)

Step1: According to the protocol, participant P1 holds
the secret matrix A and announces the main diagonal:
(5, 18, 0, 22, 5, 3) and pi(i � 1, 2 . . . 6) to all members.
Step2: Assume that P2 chooses eigenvector p2, P3
chooses eigenvector p5, P4 chooses eigenvector p1, P5
chooses eigenvector p6, and P6 chooses eigenvector p3.
.e last eigenvector p4 is left to P1.
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Step3: Participant P1 announces the secret matrix A.
All participants calculate λi(i � 1, 2 . . . n) of their own
according to equation (1). So, the eigenvalues held by
each participant are — P1: 4; P2: 2; P3: 5; P4: 1;

P5: 6; P6: 3.
Step4: All participants Pi(i � 1, 2 . . . n) randomly select
constant ni ∈ Zq to form (i, ni)(i � 1, 2 . . . n), assume
that P1 chooses n1 � 5, P2 chooses n2 � 8, P3 chooses
n3 � 1, P4 chooses n4 � 12, P5 chooses n5 � 6, and P6
chooses n6 � 18, we can obtain p(x) according to
equation (3):

p(x) � 5 ×
(x − 2)(x − 3)(x − 4)(x − 5)(x − 6)

(1 − 2)(1 − 3)(1 − 4)(1 − 5)(1 − 6)

+ 8 ×
(x − 1)(x − 3)(x − 4)(x − 5)(x − 6)

(2 − 1)(2 − 3)(2 − 4)(2 − 5)(2 − 6)

+ 1 ×
(x − 1)(x − 2)(x − 4)(x − 5)(x − 6)

(3 − 1)(3 − 2)(3 − 4)(3 − 5)(3 − 6)

+ 12 ×
(x − 1)(x − 2)(x − 3)(x − 5)(x − 6)

(4 − 1)(4 − 2)(4 − 3)(4 − 5)(4 − 6)

+ 6 ×
(x − 1)(x − 2)(x − 3)(x − 4)(x − 6)

(5 − 1)(5 − 2)(5 − 3)(5 − 4)(5 − 6)

+ 18 ×
(x − 1)(x − 2)(x − 3)(x − 4)(x − 5)

(6 − 1)(6 − 2)(6 − 3)(6 − 4)(6 − 5)

� 22x
5

− 2x
4

+ 13x
3

− 12x
2

+ 17x + 21.

(11)

We choose the coefficient of the nonzero minimum
degree term in p(x), which is a0 � 21
Step5: All participants Pi(i � 1, 2 . . . n) calculate:

s1 � λ4a0 � 15; s2 � λ2a0 � 19; s3 � λ5a0 � 13; s4 � λ1a0

� 21; s5 � λ6a0 � 11; s6 � λ3a0 � 17.

(12)

Sort si(i � 1, 2 . . . n) in the ascending sequence
—s5, s3, s1, s6, s2, s4, the order of all members is
—P5, P3, P1, P6, P2, P4.

7. Analysis of the Protocol

7.1. Analysis of Correctness. Because the protocol of multi-
party is a kind of promotion of two-party, both have the
same properties. We only need to analyze the situation of
multiparty.

When it comes to classic two-party coin-tossing protocol
(suppose two sides of the communication are Alice and
Bob), a correct and effective process should meet the fol-
lowing three principles [17]:

(1) Alice must throw a coin before Bob guess.
(2) After Bob guessing, Alice can no longer throw coins.
(3) Bob does not know how the coins land before

guessing.

Multiparty coin-tossing protocol also needs to meet
these above principles. Under the premise of correct
implementation of the protocol proposed in Sections 4 and
5, once participant P1 announces the main diagonal ofA and
all eigenvectors pi (i � 1, 2 . . . n), the “coin” has landed.
.en, the step that every participant randomly chooses their
own eigenvector can be seen as the “guess the front and
back.” Apparently, this satisfies the principle one.

.e principle two is also satisfied. Since all eigenvectors
have been selected in Step 2, so the coin throwing party P1
cannot toss the coin again. On the other hand, because the
main diagonal of A is made public, P1 has no way to change
the eigenvalue of pi (i � 1, 2 . . . n)..e proof is detailed in
Section 6.

Obviously, the principle three is satisfied. Every par-
ticipant has no need to know how the concrete structure of
matrix A . Participant P1 cannot unilaterally deceive other
participants for example tampering with the secret matrix as
long as the protocol is executed correctly.

To summarize, both protocols are based on the basic
coin-tossing protocol’s principle of design. .e correctness
is proved.

7.2. Analysis of Security. .ere are three points worth dis-
cussing in terms of security. .e first is the disclosure of the
main diagonal and the eigenvectors of the secret matrix..is
design prevents the matrix holder P1 from tampering with
the secret matrix. .e second is the resistance of the col-
lusion attack by the Lagrange interpolation formula. .e
third is verification of legal participants.

7.2.1. Protection against Matrix Tampering. What if P1 is a
fraud? Obviously if P1 only announces all eigenvectors pi
(i � 1, 2 . . . n) of A, he can manipulate the result of a coin
toss by alter the secret matrix A to make λi(i � 1, 2 . . . n)

being different..e design of making the main diagonal ofA
public can prevent this kind of fraud. .e proof is as follows:

Proposition 1. Only one exactly matrix can be determined
by the main diagonal’s elements and all eigenvectors.

Prove: Suppose the n-order secret matrix is A�

c1 x12 · · · x1n

x21 c2 · · · x2n

⋮ ⋮ ⋱ ⋮
xn1 xn2 · · · cn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ whose elements is unknown except the

main diagonal elements c1, c2 . . . cn. Besides, eigenvalues
λi(i � 1, 2 . . . n) of A are unknown and eigenvectors pi (i �

1, 2 . . . n) are all known. We suppose the column vector pi �
(p1i, p2i . . . pni)

Τ, (i � 1, 2 . . . n) and vector composed of
unknowns is x� (x12 · · · x1n, x21, x23 · · · x2n · · ·
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xn1 · · · xn(n− 1), λ1, λ2 · · · λn)Τ, According to formula (1), we can
get Api � λipi, (i � 1, 2 · · · n), which is equation set:

c1p1i + x12p2i + · · · + x1npni � λip1i,

x21p1i + c2p2i + · · · + x2npni � λip2i,

⋮,

xn1p1i + xn2p2i + · · · + cnpni � λipni,

, (i � 1, 2 . . . n).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

We put the term with the unknowns on the left and the
constant term on the right:

x12p2i + · · · + x1npni − λip1i � −c1p1i,

x21p1i + · · · + x2npni − λip2i � −c2p2i,

⋮,

xn1p1i + · · · + xn(n−1)p(n−1)i − λipni � −cnpni,

, (i � 1, 2 . . . n).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

.e above system of nonhomogeneous linear equations
can be considered as the form of Dx � b,D is the coefficient

matrix and b is the vector consist of constant terms. .e
coefficient matrix D is as follows:

D �

p2i, p3i . . . pni

√√√√√√√√√√n−1
0, 0 . . . 0
√√√√√√(n−1)(n−1)

0, 0 . . . 0
√√√√√√i−1

−p1i 0, 0 . . . 0
√√√√√√n−i

0, 0 . . . 0
√√√√√√n−1

p1i, p3i . . . pni

√√√√√√√√√√n−1
0, 0 . . . 0
√√√√√√(n−1)(n−2)+(i−1)

−p2i 0, 0 . . . 0
√√√√√√n−i

⋱ ⋮ ⋮

0, 0 . . . 0
√√√√√√(n−1)(n−1)

p1i, p2i . . . p(n−1)i

√√√√√√√√√√√√√√n−1
0, 0 . . . 0
√√√√√√i−1

−pni 0, 0 . . . 0
√√√√√√n−i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (i � 1, 2 . . . n). (15)

When i is arranged from 1 to n row by row, the size of the
coefficient matrix D is n2 × n2.Because the eigenvector pi
(i � 1, 2 · · · n) are linearly independent, the elementary row
operation cannot make any row of thematrix get all 0s which
means the rank of D is full. We obtain the following
conclusion:

r(D) � r(D|b) � n
2
. (16)

.e system of nonhomogeneous linear equationsDx � b
has a unique solution, only one exactly matrix A can be
determined.

.e proposition we just proposed directly limits P1 to
tamper with matrix elements or matrix eigenvalues. Once the
main diagonal and all eigenvectors are published, the secret
matrixA is locked. But there is still a security issue, what if two
or more participants collude to deceive? For example, Alice
and Bob exchange the eigenvector of themselves. At this time,
the role of the Lagrange interpolation formula is reflected.

7.2.2. Protection against Collusion Attack. .emain purpose
of the introduction of the Lagrange interpolation formula is
to prevent members from collusion attacks..is idea mainly
comes from Shamir’s Lagrange interpolation secret sharing
threshold system [18–20].

.e scheme in Section 4 directly determines the final
strict order based on the sort of the eigenvalues. However, in
the improved protocol proposed in Section 5, we do not
directly sort the eigenvalues, all the participants negotiate a
polynomial together and take a nonzero coefficient as a
factor. .is makes the final order completely random and is
decided by all participants, and any collusion attack will not
work.

7.2.3. Verification. Suppose participant p1 wants to ma-
nipulate the result of a coin toss. .e only way he can take is
to alter the secret matrix A. However, participants can
identify the fraud in the following ways:

(1) .e main diagonal and eigenvectors of A are not the
same as what P1 published.

(2) Cannot calculate the correct λ like λ is not in finite
field Zq.

(3) .ere are one ormore repeated eigenvalues ofmatrixA.

As long as any of the above three cases occur, it should be
taken seriously because of fraud. At this time, participants
who have an abnormal situation will report an error.

From this perspective, participant P1 is under the su-
pervision of all people. .e protocol is reliable.
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8. Protocol Comparison

In Blum’s coin-tossing protocol, there are problems caused
by parties aborting the protocol. It is proved that the best
case is 1/4 of the bias of the protocol [6]. In this paper,
apparently eigenvalue secrete matrix can not only solve this
problem but also sort multi participants strictly. We only
need to focus on the final sequence rather than pay attention
to the specific value. Legitimate users are not affected.

According to the coin-tossing protocol based on quadratic
residue [7], the large prime numbers p, q are used to calculate
composite number n. .e execute of the protocol based on the
quadratic residue calculation involving large prime numbers
and congruence equations. .erefore, the computational
complexity of the scheme is high. When it comes to the coin-
tossing protocol based on the eigenvalue, the computational
complexity is mainly based on the construction of secret matrix
Awhich can be easily constructed..e reason lies in there is no
need to care about the particular numbers of the eigenvalues.

Some classic coin-tossing protocols lack of practicality.
For example, the coin-tossing protocols based on one-way
function [21] have this drawback because there are no real
one-way functions, the almost-optimally fair multiparty coin-
tossing [22] and multiparty coin tossing in four rounds [23]
have no low complexity and strict property. In this respect, the
proposal in this paper has advantage of practicability. .e
program can easily construct a matrix that has the properties
to meet the requirements in protocols we proposed. .e
protocols in this paper are convenient and reliable.

To summarize, a comparison of several coin-throwing
protocols is shown in Figure 1, which shows that our
proposed solution is more advantageous.

9. Conclusion

.is paper first proposes a new kind of strict multiparty
coin-tossing protocol based on the eigenvalue, then takes a

step further to propose an improved version which is based
on the Lagrange interpolation formula. .e analysis shows
the protocol is correct and can resist matrix tampering attack
as long as collusion attack. Furthermore, we make sure the
protocols based on the eigenvalue can resist parties aborting,
have low complexity, and practicability which means they
could easily be constructed.

.e coin-tossing protocol can resist the attack proposed
in literature [24, 25], which has been studied in literature
[26].
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