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-e intrusion detection schemes (IDSs) based on the Gradient Boosting Decision Tree (GBDT) face three problems: unbalanced
training data distribution, large dimensionality of data features, and difficulty in model parameter optimization, which lead to
weak monitoring capability and high false positive rate. For the problem of unbalanced training data distribution, we make the
one-sided gradient oversampling algorithm to ensure the balance between the data of each category. To tackle the problem of the
large dimensionality of data features, we develop a hierarchical cross-validation algorithm for binding mutually exclusive features.
To address the problem of difficulty in model parameter optimization, we design a Bayesian optimization algorithm to make the
model parameter search process more targeted and reduce the model training cost by establishing functional relationships
between hyperparameters and target functions. -e detailed experimental results show that the scheme can effectively solve the
problems of data imbalance, high-dimensional data features, and low parameter finding efficiency, and improve the model’s
ability to monitor the attack behavior.

1. Introduction

Internet of -ings (IoT) [1, 2] incorporates various types of
acquisition or control sensors as well as mobile commu-
nications, intelligent analytics, and other technologies into
various aspects of industrial production processes, making a
large number of resource-constrained end devices gradually
becoming first-class network entities [3, 4]. Compared to
personal computers and cloud servers with large amounts of
computing resources, end devices are usually close to the
user side or in the transmission path and have a higher
likelihood of being compromised by attackers. For example,
an attacker can perform a side-channel attack on end devices
by monitoring common information such as the time
consumption and power consumption of end devices. In-
trusion detection schemes are one of the most well-known
security protection techniques in the traditional Internet
domain [5–7]. However, since emerging resource-

constrained network entities usually have limited computing
power or insufficient power supply, mainstream intrusion
detection techniques are hardly as effective as they were in
the past. -erefore, it is necessary to design lightweight
intrusion detection techniques to protect the security of
resource-constrained end devices in IoT.

IDSs are mainly divided into two categories: traditional
detection schemes and machine learning-based detection
schemes. Traditional detection schemes suffer from weak
monitoring capability [8, 9], high false positive rates [10, 11],
difficult feature information collection [12], etc. To cope with
these problems of traditional detection schemes, various
IDSs based on machine learning [13] have been proposed
one after another. -ese detection schemes first use machine
learning algorithms to learn known attack types and then use
training models to identify attacks with corresponding
features. It can be broadly classified into the following two
categories: (1) IDSs based on a single machine learning
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algorithm. Lippmann et al. [14] used a neural network
composed of multilayer perceptions without hidden units to
construct an anomaly detection system. -e number of
keyword occurrences in the Telnet session is first used as
input to the neural network, and then the instances that are
flagged as attacks are used as training data to train the
multilayer perceptual neural network. Bivens et al. [15] used
the TCP/IP data from DARPA to construct an anomaly
detection system based on the multilayer perceptual neural
network. It uses time windows to detect multiple packets as a
group. However, the applicability of this scheme is very
limited and the constructed model is simple and cannot
handle large data volume, which leads to degradation of the
model performance and has been rarely used in recent years.
(2) IDS based on the integrated learning algorithm. Mousavi
et al. [16] combined the grid search algorithm to reduce the
number of input data and normal data matching the number
of matches. Arif et al. [17] improved the recognition rate of
the model on attack data by constructing the intrusion
detection model with the help of principal component
analysis unsupervised dimensionality reduction algorithm
and Adaboost algorithm [18]. Nabila et al. [19] constructed a
classifier by Random Forest and were able to identify four
types of attacks, DOS, Probe, U2R, and R2L [20]. GBDT [21]
is one of the most applied models for integrated learning to
solve classification problems. IDSs [22–26] based on GBDT
[27] are one of the most widely used means to defend against
attacker intrusions today. However, this scheme usually
requires integrated learning of multiple base models, and
suffers from three problems: unbalanced training data dis-
tribution, large feature dimensionality, and difficulty in
finding the optimal model parameters, which reduce the
recognition accuracy, learning efficiency, and generalization
ability of the model.

To solve the above problems, we propose a lightweight
gradient boosting method, called LGBM, to improve the
recognition accuracy, training efficiency, and general-
ization ability of the model. -e main contributions are as
follows:

(1) For the problem of unbalanced training data dis-
tribution, we develop a Gradient Borderline-syn-
thetic Minority Oversampling Technique
(GSMOTE) for expanding small samples of data
(data classes with small sample size). -e algorithm
first updates the data samples based on the gradient
value of each sample in the dataset by the unilateral
gradient sampling algorithm and then uses the
synthetic minority oversampling algorithm to ex-
pand the updated dataset with small samples, thus
ensuring the balance among the data samples.

(2) For the problem of large dimensionality of data
features, we design an Exclusive Features Binding-
Hierarchy Cross-Validation algorithm (EFB-HCV)
to reduce the feature dimensionality of the data. -e
algorithm first performs feature combinations based
on the graph coloring idea and binds the mutually
exclusive features existing in the data set to reduce
the number of features.

(3) For the problem of difficult parameter search during
model training, we propose a Bayesian Optimization
algorithm (BO) to improve the optimization effi-
ciency of model parameters. -e algorithm adds a
step limit to the parameter search process and
regulates the search range of the parameters
according to the step size, which can effectively avoid
the traversal operation of all parameters.

(4) To verify the effectiveness of LGBM, we compare
LGBM, Random Forest, Adaboost, Decision Tree,
and GBDT with the help of four metrics: precision,
recall, F-measure, and Roc curve. Detailed experi-
mental results show that the new scheme improves
the recognition rate of the model for a few attack
types, the efficiency of the model parameter search,
the learning efficiency, and the generalization ability.

2. Basic Knowledge

-is section introduces two aspects of gradient boosting
Decision Tree and basic optimization solution.

2.1. Gradient Boosting Decision Tree. GBDT is an efficient
regression problem-solving method based on the boosting
algorithm, which uses the regression tree as the basic
classifier and a gradient boosting learning algorithm to it-
eratively generate a Decision Tree. Boosting algorithm is a
weighted linear combination of multiple weak learners, i.e.,
f(x
⇀

) � fM(x
⇀

) � 􏽐
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m�1 hm(x

⇀
,Θm), x

⇀ is the input of model,
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,Θm) denotes themth model,Θm are the parameters of
the mth model,M is the number of base models. -e CART
tree applied by the boosting algorithm is a binary decision
tree.-e CARTtree generates a classification decision tree, if
the data to be predicted is discrete, and a regression decision
tree if the data to be predicted is continuous. As an improved
algorithm of GBDT, the LGBM also uses the CART re-
gression tree as the base learner to find the best division
point containing all features. -e CARTregression tree uses
the squared error as the discriminant of the best division
point, and the regression boosting tree process is described
as follows:
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2.2. Basic Optimization Solution. GBDTneeds to traverse all
features of all samples when constructing a Decision Tree to
obtain effective splitting nodes to obtain the maximum
information gain points. However, when the number of
samples is large and the dimensionality of sample features is
too high, its training efficiency will be significantly reduced.
-e new algorithm LGBM uses one-sided gradient sampling
algorithm and mutually exclusive feature binding algorithm
to reduce the number of training samples and the number of
sample features in the training process to improve the
training speed of the model.

2.2.1. One-Sided Gradient Sampling. One-sided gradient
sampling is a common processing algorithm when the
dataset contains a large amount of sample data. Instead of
using weight values to measure the importance of the
samples in GBDT, the negative gradient of the loss function
is fitted.-e larger the sample prediction error, the larger the
absolute value of the gradient, and the worse the learning of

the sample. And, the smaller the sample prediction error, the
smaller the absolute value of the gradient, and the better the
learning of the sample.

-e one-sided gradient sampling algorithmmeasures the
importance of the sample by the gradient of the sample, i.e.,
the higher the absolute value of the gradient of the sample,
the higher the importance of the sample. One-sided gradient
sampling keeps all samples with larger gradient values, while
random sampling is performed among samples with smaller
gradient values. -e specific process is that firstly, the
samples are arranged in descending order according to their
absolute values of gradient, and then the top a% of them are
selected as the large gradient sample point set A, and the
remaining sample set is randomly selected b% as the small
gradient sample set B. Finally, the two sets are combined and
the model is trained under the updated data set.

-e variance gain in the one-sided gradient sampling
algorithm is defined as:
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nT is the number of all retained samples, nl|T(d) is the
number of samples in the left subtree, and nr|T(d) is the
number of samples in the right subtree. αl and αr are the set
of samples with larger retention gradient values in the left
subtree and right subtree. βl and βr are the set of samples
with smaller retention gradient values in the left subtree and
right subtree.-e algorithm defines the approximation error
as: φ(d) � |􏽥Vj|T(d) − Vj|T(d)|, the gradient values are
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the maximum gradient weighted value in B.
D � max(gl(d), gr(d)) is selected as the maximum of the
mean gradient values in the left and right subtrees. -e one-
sided gradient sampling algorithm increases the diversity of
the base model, which helps to improve the generalization
ability of the integrated model and also improves the ability
of the model to monitor the attack behavior.

2.2.2. Mutually Exclusive Feature Binding. For the sample
x
⇀

i � (xi,1, xi,2, . . . , xi,n)T in the dataset
R � (x

⇀
1, y1), (x

⇀
2, y2), . . . , (x

⇀
n, yn)􏽮 􏽯, if for each sample

i � 1, 2, . . . , N, there will be no xi,j ≠ 0, xi,k ≠ 0, then the
sample features j and k are mutually exclusive features. -e
mutually exclusive feature finding process is described as
follows (Algorithm 1):

Benefiting from the histogram algorithm, LGBM first
groups consecutive features into n integers (n integers

represent n histograms), then iterates through the sample
features, merges the features belonging to a certain integer
range into the histogram represented by that integer, and
finally merges each feature into each histogram, thus finding
the best segmentation point based on the discrete value of
the histogram.

3. Lightweight Gradient Boosting Method

-is section focuses on three aspects: unbalanced data pro-
cessing, data characterization, and parameter optimization.

3.1. UnbalancedData Processing. -rough the analysis of the
collected intrusion detection dataset, we found that the data
distribution of each category in the original dataset is ex-
tremely unbalanced, and the number of DOS attack types in
the KDD dataset is about 400,000, accounting for about 80%
of the total data, while the number of U2L attack types is
about 60, accounting for less than 1%.-is problem is likely to
cause the learner to overfit large samples (data categories with
large sample data) and underfit small samples (data categories
with small sample data), leading to a decrease in the accuracy
of model recognition. To solve this problem, we propose the
Gradient Borderline-synthetic Minority Oversampling
Technique (GSMOTE) to expand the small sample data.

-e GSMOTE algorithm manually synthesizes new
sample data for the few classes of samples that are at the
boundary, which effectively solves the problem that the
boundary instances are prone to misclassification in the
SMOTE. Using the gradient sampling algorithm decreases
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the amount of sample data and reduces the amount of
learning required by the model. According to the fitting
principle of GBDT to the objective function, the gradient is
crucial information to measure the fitting effect of samples.
-erefore, we update the dataset with the gradient value of
samples. If the gradient value of a sample is small and its
learning error is small, it indicates that the sample has been
well trained and the instances with small gradient values can
be appropriately deleted in the dataset. If the gradient value
of a sample is large, it indicates that the sample has not been
fully learned and the instances with large gradient values in
the dataset are retained.

We first update the dataset using the one-sided gradient
sampling algorithm to eliminate sample points with small
gradient values, and then perform data balancing on the
updated dataset using the GSMOTE Algorithm 2, the
pseudo-code for the GSMOTE is as follows:

Where T is the number of minority samples, k is the
number of nearest neighbors, and N is the sampling rate.
MinoritySam[][] is an array for original minority samples,
Newindex[][] is the number of synthetic samples generated,
SyntheticSam[][] is the array for synthetic samples, and
numattrs is the number of attributes.

3.2. Data Feature Dimensionality Reduction. -e recursive
feature elimination algorithm, which first assigns weights
to each feature of the sample, is trained on the specified
dataset using the base model. -en the feature weights of
the trained model are extracted and the sample features
with the smallest weight are removed by sorting them from
largest to smallest according to their absolute values. Fi-
nally, the process is recursively repeated until the desired
number of features is reached. In the sparse feature space,
many features are mutually exclusive, i.e., they never obtain
nonzero values at the same moment, and mutually ex-
clusive features can be bundled into one feature. -e al-
gorithm reduces the data feature dimensionality to some
extent and retains the valid feature information by cross-
validation methods. However, this algorithm is costly in the
process of dimensionality reduction and requires iterative
training of the base model to traverse all sample features
before the final sample dataset can be obtained. In addition,
the sample features eliminated by recursion also contain
information useful for the classification samples, and the
dataset after multiple recursions will lose some effective
features. -erefore, the performance of the model trained
with this dataset is reduced.

-e number of samples in the original dataset is large,
and the feature dimension is large. According to the
analysis of the original dataset, it is known that the high-
dimensional data feature space has multiple features whose
values will not be nonzero at the same time, i.e., the high-
dimensional data feature space is sparse, which we call
mutually exclusive features. -erefore, the mutually ex-
clusive features can be used to merge multiple features in
the dataset, thus reducing the number of features and the
dimensionality of the features. According to the idea of the
graph coloring problem, the mutually exclusive feature

merging algorithm uses graph vertices to represent sample
features, and there is no connection between mutually
exclusive features, so when the graph is colored with K
colors, there are K groups of mutually exclusive features in
the graph. -e pseudo-code of the Exclusive Features
Binding Algorithm 3 is as follows:

-e mutually exclusive feature merging algorithm
performs feature combination based on the graph coloring
problem idea, where features are used as vertices of a
graph, edges connect two nonmutually exclusive features,
and the weights of the edges indicate the total conflict
values of the two features, and feature points of the same
color in the graph are mutually exclusive features. For
incomplete mutually exclusive features, the algorithm
allows lower conflicts, so the features can be further
combined to reduce the number of features and improve
computational efficiency. To ensure that the original
features are successfully separated after each feature
combination is merged, i.e., the original feature values can
be identified in the merged feature combination, the al-
gorithm sets offsets for the corresponding feature values,
appropriately changes the range of feature values, and
assigns different feature values to different bins in the
feature combination, thus avoiding feature value confu-
sion after feature fusion.

To avoid the uneven distribution of data categories by
the K-fold cross-validation method, we propose to use the
Hierarchy Cross-Validation Algorithm (HCV), which treats
the sample data of each attack category in a balanced way
and uses a hierarchical data extraction method to ensure the
equal proportional division of attack categories in the
training and test sets. -e pseudo-code of the Exclusive
Features Binding-Hierarchy Cross-Validation Algorithm 4
(EFB-HCV) is as follows:

-e EFB-HCV algorithm first optimizes the data feature
reduction scheme of RFE-HCV to avoid recursively ma-
nipulating the dataset, and then uses the same hierarchical
cross-validation method in data slicing to ensure equal
proportional distribution of attack categories in the training
and test sets. -e specific details are described as follows:

(1) In terms of feature optimization, the EFB-HCV al-
gorithm uses the mutually exclusive feature binding
technique to feature the dataset and merges the same
color feature points, i.e., mutually exclusive features,
and sets an offset for incomplete mutually exclusive
feature values to further reduce the number of fea-
tures. -e algorithm does not need to assign a weight
value to each feature, which avoids the iterative
training of the model and reduces the model training
cost.

(2) In terms of data assignment, the data features are
processed by the mutually exclusive feature binding
algorithm. -en the hierarchical cross-validation
algorithm divides the data proportionally. In other
words, the data in each training set belong to dif-
ferent attack categories, and the proportion of attack
categories in each training set and test set is the same
as the original training set.
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3.3. Parameter Optimization. -e grid search algorithm first
combines the values of multiple parameters and grids them,
then uses each set of parameter combinations for base model
training, and finally selects the best parameter combination
based on the performance of the model. -e updated grid
search algorithm improves the efficiency of parameter search
to some extent by stepping updating strategy, but both al-
gorithms simply search for parameter combinations without
making full use of the information of search points, which
reduces the quality and efficiency of parameter search.
Bayesian Optimization Algorithm (BO) in the case of a large
number of parameter combinations can be more efficient than
grid search by establishing the proxy function through finite
iteration, making full use of the searched parameter infor-
mation, and determining the optimal parameter combination
directly based on the maximum value of the proxy function.
-e pseudo-code of BO is as follows (Algorithm 5):

-e base model root node is initialized, the constant
values are predicted, and the parameters such as model
n_estimator are estimated. Where f is the black box function
being optimized, X is the parameter search space, S is the
collection function, andM is the agent model. According to
the Bayesian optimization idea, firstly initialize the data set
Data which contains n candidate solutions. Second, the n
candidate solutions found by this point set are used to build
a Gaussian regression model for making the posterior
probabilities of other candidate points. -en, the collection
function is constructed based on the posterior probabilities
to find the next point that may produce the extreme value.
Finally, the point that makes the function reach its maxi-
mum value is selected as the parameter of the training
model.

Bayesian modeling of the function values of the black-
box function using a Gaussian process gives the probability
distribution of each function value, lets the function value at
each point be a random variable, and multiple random
variables form a random vector obeying a normal distri-
bution. For the function f(x), there are n sampling points
(x1, x2, · · · , xn), the corresponding function values f(x) �

[f(x1), f(x2), . . . f(xn)] of which form a vector, which
obey a normal distribution in the Gaussian regression
process:

f(x) ∼ N μ x1:n( 􏼁, 􏽘 x1:n, x1:n( 􏼁􏼐 􏼑. (2)

μ(x1:n) is the mean vector of the Gaussian distribution.
􏽐(x1:n, x1:n) denotes the covariance matrix. -e covariance
matrix is usually implemented using a kernel function,
which is defined in the Gaussian regression process as:

k x1, x2( 􏼁 � z exp −
1
2ε2

x1 − x2
����

����
2

􏼠 􏼡. (3)

z, ε is the parameter of the kernel function, and the mean
vector is calculated from the mean function μ(x). According
to the multidimensional normal distribution from the co-
variance matrix and the mean the vector,we can predict the
probability distribution of the function value of the

pointxn+1, after adding the point the function value vector
distribution is f(x1:n+1) and obeys the n+ 1 dimensional
normal distribution.

f x1:n( 􏼁

f xn+1( 􏼁
􏼢 􏼣 ∼ N

μ x1:n( 􏼁

μ xn+1( 􏼁
􏼢 􏼣,

K k

k
T

k xn+1, xn+1( 􏼁
􏼢 􏼣􏼠 􏼡, (4)

where f(x1: n) obeys the n-dimensional normal distribu-
tion, the mean vector is μ(x1:n), k is denoted as
k � [k(xn+1, x1), k(xn+1, x2), . . . k(xn+1, xn)], calculated
from the kernel function. -e covariance matrix K can be
calculated based on the mean function and the covariance
function. -e mean and variance expressions of the con-
ditional distribution obeyed can be introduced according to
the rules for calculating the f(xn+1) multidimensional
normal distribution as:

μ � k
T
K

− 1
f x1:n( 􏼁 − μ x1:n( 􏼁( 􏼁,

σ2 � k xn+1, xn+1( 􏼁 − k
T
K

− 1
k.

(5)

Suppose the mapping relationship between the param-
eters to the objective function is f(x), f(x) is uncertain, and
the acquisition function constructed by the mathematical
expectation of f(x) does not satisfy the conditions of the
corresponding function, i.e., the value of the acquisition
function is small at the existing adopted points, and the value
of the acquisition function is large at the points within the
confidence interval and the mean value of the function is
larger.We improve theexpectation acquisition function as
follows: let n candidate solutions have been searched and the
function is maximal:

􏽢fn � max f x1( 􏼁, f x2( 􏼁, . . . , f xn( 􏼁( 􏼁. (6)

Calculate the function value for the next candidate
point xn+1 as f(xn+1), if f(xn+1)≥ 􏽢fn, then the extreme
value of the function at n+1 is f(xn+1), and vice versa 􏽢fn.
After adding new candidate points, the improvement value
of the function is [f(xn+1) − 􏽢fn]∗, and the optimization
goal is to find the candidate point x that makes the max-
imum improvement value.

EIn(x) � En f xn+1( 􏼁 − 􏽢fn􏽨 􏽩
∗

􏽨 􏽩. (7)

En[∗] � E[∗ |x1,n, y1,n] denotes the expected value calcu-
lated from the first n sampling points and their function
values. Because the Gaussian process f(x) obeys a normal
distribution, located at point x the mean value is φ � φ(x),
and the variance is σ2 � σ2(x), such that λ � f(x), is
introduced:

EIn(x) � 􏽚
+∞

− ∞
λ − 􏽢fn􏽨 􏽩

+ 1
����
2πσ

√ exp −
(λ − φ)

2

2σ2
􏼠 􏼡dz

� 􏽚
+∞

􏽢fn

λ − 􏽢fn􏼐 􏼑
1
����
2πσ

√ exp −
(λ − φ)

2

2σ2
􏼠 􏼡dz.

(8)
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Based on the points for dollars we get,

EIn(x) � 􏽚
+∞

􏽢fn

λ − 􏽢fn􏼐 􏼑
1
����
2πσ

√ exp −
(λ − φ)

2

2σ2
􏼠 􏼡dz

� φ − 􏽢fn􏼐 􏼑 1 − ϑ
􏽢fn − φ􏼐 􏼑

σ
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + στ

􏽢fn − φ􏼐 􏼑

σ
⎛⎝ ⎞⎠.

(9)

τ(x) is the probability density function of the standard
normal distribution. ϑ(x) is the distribution function of the
normal distribution. Let Δ(x) � φ(x) − 􏽢fn then,

EIn(x) � [Δ(x)]
+

+ σ(x)τ
Δ(x)

σ(x)
􏼠 􏼡 − |Δ(x)|ϑ

Δ(x)

σ(x)
􏼠 􏼡. (10)

-e expectation improvement function defines the ex-
pected value at each point as a function of that point, and
eventually, the next candidate point is obtained based on the
extreme value of the expected improvement function:

xn+1 � argmaxEIn(x). (11)

4. Experimental Section

We validate the model optimization scheme for LGBM by
using the Anaconda integrated development tool. First, we
introduce the NSL-KDD. Secondly, we compare LGBMwith
GBDT, Adaboost, Decision Tree, and Random Forest under
three metrics of precision, recall, F-measure, and Roc curve
to elaborate advantages of LGBM. -en we analyze the
effectiveness of LGBM for identifying different attack types
using Roc curves. Finally, the optimization process of
Bayesian and grid search for hyperparameters is compared
and analyzed to verify that the Bayesian optimization al-
gorithm has a better optimization effect on hyperparameters
while ensuring optimization efficiency.

4.1. NSL-KDD Dataset. To address the problems of re-
dundant records and unbalanced attack categories in the
KDD, the NSL-KDD removes duplicate records from the
training and test sets to ensure that the classifier does not
bias towards a larger number of attack types, which in turn
improves the detection accuracy of the classifier. Setting the
number of records in the training and test sets can reduce the
running cost of the experiment and eliminate the need to
randomly select some data. As shown in Table 1, NSL-KDD
contains four attack types (Dos, Probe, U2R, and R2L) and
21 specific attack instances, which are more abundant
compared with the KDD, and the test set contains new
samples of attack instances to better evaluate the classifi-
cation performance of the learner. -e distribution of the
NSL-KDD data set is shown in Table 2.

5. Comparative Analysis of Model
Recognition Performance

To test the recognition performance of LBGM to identify
different classes of attacks, we compare the LGBM model

with four models, GBDT, Adaboost, Decision Tree, and
Random Forest under the three metrics of precision, recall,
and F-measure. GBDT (Gradient Boosting Decision Tree)
[27] is an iterative decision tree algorithm, which constructs
a set of weak learners and accumulates the results of multiple
decision trees as the final prediction output. Random forest
[28] is a commonly used machine learning algorithm, which
combines the output of multiple decision trees to reach a
single result. -e five models are trained and learned under
the NSL-KDD training set, and the models are validated by
the test set to derive the recognition performance of each
model for the attack types under different metrics.

Figure 1(a) indicates the precision of the five models for
the attack instances. From this table, it can be seen that the
LGBM has a high precision for each attack type and most of
the models have good precision for two common attack
types, Probe and DOS. LGBM has the highest accuracy of
precision compared to the other two options, which is only
slightly weaker in Probe. -e number of weak classifiers in
the Adaboost is hard to set, resulting in a lower precision for
the Probe attack type. For the two minority attack types U2R
and R2L, the LGBM and the GBDT have high precision for
both attacks, which is because both models use the boosting
mechanism to integrate multiple weak learners to obtain
strong learners, thus optimizing the overall performance of
the model. Also, the LGBM uses the gradient synthesis
minority class over adoption algorithm to process the data
set and reasonably increases the number of samples of both
U2R and R2L attacks, making the model equally good at
identifying minority attack types. Decision Tree and Ran-
dom Forest do not sample the dataset, resulting in a lower
precision for U2R attack samples than GBDT and LGBM,
but the Decision Tree is more sensitive to anomalous
samples, so the Decision Tree has better precision for R2L.

Figure 1(b) presents the recall of the five models for
different attack types. Compared to the precision rate, the
recall of all models for U2R and R2L attack samples decrease
to some extent, but the LGBM model still maintains rela-
tively high recall for both attack samples, indicating that the
model throws to maintain a good recall of positive example
samples while ensuring the precision rate. For common
attack types such as Probe and Dos, the number of sample
features is large and the model can maintain a stable recall
through training, so most of the models still present high
recall for common attack types.

Figure 1(c) shows the F-measure of the five models for
different attack types. A comparison of the F-measure of the
five models for different attack types shows that the overall
performance of the Adaboost model is poor, which is be-
cause that the model fails to effectively process the data
samples and cannot effectively identify unknown or un-
common attack types. Compared with Adaboost, the LGBM
has better overall performance, especially for the detection
and identification of two rare attack types, U2R and R2L.
-at is because the sample processing of the dataset removes
the sample data with small gradient values and expands the
small samples (a small number of attack samples) so that the
model can fully learn from them. Random Forest outper-
forms Adaboost in overall performance but is less effective in
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identifying and detecting uncommon attack types than
LGBM models. -at is because the trained models are
slightly less targeted due to the lack of expansion of the small
sample data. To sum up, the overall performance of the
LGBM model is better than the other models.

5.1. Comparative Analysis of Model Roc Curves. Figure 2
depicts the Roc curves of the five models for different at-
tack types. According to the definition of Roc curves, the
special points in the figure are first analyzed.-e point (0, 1),
i.e., TPR� 1 and FPR� 0, indicates that the classifier clas-
sifies all samples correctly. -e point (1, 0), i.e., TPR� 0 and
FPR� 1, indicates that the classifier misclassifies all samples
and has the worst performance. -e two points (0, 0) (1, 1)
indicate that the classifier predicts negative samples and
positive samples. -e ability of the model to detect and
identify each attack type is known from the Roc curve of
each model.

Figures 2(a) and 2(c) show that the Roc curves of De-
cision Tree and Random Forest have similar recognition
effects on attack samples such as U2R and R2L. Also, the
curves are close to y� x indicating that the model classifies

the samples randomly and does not effectively detect the
sample data. -at is because the Decision Tree and Random
Forest models tend to select different attributes when
classifying the category data with a large difference in the
number of samples, resulting in a poor recognition rate due
to insufficient training for sample data with few attributes. It
can conclude that the two models have a higher recognition
accuracy for a larger number of Probe, DOS, and normal
data samples. Figure 2(d) shows the Roc curves of the
Adaboost model for different attack types. -e model ap-
pears to misclassify R2L samples and has lower recognition
accuracy for other types of sample data, as the model is
sensitive to the distribution of sample data and does not
balance the dataset leading to a decrease in the classification
accuracy of the model. -e Roc curves of the GBDT and
LGBMmodels are shown in Figures 2(b) and 2(e), and it can
be seen that both of them have better recognition ability for
each type of data sample. Since the GBDT model can ef-
fectively deal with anomalous data and can handle both
continuous and discrete values, the model has better rec-
ognition accuracy for R2L attack types. In summary, the
overall recognition accuracy of the LGBM model for dif-
ferent attack types is better than other models.

Input: R � (x
⇀
1, y1), (x

⇀
2, y2), . . . , (x

⇀
n, yn)􏽮 􏽯, the conflict threshold K;

Output: the set F of feature grouping bin;
Step 1: Initialize FN as an array consisting of the number of nonzero eigenvalues;
Step 2: Iterate over all features j of all samples and obtain the nonzero value FNj of j, sort the number of vertex features in descending

order according to the array FN, and initialize the set F;
Step 3: Assume that the current vertex is j, traverse the feature grouping bin, calculate the conflict value con between j and the feature

points in the bin, con is less than K, then it indicates that vertex j and the feature points in the bin do not conflict, add j to the
feature grouping bin;

Step 4: If vertex j conflicts with the features in bin and is not added to the feature grouping bin, create a new feature grouping for that
vertex and add it to the set F.

ALGORITHM 1: Mutually exclusive feature search algorithm.

(01) Initialize T, k, N;
(02) If N< 100 then
(03) Randomize the Tminority class samples;
(04) T� (N/100)∗T;
(05) N� 100;
(06) End if
(07) For i� 1 to T:
(08) Compute k nearest neighbors for i and save the indices in the mArray;
(09) while N!� 0 do
(10) Choose a random number s between 1 and k;
(11) for a� 1 to numattrs:
(12) dif�MinoritySam[mArray[s]][a] − MinoritySam[i][a];
(13) gap� random a number between 0 and 1;
(14) end for
(15) Newindex++;
(16) N�N − 1;
(17) End while
(18) End for

ALGORITHM 2: GSMOTE algorithm.
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5.2. Comparative Analysis of Model Parameter Optimization.
Hyperparameters are set before the training of a machine
learning model and directly a�ect the learning e�ect of the
model. A set of optimal hyperparameters can improve the
learning ability and e�ectiveness of the model. �e grid
search algorithm can iterate through all parameter combi-
nations to �nd the optimal combination of parameters, but
this method is less e�cient. If the number of model pa-
rameters is too large, the grid search algorithm will increase
the training cost of the model and reduce the e�ciency of
parameter optimization. Moreover, the algorithm performs
an iterative search so that the model training is not targeted.
�erefore, we use the Bayesian optimization algorithm to
optimize the parameters, and the experimental results are
shown in Tables 3 and 4. We select three important pa-
rameters, max_depth, n_estimator, and num_leaves, to

measure the amount of data contained in the NSL-KDD and
train them under the LGBM model with tuning parameters.

Tables 3 and 4 show the overall performance of opti-
mization methods with di�erent combinations of parame-
ters. �e model achieves the highest performance value of
0.9528 in the test set, the grid search algorithm, while the
performance value of the model optimized with Bayesian
parameters is 0.9906, which indicates that the Bayesian-
optimized parameters can enhance the training learning
ability of the model and obtain a stronger classi�er. �is is
because the random combination of di�erent parameter
values by the grid search algorithm tends to lead to excessive
di�erences between di�erent parameter values, making it
di�cult for the model to reach the optimal value. �e
Bayesian optimization algorithm establishes a functional
relationship between the hyperparameters and the model
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Figure 1: Accuracy of the analysis of model recognition performance. (a) Precision. (b) Recall. (c) F-measure.
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Figure 2: Roc curve of model. (a) Decision tree. (b) GBDT. (c) Random forest. (d) Adaboost. (e) LGBM.
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(01) Input: F: features, MC: max conflict count, G: construct graph, NumData: number of data, B: One bundle of exclusive features;
(02) searchOrder�G.sortbyDegree();
(03) for i in searchOrder do:
(04) needNew�True;
(05) for j� 1 to len (bundles) do:
(06) cnt�ConflictCnt (bundles[j], F[i]);
(07) if cnt + bundlesConflict [i]≤MC then
(08) bundles [j].add (F[i]), needNew� False;
(09) break;
(10) binScope� 0, NumBin� 0;
(11) end if
(12) end for
(13) end for
(14) for i� 1 to NumData do
(15) newBin [i]� 0;
(16) for j� 1 to len (B) do
(17) if B[j].bin[i]!� 0 then
(18) newBin [i]�B[j].bin[i] + binScope [j];
(19) end if
(20) end for
(21) end for
(22) Output: newBin, binScope

ALGORITHM 3: Exclusive features binding.

(01) Initialize Estimator, 􏽐k(ck), M1, · · · , Mg;
(02) for m � M1 to Mgdo:
(03) exclusive features binding for Mi, i � 1, · · · , g;
(04) covariance matrix Sc obtained from sample set;
(05) fitting F(Sc, 􏽐k(ck))⟶ 􏽢ck,c, 􏽐k(􏽢ck,c);
(06) covariance matrix SV obtained from Validation set;
(07) fitting F(Sv, 􏽐k(􏽢ck,c))⟶Θ;
(08) comparison of the cross-validation indices Θ;
(09) end for
(10) Output the most stable Θ.

ALGORITHM 4: EFB-HCV algorithm.

(01) Initialize f0(x) � argminc 􏽐
N
i�1 L(yi, c), f, X, S, M;

(02) Initialize EFB-HierarchyCV;
(03) n_estimator: Data � Samples(f, X);
(04) for i � av(Data) to T do:
(05) P(y|x,Data) � FitModel(M,Data);
(06) Xi � argmax S(x, P(y|x,Data));
(07) Yi � f(Xi);
(08) Data � Data + (Xi, Yi);
(09) for m� 1 to M do:
(10) for i � 1, 2, · · · , N do:
(11) compute rim � − [zL(yi, f(xi))/zf(xi)]f�fm− 1

;
(12) end for
(13) end for
(14) fit a regression tree to the targets rim giving terminal regions Rjm, j � 1, 2, · · · , J;
(15) for j � 1, 2, · · · , Jm do:
(16) compute rjm � argmin􏽐xi∈Rjm

L(yi, fm− 1(xi) + c);
(17) end for
(18) Update fm(x) � fm− 1(x) + 􏽐

Jm

j�1 cjmI(x ∈ Rjm);
(19) end for
(20) Output: 􏽢f(x) � fM(x).

ALGORITHM 5: BO algorithm.
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objective function, and the corresponding parameter values
are obtained through the optimal value of the functional
relationship.

6. Conclusion

Intrusion detection technology is one of the most well-
known security protection technologies in the traditional
Internet domain. However, due to the emerging resource-
constrained network entities, with limited computing power
or insufficient power supply, it is difficult for mainstream
intrusion detection technologies to perform as effectively as
before. IDSs based on GBDT face three major challenges:
unbalanced training data distribution, excessive feature
dimensionality, and difficulty in finding the best model
parameters that cannot be effectively applied to the security

protection of end devices in IoT. To solve these problems, we
propose an optimization model LGBM for GBDT. Detailed
experimental results verify the effectiveness of the proposed
scheme.
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