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'e virtually coupled train sets (VCTS) have been proposed to improve operational capability and passenger satisfaction and
ensure punctuality, thus alleviating the rapidly worsening traffic pressure. Recently, due to the lack of reliable wireless com-
munications and accurate perceptual information, VCTS based on industrial internet of things (IIoT) are receiving growing
concerns by integrating into the IIoT, AI, and edge computing. However, denial of service (DoS) attacks are feasible for IIoT-based
VCTS due to the physically exposed open electromagnetic environment. 'ey would cause severe safety and punctuality
problems, such as poor real-time capability, enormous packet dropout rates, extensive train operational delays, and disturbance in
the train convoy’s dynamic schedule. 'is paper deeply discusses the effects of DoS attacks on the performances of the IIoT-based
VCTS by combing the physical layer with the cyber layer and explores the requirement of an attacker. We consider that the system
is under the attack of a rational DoS attacker with limited jamming attacks, which will cause the most system state offset. In the
paper, we propose a novel train status estimation approach to compensate for the losing information of the front train by the
trade-off between the best gain of the DoS attacker and the punctuality of the IIoT-based VCTS. System performance includes
physical dynamic indicators, train operational delay variance, and average waiting time of passengers. Taken together, these
findings indicate that the established status estimation approach can effectively mitigate safety concerns and reduce train
operational delays.

1. Introduction

'e concept of the virtual control train set (VCTS) has
received increasing attention as an indicator of the future
railway signaling system within the past years. VCTS em-
ploys bidirectional wireless data communication to ensure
the safety operation of the rail transport and couples two
neighbor trains with relative braking distance to increase the
transportation capacity and the flexibility of railway orga-
nization, rather than the current traditional communication
system AND communication-based train control (CBTC)
system [1–3]. 'e physical coupler is cancelled between
adjacent trains in the VCTS for meeting the distribution of
passengers by making the density of trains. Train members
of VCTS have stringent requirements for reliability of
wireless communications and the timeliness for supporting

the autonomy of a train convoy, which is the same as the
unmanned aerial vehicles (UAVs) and classified as a typical
industrial Internet of things (IIoT) [4]. With the develop-
ment of IIoT, an IIoT-based VCTS is proposed in the article
based on the popular communication-based train control
architecture [2].

In the knowledge of this new IIoT-based VCTS, all trains
generate a long virtual train, known as a train convoy or
train platoon [2]. Flammini et al. [5] introduced VCTS and
presented requirements, which had a tight coupling rela-
tionship with the stability of the train convoy, for safety.
Quaglietta et al. [6, 7] introduced the need for additional
safety constraints, especially at diverging junctions, and
presented the train operation’s model under ETCS level 3
and virtual coupling. Members of VCTS can be recoupled
and decoupled automatically according to transportation
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demands and plans based on train-to-train (T2T) wireless
communications [5]. However, this system is prone to
several security threats, especially crucial safety require-
ments of the train convoy, owing to the fact that it works
under an open electromagnetic environment and the
common unlicensed band [8, 9]. 'e allowable minimum
relative braking distance between adjacent trains in VCTS
would be violated. If DoS attacks were not mitigated, this
violation could bring packet loss and time delay and disturb
the train convoy operation.

Current studies of VCTS mainly focus on principles and
control strategies for improving the efficiency of a train
convoy operation. Di Meo et al. [10] assume to enrich
ERTMS with virtual coupling instead of defining a fully new
signaling system, which is the preferred approach to ensure
backward compatibility andminimize the impact on existing
infrastructures since it guarantees the reuse of standard
operating modes and related safety mechanisms. Felez et al.
[11] proposed an MPC approach to reduce the impact of
time delays on the operation performance of the train
convoy, thus ensuring its safety and stability. Reference [12]
has proposed the concept of VCTS and requirements of
safety especially for the stability of a train convoy’s
achievement with a tight coupling relationship of a series of
trains. In addition, a smarter and efficient railway system
could be achieved by integrating with IIoT, AI, 5G, big data
analysis, and edge computing [2, 13]. However, with the
continuous advance of the transportation intelligent con-
struction tide, the security of wireless communications is
starting to become powerless, especially in terms of large
information flows in IIoT-based VCTS [14]. 'erefore, DoS
attacks are feasible for IIoT-based VCTS due to the unre-
liability of T2T communications [15], which are ignored in
the current study.

'e IIoT-based VCTS can be considered a cyber-
physical system (CPS) [14]. Its physical layer, which rep-
resents the train control system, ensures the safety and the
efficiency of the train convoy operation, whereas the cyber
layer represents the wireless communication system.
Functionally, wireless communication predisposes the sys-
tem to cyberattackers, who interfere with the train convoy
operation schedule, while interference with the transmission
of controller command poses security risks during train
convoy operations. In the IIoT-based VCTS, a key feature of
train convoy operation safety is that the following train can
track the trajectory of the one in front while maintaining a
known headway distance. Notably, trains are required to
abruptly uncouple all members of a train convoy and apply
emergency brakes, if this communication is tampered with, a
phenomenon that has been associated with disruption of
train scheduling and leaving passengers stranded. 'erefore,
the development of an efficient method for preventing the
need for the application of emergency brakes and ensuring
the ideal headway distance within unreliable wireless
communications, caused by cyberattacks, is significant for
the safety and efficiency of a train convoy in the IIoT-based
VCTS [16].

To date, various conventional cryptography technologies
and intrusion detection systems (IDS) have been developed

with the aim of mitigating the impact of cyberattacks
[17, 18]. Consequently, these approaches have played a
significant role in the defense strategies of the conventional
international system. In addition, previous studies have
explored the potential for the data network [19], deep re-
inforcement learning [20], and the blockchain [21] in
mitigation of the impact of DoS attacks. Reference [22] has
proposed an online intrusion detection cloud system to
detect and filter malicious attack with the new spiking neural
network architecture called the NeuCube algorithm. Ref-
erence [23] has introduced context-aware security (ConSec)
protocol to support internet of things applications to reduce
the latency while encrypting and decrypting the applications.
However, the above literature on cloud computing tech-
nology has perpetuated the huge computing flows and data
circulation through the Internet; they are insufficient tomeet
the security challenge of VCTS system, due to the combi-
nation of the cyber layer performance with the physical
dynamic.

Currently, many studies have applied analyses of the
effects of cyberattacks on the network control system (NCS),
a type of CPS, to explore the performance of the cyber layer
in combination with the physical dynamics [24]. Reference
[25] explores a min-max cost-optimal problem to guarantee
the convergence rate of federated learning in terms of cost in
wireless edge networks. A status estimation approach was
proposed in the cyber-physical system (CPS) to ensure the
stability of the vehicle platoon under unreliable wireless
communication. Reference [26] proposed a linear deception
attack strategy and presented the corresponding feasibility
constraint on the optimal attack strategy among all linear
attacks, while [27] explored the potential for remote status
estimation of CPS based on the game-theoretic approach
under DoS attacks.

Moreover, in contrast to the Internet and the CPS, the
challenge experienced by the defense system in the IIoT-
based VCTS comprises a combination of packet losses (i.e.,
cyber layer), train dynamic operation, and stranded pas-
sengers (i.e., physical layer). Recently, some security field
studies have developed defense methods from an attacker’s
point of view [28], which are based on the fact that com-
bining an attacker’s strategy and defense method effectively
simulates the actual subway environment and explores the
performance of DoS attacks under energy limits, which are
found that attacks were random and irregular, albeit with a
limited sum of attack energy is limited. 'ese methods are
shedding new light on the challenge of the defense system in
the IIoT-based VCTS. Results from analyses of the energy
constraint indicated that an optimal attack strategy causes
the most significant effect on wireless communication and
packet losses, thereby causing a train to make frequent
emergency braking. 'e study thus adopts the status esti-
mation approach based on the optimal attack strategy to
improve estimator accuracy.

In the IIoT-based VCTS, the development of an efficient
method for preventing the need for application of emer-
gency brakes is urgently needed to ease traffic jam on the
railway. DoS attacks have been shown to be possible attacks
that can negatively affect the physical performance of the
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IIoT-based VCTS since they target wireless communications
[29, 30]. In fact, an intelligent DoS attacker can reduce the
signal-to-interference-plus-noise ratio (SINR) of the wire-
less communication channels, a phenomenon that results in
a low packet arrived ratio, and ultimately cause serious train
accidents [31]. DoS attacks on the IIoT-based VCTS not only
significantly interfered with the wireless communication
between the AP and the train but also resulted in frequent
packet losses and ultimately the safety and congestion of the
transportation owing to the uncoupling of the train convoy
and emergency braking by trains.

In the present study, we propose a train status estimation
approach for developing a defense against the IIoT-based
VCTS during DoS attacks that adopts an optimal attack
strategy with an evaluation, which is based on the physical
layer performance (physical dynamic) and the cyber layer
performance (signal-to-interference-plus-noise ratio
(SINR)), is adopted. 'e train status estimation approach is
used to compensate for the status information (i.e., position,
velocity, and acceleration) of the front train under DoS
attacks. Notably, this study makes the following main
contributions:

(i) We propose a train status estimation approach
combing the enhanced Kalman filtering with the
optimization, the gain of the attacker, and the so-
lution of a Markov stochastic process to mitigate the
frequency of emergency braking in the decoupling
mode of the IIoT-based VCTS and compensate for
the gap of packet losses caused by DoS attacks. 'e
analysis procedure of the enhanced Kalman filtering
method provides new ideas for solving the esti-
mation error covariance matrix during unreliable
wireless communication while can be generalized to
other CPS.

(ii) We consider the IIoT-based VCTS is under the
attack of a rational DoS attacker with limited
jamming attacks, which will cause the most system
state offset. When these attacks happen, the mode of
train convoy would decouple by the “fail-safe” rule,
but it cannot avoid the eventual traffic jam of the
urban transit and enormous packet dropout in the
process of T2T communication. To simulate the
actual attack environment and improve the accu-
racy of the train status estimation approach, we
consider a trade-off between the best gain of the
attacker and the punctuality of the train convey set,
which has been decoupled for safety.

(iii) Criterion indicators for evaluating the performance
of the status estimation approach are defined. 'e
evaluation principle combines performances across
wireless communication, physical dynamics (train
speed/distance profile), and passenger satisfaction
(train operational delay and passenger waiting
time).

'e rest of the paper is organized as follows. 'e
framework of the IIoT-based VCTS and the impacts of DoS
attacks on the IIoT-based VCTS are proposed in Section 2.

Section 3 involves the system model and problem formu-
lation, and Section 4 describes the train status estimation
approach based on the optimal attack strategy In Section 5,
the evaluation criterion of the effects of DoS attacks on the
IIoT-based VCTS system is presented. Section 6 demon-
strates the simulation results and discussions. Finally, we
conclude this study in Section 7.

2. Framework of the IIoT-Based VCTS and
Impacts of DoS Attacks on the IIoT-
Based VCTS

In this section, VCTS is first outlined. Based on the prin-
ciples of VCTS, a novel structure of the IIoT-based VCTS-
based train-centric is proposed, and the effects of jamming
attacks on T2T communication are analyzed.

2.1. Overview of Virtual Coupling. Virtual coupling will be a
significant feature of the future railway system [6, 7] that can
improve the capacity and efficiency of transportation to deal
with the forecasted growth of traveling demands. Figure 1
shows the contrast between the traditional moving block
(MB) and the virtual coupling. In MB mode, the zone
controller (ZC) can monitor the running status of the train
and generate train control commands called movement
authority (MA) of trains. Generally, MA is defined as the
location of the nearest obstacle, which is related to the
braking headway distance of trains, including trains, turn-
outs, and signals.

Additionally, virtual coupling increases the density of
trains, which means that the interval between adjacent trains
of a formation is much smaller. When trains are coupled via
T2T communications, the train movement depends on the
status of adjacent trains, including their acceleration, ve-
locity, and position, through onboard sensors and wireless
communication modules. In this study, the first train in the
train convoy is called the leading train. 'e control strategy
of each following train is also optimized with the approach
so that its velocity and acceleration are the same as the last
known information of the leading train. When trains are
within virtual coupling, IIoT-based VCTS aims to provide a
controlling strategy to ensure that each position difference
between the ahead train and its following train is close to the
objective relative braking distance [32]. In addition, IIoT-
based VCTS prefers a train-centric control system, which is
different from the traditional MB. One of the challenges for
the IIoT-based VCTS is how to meet the high mobility and
efficiency of virtually coupled via T2T wireless communi-
cations by facility designing and ensure the safety and joint
security of VCTS operations. 'e next subsection presents a
new framework of the IIoT-based VCTS.

2.2.ANovel Frameworkof the IIoT-BasedVCTS. 'is section
shows a novel framework of the IIoT-based VCTS based on
T2T communications, as illustrated in Figure 2. 'e pro-
posed structure consists of a control center subsystem, an
onboard subsystem, and a trackside subsystem. Onboard

Security and Communication Networks 3



subsystems include automatic train protection (ATP), au-
tomatic train operation (ATO), and train cooperative
controller (TCO). 'rough the co-work of computer in-
terlock (CI), data storage unit (DSU), and evolved packet
core (EPC), zone controller (ZC), operation plans, and the
running state of subway lines can be transmitted to trains.
Moreover, a cooperative controller is designed to operate the
train in the virtual coupling mode. 'rough T2T wireless
communications, TCO can provide optimal control strat-
egies for trains according to velocities and locations of
adjacent trains. Additionally, ATP can be secured based on
the overall running state of the whole line, which signifies
that T2T communications are essential to provide low-la-
tency and high-capacity information exchange among
members of a train convoy in the IIoT-based VCTS. When
T2T communication links fail or the velocities of trains
exceed the limiting speed of ATP, an emergency train
braking is executed. In this study, the access point (AP) and
customer premises equipment (CPE) of the IIoT-based
VCTS via T2T communication links of adjacent trains are
established by long-term evolution for metros (LTE-M).'e
CPE exchanges the status information of train i with RRU
and other trains via the T2T communications link [33].
Clearly, T2T communications play an essential role in the
IIoT-based VCTS. 'erefore, the mechanism is necessary to
avoid collisions in T2T communications under unpredict-
able disturbances.

2.3. Impacts of DoS Attacks on the IIoT-Based VCTS.
Generally, attackers can send enormous jamming traffics or
fake bits to exhaust the frequency bandwidth, channel ca-
pacity, and legitimate communication services. Figure 3

illustrates the comparison of the IIoT-based VCTS and
the effects of jamming attacks on the IIoT-based VCTS. In a
train convoy, the leading train communicates with the
control center via the train-ground (T2G) communications.
When the interruption time caused by jamming attacks on
T2G is significantly larger than the preset value, the leading
train must implement emergency braking. When jamming
occurs in T2Tcommunications, the stability of members in a
train convoy will be disturbed. Due to the high speed and the
tiny interval, jamming may cause safety risks or running as
decoupled trains belonging to MB mode.

'e security of IIoT-based VCTS, as a new technology in
urban rail transit, is a severe challenge because it is more
vulnerable to jamming attacks than before [33]. 'is sub-
section aims to analyze the constraints of jamming attacks.
Considering the distance from the attacker to the victim
node, jamming attacks can be classified as constant jam-
ming, deceptive jamming, and reactive jamming [34]. In this
study, the effects of constant jamming on T2T for the IIoT-
based VCTS are mitigated by the resilience control approach
with the ETC condition. In the next section, we will analyze
the dynamic model of the train convoy and the indicators of
the safety operations of VCTS.

3. System Model and Problem Formulation

In this section, we propose a dynamic control module when
trains are coupled.'e physical dynamic model for the IIoT-
based VCTS also is presented to improve the train operation
safety if the train convoy is decoupled caused by DoS attacks.
In addition, we also design a cost function to provide a
theoretical basis for the train status estimation approach.

3.1. DynamicModel of the Train Convoy. For the IIoT-based
VCTS, stability means that distance intervals between ad-
jacent trains are almost the same while suggesting that all
trains are running at the same speed. An objective relative
safety distance exists between adjacent trains for optimal
performance. 'e status formulae of the leading train and
other trains can be given by

_xl(t) � Acxl(t) + CcW(t), (1a)

_xi(t) � Acxi(t) + Bcui(t), (1b)

Train i

Safety headway distance (d)MA
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Figure 1: Moving block versus virtual coupling: (a) moving block and (b) virtual coupling.
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Figure 2: Structure of the IIoT-based VCTS.
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where xi(t) � [si(t), vi(t), ai(t)]T is the train running status
information; W(t) denotes thematrix of the resistance force,
which subtracts the sum of traction and braking force at
times t; ui(t) is the control law based on ETC that will be
proposed in Section 3; Ac is the status matrix; Bc is the
control matrix; and Cc is the noise and disturbance matrix,
which can be calculated by kinematic equations.

A dynamical model of IIoT-based VCTS is established by
applying the cooperative adaptive cruise control (CACC),
which can avoid collisions according to the sacrificial part of
system performance to ensure the safety and stability of the
VCTS system when jamming attacks happen.'e details can
be founded on our previous work [3]. However, concerning
the unreliable wireless communications caused by DoS at-
tacks in the IIoT-based VCTS, the stability condition of the
train convoy would be violated. As a result, the train convoy
is decoupled after the control command. 'e physical dy-
namic model of the IIoT-based VCTS is presented in the
next subsection, where the train convoy is decoupled.

3.2. Physical Dynamic Model of the IIoT-Based VCTS on the
ImpactsofDoSAttacks. Due to the consensus about the “fail-
safe” rule, which means that all techniques in the signaling
control system of railways are needed for following the safety

and avoiding collision between adjacent trains at the expense
of efficiency and punctuality of the transportation, the
passengers’ waiting time and traffic paralysis are even.
Concerning the DoS attacks, the train convoy would be
decoupled [6]. 'e physical dynamic model of the IIoT-
based VCTS is presented in the subsection if the train
convoy is decoupled caused by DoS attacks.

In the physical dynamic model of the IIoT-based VCTS,
the control objective such as status information plays a
significant role in ensuring safety for the operation of trains
if the train convoy is decoupled caused by DoS attacks. In the
study, the train status information, including the location,
speed, and acceleration of the train is defined as follows:

x(t) � S(t) V(t) A(t) 
T
, (2a)

S(t) � s1(t) s2(t) . . . sn(t) 
T
, (2b)

V(t) � v1(t) v2(t) . . . vn(t) 
T

, (2c)

A(t) � a1(t) a2(t) . . . an(t) 
T
, (2d)

where x(t) represents the status informationmatrix of trains
at time t; S(t) represents the position matrix of trains at time
t; V(t) represents the speed matrix of trains at time t; A(t)

Leading train at the time tkFollowing train 1 at the time tkFollowing train 2 at the time tk

Travel profile

DCS backbone
networks

APn Apn+1

ZC CI ATS EPC DSU PIS IMS

d d

(a)

Train i+1 at the time tk

Emergency Braking Curve

Service Braking Curve

Train i at the time tk+1
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Train i at the time tk
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Current MA at the time tk Estimated MA at the time tk+1

ZC CI ATS EPC DSU PIS IMS

(b)
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Figure 3:'e impacts of jamming attacks on the IIoT-based VCTS: (a) virtual couplingmode in the IIoT-based VCTS, (b) decoupling trains
in the IIoT-based VCTS, and (c) impacts of DoS attacks on the IIoT-based VCTS.
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denotes the acceleration matrix of trains at time t; si(t) and
vi(t) represent the position and speed of train i at time t,
respectively; ai(t) represents the acceleration of time at time
t; and n indicates the number of trains.

Moreover, according to kinematic equations, we can
write the status information of train i as follows:

si tk(  � si−1 tk−1(  − Ll,i − Ls + vi tk−1( , (3a)

+ ai tk−1(  +
κi tk−1(  − wi tk−1( 

M
 h, (3b)

vi tk(  � vi tk−1(  + ai tk−1(  +
κi tk−1(  − wi tk−1( 

M
 h, (3c)

ai tk(  � ai tk−1(  +
κi tk−1(  − wi tk−1( 

M
 h, (3d)

where Ll,i indicates the length of train i, h is the T2T
communication cycle of the IIoT-based VCTS, Ls denotes
the minimum safe distance between adjacent trains, κi in-
dicates the resistance force of train i train i at time tk−1,
wi(tk−1) indicates the sum of traction and braking force of
train i at time tk−1, tk represents the beginning of the kth

communication cycle, and M represents the mass of the
train.

Due to the decoupling of the train convoy, the operation
of train i is described using a linear system, for each member
of the train convoy, as follows:

x tk(  � Ax tk−1(  + Bu tk−1(  + we tk−1( , (4)

where x(tk) � [x1(tk), x2(tk), . . . , xn(tk)]T, xi(tk) � [si(tk),

vi(tk), ai(tk)]T indicates the status information of the train i

at time tk, u(tk) � [u1(tk), u2(tk), . . . , un(tk)]T, ui(tk) in-
dicates the input of the controller, and A and B denote the
known matrixes with compatible dimensions. A and B can
be designed as follows, and the pair (A, B) is stabilized:

A � blk di ag A1, A2, . . . , An ,

B � blk di ag B1, B2, . . . , Bn ,

A1(t) � A2(t) � · · · � An(t) �

1 h
1
2
h
2

0 1 h

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1(t) � B2(t) � · · · � Bn(t) �

1
2
h
2

h

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

'e observation equation is expressed as follows:

y tk(  � Cx tk(  + ve tk−1( , (6)

where
y tk(  � y1 tk( , . . . , yn tk(  

T
,

we tk(  � we,1 tk( , . . . , we,n tk(  
T
,

ve tk(  � ve,1 tk( , . . . , ve,n tk(  
T
,

(7)

where we,i(tk) ∼ (0, R) and ve,i(tk) ∼ (0, N) represent the
process noise and the measurement noise, respectively. Both
parameters are independent Gaussian distributions with
zero mean and error covariance. In addition, Q indicates the
process noise covariance matrix, whereas R and C � [1, 0, 0]

denote the measurement noise covariance matrix and the
observation matrix, respectively.

When the train convoy is decoupled, the mathematical
expression of the control strategy for train i, under DoS
attacks at time tk, is shown as follows:

xi tk(  �
xi tk( , ϑ tk(  � 1,

xi tk( , ϑ tk(  � 0,
 (8)

where xi(tk) denotes the estimation status information of
the front train at time tk and ϑ(tk) � 1 implies that train i’s
status information is transmitted successfully under DoS
attacks, whereas ϑ(tk) � 0 indicates transmission failure.

For the above analyses, the MA can be expressed as
follows:

lm tk(  � Dy tk(  + L, (9)

where lm(tk) � [lm1(tk), lm2(tk), . . . , lmn(tk)]T, L � [L1,

L2, . . . , Ln]T, Li � Ll,i + Ls indicates the sum of the length of

train i and the safety margin, and D �
0 0

In×n 0 .

'e physical dynamic model of the IIoT-based VCTS is
prone to mitigate traffic paralysis and is adjusted by sacri-
ficing part of the system performance to ensure the safety
and punctuality of the IIoT-based system when DoS attacks
happen. In addition, we assumed that the IDS of the IIoT-
based system has high precision and detection methods for
DoS attacks. Although previous studies have employed
several detection methods, such as [35], none of these is
discussed in the current study.

3.3. Problem Formulation. DoS attackers intend to intercept
and prevent legitimate T2T communication services for
legitimate APs. Generally, they achieve this by sending
enormous wrong information traffic and by exhausting the
wireless network bandwidth or abrogating the connection
capacity [36]. DoS attacks on the wireless communication
system affect the T2T and T2G communications because
members of the train convoy can no longer receive accurate
status information during each communication cycle.
Communication delays of the IIoT-based VCTS after
decoupling are randomly caused by DoS attacks.'erefore, a
novel train status information estimation approach is
constructed to improve the performance of the IIoT-based
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VCTS system during DoS attacks. 'e accuracy of the es-
timation approach depends on the minimum estimate error,
which forms the basis of the cost function reported in the
current study [12]. 'is is expected to be circumventing the
challenges associated with unreliable T2T and T2G com-
munications. In order to improve the accuracy of the train
status estimation, the IIoT-based VCTS performance re-
quirement needs to be combined with the attack strategy
from the attacker’s perspective. Due to random commu-
nication delays, we define the cost function with the aim of
improving the accuracy of the train status estimation ap-
proach, with a focus on the optimal attack strategy from an
attacker’s standpoint. 'e study hypothesized that DoS at-
tacks follow a Bernoulli distribution, whereas the energy of a
one-time attack follows a Poisson distribution as described
by [28, 37].

Next, we analyzed the energy limits of attacks to as-
certain the realistic unreliable wireless communication
channel, owing to the fact that the rational attacker always
looks for a strategy that can significantly compromise the
wireless communication system in an IIoT-based VCTS
system and is likely to employ an approach that consumes
the lowest energy consumption. Summarily, DoS attacks
interfere with the wireless communication channel between
ZC and VOBC of its control area, thereby causing the
retransmitting of the status information before the safety
margin of the limited time. 'ese situations indicate that
conventional approaches cannot efficiently manage DoS
attacks on the IIoT-based VCTS system, owing to the sys-
tem’s strict communication latency. 'erefore, there is a
need to improve the train status estimation approach, from
the view of the energy limits of the attacker, to ensure the
effective overcoming of the insufficient status information
during DoS attacks. Detailed instructions are described as
follows. Firstly, the error estimation covariance matrix is
expressed as follows:

χ−
i tk( ≜E δi tk( δT

i tk(  , (10)

where χ−
i (tk) and E[•] represent the error estimation co-

variance matrix of train i at time tk and an expectation
function, respectively, while δi(tk) represents the estimate
error as follows:

δi tk( ≜xi tk(  − xi tk( , (11)

where xi(tk) indicates the status information of train i at
time tk, while xi(tk) represents the estimation value of the
estimator at time tk.

Next, we propose a cost function for minimizing the
estimation error covariance with the energy constraint of
one attack, as follows:

min sup
ΔT⟶∞

1
ΔT



T2

tk�T1

χ−
i tk( ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (12a)

s.t. 

T2

tk�T1

ρ tk(  ∈ 0, ρmax , (12b)

where ρ(tk) represents the power of interference of DoS
attacks at time tk, ρmax indicates the maximum attack energy,
and T1 and T2 denote the start and end times of DoS attacks,
respectively, whereas ΔT � T2 − T1 denotes the duration of
DoS attacks.

'ereafter, we analyze the convenience using the cost
function shown as follows:

min sup
ΔT⟶∞

1
ΔT

Je − λeAET( , (13a)

Je � E 

T2

tk�T1

δit tk( δT
i tk( ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 

T2

tk�T1

χ−
i tk( ,

(13b)

AET � E 

T2

tk�T1

ρ tk( ρ tk( 
T⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (13c)

where Je indicates the sum of error estimation covariance
for DoS attacks and AET denotes the sum of attack energy.

It is significant that the underground environment and
tunnels under a subway environment cannot provide the
charging point for an attacker. One key feature of DoS
attacks, which is the limited energy caused by no charging
point, is that they occur randomly. DoS attacks targeting the
IIoT-based VCTS system significantly interfere with the
wireless communication between the ZC and the train,
thereby causing frequent packet losses and congestion of the
transportation owing to frequent emergency braking of
trains. Notably, it is challenging for the attacker to affect the
transportation of IIoT-based VCTS by significantly jamming
under energy limit situations. In the current study, we ex-
plored the defense strategy from the attacker’s standpoint.
'erefore, the cost function described herein is based on the
optimal attack strategy that the attacker is most likely to
choose. In the subsections, we review studies describing the
random energy distribution of DoS attacks in the IIoT-based
VCTS system as well as the approaches applied to solve the
cost function while ensuring the optimal energy strategy and
the minimum estimation error covariance, as described in
the following sections.

4. The Train Status Estimation Approach
Based on the Optimal Attack Strategy

In this section, we propose the train status estimation ap-
proach, which refers to an enhanced Kalman filtering
scheme based on the optimal attack strategy. 'e estimation
approach seeks to transfer indispensable status information
from the front train to the following train.

4.1. Modeling the Train Status Estimation Approach of the
IIoT-Based VCTS. When packet loss occurs in the physical
dynamics of the IIoT-based VCTS system caused by DoS
attacks, based on the “fail-safe” requirement of the
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signaling control system, the train convoy would be
decoupled. As a result, the virtual coupling mode is instead
of the MB mode. Because ZC experiences the transmission
failure of that limit MA, which is the maximum safety
margin of the following train, at the start instance of each
communication cycle. 'en emergency braking would be
executed when the speed of the following train is violated
the safety margin. Moreover, after emergency braking,
following trains have to stay stationary until the wireless
communication is resolved; thus, it can receive an updated
MA in real time when the train convoy is decoupled.
Eventually, this situation may cause traffic paralysis and
enormous numbers of passengers stranded. 'erefore, the
train status estimation approach aims to mitigate this traffic
paralysis caused by DoS attacks, by combing with the
enhanced Kalman filter method and the attack strategy
from the attacker’s perspective.

'e Kalman filter, which is known as the linear quadratic
estimation (LQE) algorithm, is an optimal estimator that has
been extensively applied as an industry controller [38]. 'e
feasibility of this status estimation approach is mainly
constrained by the implementation of minimum error es-
timation covariance to approach the performance of the
IIoT-based VCTS during randomly instantaneous attacks.
In addition, the estimation approach is unreasonable if it
meets the requirements of the conventional error covariance
at each iteration. In the current section, we propose a novel
solution to this problem, considering the aforementioned
shortcomings of DoS attacks. To achieve a minimum un-
biased estimation covariance of the status information,
which members of the train platoon are decoupled, we
propose combing conventional Kalman filtering with the

optimal attack strategy, which is the limited attacks’ energy,
to obtain the train status information xi(tk) in the unreliable
communication network under DoS attacks (as shown in
Figure 4). 'erefore, the Kalman filter is a discrete-time
controlled process, and the linear stochastic equation of the
train i is expressed as follows:

xi tk(  � Aexi tk−1(  + Beui tk−1(  + we tk−1( . (14)

Consequently, the observation equation of enhanced
Kalman filtering is expressed as follows:

yi tk(  � Cexi tk(  + ]e tk−1( , (15)

where Ae �
1 h 1/2h

2

0 1 h

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, Be �

1/2h
2

h

1

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, and

Ce � 1 0 0 .
Estimation of the status information for the performance

of the IIoT-based VCTS is divided into time-updated
(predicting) and measurement-updated (receiving) sections.
'e prediction equation of enhanced Kalman filtering is thus
expressed as follows:

x
−
i tk(  � Aexi tk−1(  + Beui tk−1( , (16)

where x−
i (tk) is the estimated status information of train i at

time tk using measurements up to time tk−1.
'e status estimation approach, which is combing the

Kalman filtering with the optimal attack strategy, abrogates
the effects of packet loss during the transfer of the status
information of the front train, a phenomenon that alleviates

DoS attacks
�e estimated

status information
of the front train

ZC

Train Status Estimator

�e optimal attack strategy
DoS attacks

�e status
information of
the front train

TKF method

Minimizing estimation
error covariance matrix

VOBC
i

Train i

ATP

ATO

TCO

VOBC
i+1

ATP

ATO

TCO

Train i+1

Figure 4: Structure of the train status estimation approach.
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the train operational delays caused by DoS attacks. Reference
[39] indicates that packet dropout in the measurement
updating process can be calculated as follows:

Ke tk(  � χ−
i tk−1( C

T
e Ceχ

−
i tk− 1( C

T
e + R 

− 1
, (17)

xi tk(  � x
−
i tk(  + Ke tk(  yi tk(  − Cex

−
i tk(  , (18)

χi tk(  � I − Ke tk( Ce χ−
i tk( , (19)

where Ke(tk) denotes the Kalman gain at time tk and χi(tk)

is the updated error estimation covariancematrix of train i at
time tk, whereas I is the identity matrix.

Furthermore, in conventional Kalman filtering, the error
estimation covariance matrix at time tk is predicted based on
both the iteration procedure of the error covariance matrix
at time tk−1 and the prediction noise covariance matrix,
which are obtained using the channel noise, mainly referring
to Gaussian distribution. However, when the T2T and T2G
wireless communications of the IIoT-based VCTS interfere
with DoS attacks, which follow the Bernoulli distribution,
the traditional Kalman filtering is no longer effective, while
the prediction noise covariance matrix is uncertainly due to
random and uncertain DoS attacks. 'erefore, we consider
the regular character of the DoS attacks and energy limits to
optimize the estimation error.

In the status estimation approach of the IIoT-based
VCTS, formula (17) is used to accurately estimate and
update the status information of the front train, which is
based on the minimization error estimation covariance
matrix of the front train. 'e cost function and the optimal
attack strategy from the attacker’s standpoint are provided to
minimize the error estimation covariance matrix χ−

i (tk) of
the front train. 'erefore, the mathematical status estimate
at time tk is calculated as follows:

xi tk(  �

xi tk( , ϑ tk(  � 1,

xi tk(  � x
−
i tk( +

Ke tk(  yi tk(  − Cex
−
i tk(   ϑ tk(  � 0,

⎧⎪⎪⎨

⎪⎪⎩
(20)

where ϑtk
� 1 indicates that metro i information has been

successfully transmitted at time tk, whereas ϑtk
� 0 indicates

failed transmission.
'e predicting error estimation covariance matrix,

which is different from the conventional Kalman filtering,
significantly affects the accuracy of the train status esti-
mation approach. In the study, we present the minimization
of the error estimation covariance that depends on the
optimal attack strategy. 'is strategy, together with the
predicting error estimation covariance, is discussed in the
next subsection.

4.2. Reformulation of the Optimization Model for Analysis of
Attack Energy Limits. In this subsection, we are prone to
probe the factor of impact on DoS attacks. Generally, the
main aim of an attacker is to jam the T2T and T2G wireless

communication of trains and consume the performance of
the IIoT-based VCTS by interfering with the SINR and
packet transmission successful rate (or packet dropout rate).
'ese two aspects are key in evaluating the quality perfor-
mance communication of the IIoT-based VCTS system. 'e
success rate of the packet transmission in the IIoT-based
VCTS system is affected by SINR as well as attack energy
[27], and it can be expressed as follows:

f tk(  � f g tk( , ρ tk( ( , (21)

where g(tk) is the signal attenuation at time tk.
SINR values can be determined on the basis of periodic

sampling in the IIoT-based VCTS system, using a specific
communication software on train i during each commu-
nication cycle. 'e SINR value less than the specific
threshold indicates the MA packet dropout.'e relationship
between symbol error rate (SER) and SINR in the IIoT-based
VCTS is defined by the digital communication theory [27] as
follows:

SER tk(  � 2SQ

�������

Sαsi tk( 



 ,

si tk(  �
ρs

tk(  − g tk( 

ϖ + ι + ρ tk( 
,

(22)

where si(tk) is the value of SINR at time tk,
SQ � 1/

���
2π

√

∞
x

(−η2/2)dη, Sα is a constant parameter, ρs(tk)

is the transmitting power of APs at time tk, ϖ is the mea-
surement noise power on the wireless channel, and ι is the
interference power on the wireless channel. 'e probability
of the success rate of packet transmission in the IIoT-based
VCTS system f(tk) can be described as follows:

f tk(  � f g tk( , ρ tk( ( ≜ 1 − 2SQ

�������

Sαsi tk( 



 . (23)

APs provide enough transmission power to support the
stabilities of the T2T and T2G communication subsystems,
thus ensuring the performance (i.e., improving punctuality,
reducing the waiting time of passengers, and avoiding traffic
paralysis) of the IIoT-based VCTS [36]. 'is process can be
quantified as follows:

E[f(g)] >fs ≜ 1 −
1

λmax Ae( 
, (24)

where λmax(Ae) represents the maximum eigenvalue of the
train status estimation matrix Ae.

Following DoS attacks, MA packet dropout is inevitable
following DoS attacks. In the study, the MA packet dropout
is used to improve the estimate error. Notably, ϕ(tk) � (1 −

ϑ(tk))δi(tk) is defined as the estimate error at ϑ(tk) � 1,
implying that DoS attacks cause MA packet dropout at time
tk. It is aimed at minimizing the estimate error with the MA
packet dropout. 'erefore, the estimate error is highly
corrected with the performance indicated by the train-
ground communication system, and the cost function in
formula (13a)–(13c) can be written as follows:
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min lim
ΔT⟶∞

sup
1
ΔT

E 

T2

tk�T1

ϕ z tk( , g tk( , f tk(  ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (25)

where z(tk) represents the probability of the MA packet
dropout with DoS attacks at time tk.

'e estimate error of the train status information during
transmission failure caused by DoS attacks in the IIoT-based
VCTS is expressed as follows:

ϕ z tk( , g tk( , f tk(  ≜ [1 − f tk(  z tk( 
T

z tk( 

− λe · ρ g tk( , f tk( ( ,
(26)

where λe represents a weight constant.
For convenience, we write formula (26) as follows:

ϕ(z, g, f) � (1 − f)z
T
z − λe · ρ(g, f), (27)

where z, f, and g indicate abbreviated forms of z(tk), f(tk),
and g(tk), respectively.

Moreover, the optimal attack strategy from an attacker’s
standpoint is to achieve a trade-off between the rate of packet
dropout and the cost of attack energy. 'erefore, the attack
strategy can be given by

ρ tk(  � ρ g tk( , f tk( ( 

� inf ρ tk( |f tk( ≤f, ρ ∈ 0, ρmax  ,
(28)

where it is assumed that ρ(g(tk), f(tk)) is continuous with
respect to f(tk) and g(tk) [40] and f indicates the successful
minimum packet transmission rate of the system testing
specification, while ρ represents the abbreviated form of
ρ(tk).

'e status set [(z(tk), g(tk)) ∈ [(z, g) is required to
quantify the relationship between the attacks power and the
packet transmission from the attacker’s standpoint. 'ere-
fore, the optimal attack strategy is described as follows:

[(z, g) �
fmin tk( , E z

T
z > 1 − f or g≤g,

fmin tk( , fmax tk(  , otherwise,

⎧⎨

⎩ (29)

where fmin(tk) � f(g, ρmax), while fmax(tk) � f(g, 0),
whereas g indicates the maximum signal attenuation of the
IIoT-VCTS system testing specification when the train
convoy is decoupled.

Packet dropout occurs without DoS attacks when the
channel qualities of the T2T and T2G communication
systems are lower compared to the minimal performance of
the VCTS system. 'is implies that there is a lack of attacks
power in the communication channel.

'e cost function is based on the optimal attack strategy;
therefore, it is important to evaluate the relationship be-
tween energy limits and packet loss. A hypothesize can be
formulated based on 'eorem 3.5 [41] that a unique
function Π(z, g, f) exists to satisfy the following equation:

f
∗
(z, g, f) � min

f tk( )∈[(z,g)
supϕ(z, g, f) − Π∗

+ E Π z
+
, g

+
( |z, g, f ,

(30)

where f∗(z, g, f) represents the optimal packet reception
rate from which the effects of attack strategy have been
estimated and z+ indicates the estimated error in the next
step, while g+ indicates the signal attenuation in the next
step. Π∗ is expressed as follows:

Π∗ � E Π(z, g) . (31)

'e cost function can be converted by formula (30).
'erefore, a suboptimal attack strategy can be obtained
because the optimal cost function has been transformed to
generate an effective solution. However, this expression
cannot be used to estimate the status information of the
front train in this step; therefore, the cost function is
transformed. In the next section, the expression of function
Π(z, g, f) is described, while the minimum error estimation
covariance matrix is generated.

'e status transition probability can therefore be defined
as Pr(z+, g+|z, g, f) with ϑ(tk) � 1. B(f) represents the
distribution of DoS attacks, subject to Bernoulli distribution
[42]. 'en, the attack strategy is considered as a Markov
stochastic process as follows [43]:

Pr z
+
, g

+
|z, g, f(  � fN0,W z

+
(  +(1 − f)NAz,W z

+
( , (32)

where N0,W and NAz,W(z+) indicate the transition status,
N0,W indicates the absence of DoS attacks at time tk, and
NAz,W(z+) indicates the occurrence of the MA packet
dropout caused by the DoS attacks. Π∗(z, g, f) can be
expressed as follows according to formula (32):

E Π z
+
, g

+
( |z, g, f  � fEg+ ,we

Π g
+
, we(  

+(1 − f)Eg+ ,we
Π g

+
, Az + we(  .

(33)

'e following final cost function is ultimately expressed
as follows:

f
∗
(z, g, f) � min

f· tk( )∈[(z,g)
sup −λeρ(g, z) +(1 − f) · Λ(z, g) ,

(34)

with

Λ(z, g) � Eg,we
Π g

+
, Az + we(  − Π(z, g)  + z

T
z. (35)

'erefore, the attack strategy is expressed as follows:

ρ∗(z, g, f) �  argmin
ρ tk( )∈ 0,ρmax[ ]

−λe · ρ(z, g)  +   (1 − f) · Λ(z, g) .

(36)

'e error estimation covariance matrix depends on the
attack strategy as well as the cost function. 'ese parameters
are solved in the next subsection.

4.3. Solving the Optimal Attack Strategy with Energy Limits.
'e minimum error estimation covariance matrix in the
suboptimal attack strategy case is described in this section.
'e suboptimal solution method is expressed as a π function
[44]. 'e DoS attack power strategy is expressed according
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to the suboptimal attack strategy from lemmas in references
[45, 46].

ρ∗π(z, g, f) �

0, g≤g orΛ(z, g),

> λe

ρs
tk(  − g tk( 

si tk( 
− ϖ − ı ,

ρs
tk(  − g tk( 

si tk( 
− ϖ − ı otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

Due to the impact of the DoS attacks on the IIoT-based
VCTS, the attacker seeks to interrupt the rapidly growing
passengers flow at the station.MA dropout without jamming
occurs when the quality of wireless communication channels
is lower than the signal attenuation limit. However, it is a
challenge for the attacker to cause MA dropout when the
T2Tand T2G communication environments are effective. In
the situation of the quality of the wireless communication
channel is the highest, the attack power is zero under the
optimal attack strategy (as shown in equation (37)). During
the duration of [T1, T2], the attacker is required to establish
attacks power by the SINR of the route map. 'e attacker
selects a transmission power to make a packet successful rate
that is less than the communication limit for the safety of the
IIoT-based VCTS system when the train convoy is

decoupled caused by DoS attacks. In an actual underground
system, the SINR of the entire rail route can be measured by
the attacker, posing a serious threat to the system.

'e Λ(z, g) can be obtained from equation (35); how-
ever, it is unsolved. A unique expression of Λ(z, g) is de-
scribed in the current section. Equation (38) can be derived
from equation (11) as follows:

ϕπ tk(  � min lim
ΔT⟶∞

sup
1
ΔT

E 

T2

tk�T1

(1 − f)z
T
z⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− λeEg ρ g tk( , f tk( (  ,

(38)

where f larger than fs, as presented in equation (24).
A hypothesized that the condition formula (24) satisfies

is defined to simplify ϕπ(tk) according to [40] as follows:

ϕπ tk(  � Tr χ−
i tk( (  − λeEg ρ g tk( , f tk( (  , (39)

where Tr(•) represents the trace function.
'e above analyses indicate that the predicting error

covariance matrix, which is iterated at each communication
cycle, can be described by formula (41). Notably, the status
estimation approach can be obtained from formula
(13a)–(13c) and formulae (40)–(42). 'erefore, 'eorem 1
can be expressed as follows:

ρ∗π(z, g, f) �

0, g≤g or
1

1 − f
z

T
Mez> λe

ρs
tk(  − g tk( 

si tk( 
− ϖ − ı ,

ρs
tk(  − g tk( 

si tk( 
− ϖ − ı, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Theorem 1. The optimal attack strategy with energy limits
from the attacker’s standpoint can be expressed as formula
(40).

The expected corresponding cost function of the IIoT-
based VCTS can be calculated as follows:

Ππ(z, g) tk(  �
1 − f

1 − f
z

T
Mez − λeEg ρ g tk( , f tk( (  ,

(41)

where χ−
i (tk) and Me follow the Lyapunov equation as shown

in the following formulae -(42)-(44) [47]:

χ−
i tk(  � (1 − f) Aeχ

−
i tk−1( A

T
e + Q , (42)

Me � (1 − f) AeMeA
T
e + Q . (43)

Gus, Λπ(z, g) can be expressed as follows:

Λπ z tk( , g tk( (  �
1

1 − f
z

T
Mez. (44)

Energy constraints are the most important characteristic
of DoS attacks; therefore, they are discussed together on the
part of the attacker. Under subway environments and
tunnels do not provide a charging point for the attacker.
Serefore, when the attacker intends to interfere with the T2T
and T2G communication subsystems, energy constraints
affect DoS attacks. Se novel status estimation approach is
based on the optimal attack strategy on the part of energy
constraints of attacks. Studies would be further conducted to
investigate other features of DoS attacks.

Contrary to the traditional method, in the enhanced
Kalman filtering approach, the error estimation covariance
matrix is calculated based on the optimal attack strategy.
First, we have designed a cost function based on attack
energy limits of DoS attacks, on the part of the attacker. Sen,
the optimization model, which consists of energy limits,
signal attenuation, as well as the probability of successful rate
of the packet transmission in the control system, was pro-
posed. Next, we transformed the cost function into the
minimum error estimation covariance matrix, while we
defined a Markov stochastic process to match the failed
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transmission or not. For achieving the combination of the
packet dropout rate, the cyber performance, and the attack
energy, which is a physical index, we also have transformed
those performance into SER and SINR, which can be
measured directly. Last, the minimum error estimation
covariance matrix in the optimal attack strategy case is
obtained on Seorem 1, which was calculated by a combi-
nation of the optimization model and feature performance
of the IIoT-based VCTS system.

Ge evaluation criteria for mapping the train status es-
timation approach in the physical layer of the IIoT-based
VCTS system against DoS attacks are described in the next
section.

5. Evaluation Criterion of the Effects of DoS
Attacks on the IIoT-Based VCTS System

We defined the security criterion to evaluate the perfor-
mance of the train status estimation approach. 'e evalu-
ation criterion can be divided into the physical dynamics of
train operation and the passenger’s satisfaction, which is
inversely proportional to the traveling time of passengers. In
addition, sensitivity indices including the train dynamic
schedule, the train operational delay covariance, and the
waiting time of the passenger are introduced to evaluate the
effects on the passenger’s traveling time [48, 49].

5.1. Train Dynamic Schedule. Train operation should be
compliant with the train dynamic schedule andMA of ZC to
ensure urban transportation safety and punctuality of urban
transportation [48]. Profiles of trains’ operation, where they
are over space and time from one station to the destination
station, are presented in Figure 5. 'e train dynamic
schedule should be sensitive to the train operation. 'e
dotted line in Figure 5 indicates an increased traveling time
of train i from the station B to the station D, which is caused
by frequent emergency brakes [49]. Notably, this spacing
deviation indicates the difference from the train i + 1 op-
eration schedule, under normal conditions. 'is operation
deviation is proportional to delays, which are caused by
frequent emergency brakes and speed limits under DoS
attacks.

5.2. Train Operational Delay Covariance. Performance in-
dices including the delay covariance and the average waiting
time of passengers are defined to investigate passenger
satisfaction, which indicates passenger flow and traveling
time [48]. Headway is defined as the time difference between
the departure time of train i and the departure time of the
train i + 1 at station k. 'e delay represents the error be-
tween the headway under normal conditions and the actual
headway under DoS attacks. In this study, σh is defined as the
weight sum of train operational delay covariance as de-
scribed below. 'is index indicates variations in the pas-
senger travel time, which is accumulated by the train
operational delay and the waiting time of the passenger
under DoS attacks [49].

σh �
1

n − 1


n

i�2


m

k�1
hei,k − he 

2
· wsk, (45)

where hei,k and he represent the actual operational headways
of train i at station k, under DoS attacks and the operational
headway with the original schedule, respectively; wsk in-
dicates the weight constant to map the passenger flow at
station k; and m indicates the station number of the whole
rail line, while n indicates the number of trains on the
railway. Passenger flow for the underground railway varies
among different stations.'e term wsk represents the weight

0

Train i Train i+1 Train i+2

t
A

B

C

D

Figure 5: Train dynamic schedule.
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Yizhuang Railway Station

Figure 6: Communication test link between trains and ground
terminal.

Table 1: Parameters used in the simulations.

Parameters Value
Tracing acceleration 1m/s2

'e resistance acceleration 0.02m/s2

Emergency brake deceleration 1.2m/s2

Service brake deceleration 1m/s2

'e length of the train 118m
'e mass of the train 1 ton
'e headway between trains 120 s
'e speed limits 22.2m/s
'e number of stations 14
'e number of trains 12
'e communication period 200m/s
'e measurement noise error 6
'e passenger’s leaving rate 1.7person/sec
nc 3
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value at station k to indicate the actual passenger flow in each
station. For example, station B is an exchange station in the
route map, where passenger waiting time at station B is
longer compared to that at other stations (as shown in
Figure 5).

'e weight value for each station is defined according to
the average passenger arrival rate for evaluation of the actual
passenger flow at station k as follows:

wsk �
lrk


m
k�1 lrk

, (46)

where lrk indicates the arriving number per second of
passengers at station k. 'e σk

h average denotes the average
train operational delay covariance, which represents the
average train operational delay at station k.

σk
h average �

1
n − 1



n

i�2
hei,k − he 

2
. (47)

6. Simulation Results and Discussion

In this section, the performance effectiveness of the train
status estimation approach under DoS attacks is evaluated.
'e simulation consists of three parts. Firstly, the simulation
environments and main parameters are presented. Secondly,
the energy distribution of the optimal DoS attack strategy is
visualized using the MATLAB 2016 tool. Last, the perfor-
mance improvement of the IIoT-based VCTS under the
status estimation approach is analyzed.

6.1. Simulation Environment and Parameters. 'e simula-
tion environment and parameters are referenced to the
Beijing Yizhuang urban railway route, which is located in the
southeast of Beijing, covering a total length of 23.3 km with
14 stations as shown in Figure 6. 'e simulation route
comprises wayside techniques and wayside APs deployed
along the track stretching over a 200m distance.'e wireless
communication system is LTE-M. All relevant parameters
for simulating are outlined in Table 1.

'e performance of the train estimation approach was
analyzed using the number of stranded passengers. In this
case, the average departure time is set at 1.7 seconds per
person, while the passenger flow varies across stations. Other
parameters of the Yizhuang subway line are presented in
Table 2.

6.2.GeOptimal Attack Strategy. 'e propagation of signals
in the IIoT-based VCTS system is similar to the propagation
of electromagnetic waves in the waveguide [50]. 'is implies
that the DoS attacks are proportional to the distance between
the attacker and the victim ZC. For accurate simulation, it is
assumed that the location of the attacker is adjacent to the
position of victim ZC, and the attacker is alone.

Signal attenuation in the IIoT-based VCTS system is
attributed to the accumulation of the fast fading model and
the shadow fading model in the tunnel [50, 51]. Moreover,
the optimal attack strategy is based on the SINR in the
normal underground environment. 'erefore, to simulate a
practical realistic electromagnetic environment, values of
si(tk) are measured at the Yizhuang subway line as shown in
Figure 7. MATLAB simulation is performed using the train
status estimation approach simulation software. In this
study, the sum of attack limits on part of the attacker was

Table 2: Route parameters referenced to the Yizhuang railway.

Station name Distance between adjacent stations (m) Average passenger’s arriving rate (person per sec)
Songjiazhuang 2,631 77/600
Xiaocun 1,275 271/600
Xiaohongmen 2,366 74/600
Jiugong 1,982 189/600
Yizhuangqiao 993 16/600
Yizhuang culture park 1,538 31/600
Wanyuanjie 1,280 192/600
Rongjingdongjie 1,354 132/600
Rongchangdongjie 2,338 16/600
Tongjinanlu 2,265 66/600
Jinghailu 2,086 46/600
Ciqunan 1,286 60/600
Ciqu 1,334 50/600
Yizhuangqiao (open soon) — 0
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Figure 7: Measurement values of SINR with 1 hour in the Yiz-
huang line.
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assumed to be 3000W. Other parameters used in simulation
include, ρs(tk) � 30mW, ϖ � 3 dBm, ı � 2 dBm, f � 0.95,
and g � 12 dBm.

'e performance of optimal attack strategy and random
attacks in determining the impacts of DoS attacks on the
IIoT-based VCTS system is presented in Figure 8. 'e
number of attacks power at 867 s is decreased (as shown in
Figure 8(a)). Contrary to the energy distribution, the optimal
attack strategy performs better with regard to the duration of
DoS attacks, compared to the random attack strategy, which
is characterized by one energy constraint. 'e number of
emergency brakes, which is a measure of the effects of DoS
attacks on the IIoT-based VCTS system, is associated with
delays in the dynamic operation of the train. 'e number of
emergency brakes is evaluated to determine the advantage of
the optimal attack strategy as shown in Figure 9.'e number
of emergency brakes in the optimal attack strategy (i.e., 309)
is higher compared to that of the random attack strategy (i.e.,
32). 'is can be attributed to the higher energy consumed in
the random attack strategy.

6.3. Result of the Physical Layer of the Train Status Estimation
Approach. 'e effects of DoS attacks on the IIoT-based
VCTS system were quantified using appropriate evaluation
criteria, including speed/distance trajectories of the train,
train dynamic schedule, train operational delay covariance,
and average waiting time of the passenger, to effectively

evaluate the status estimation approach. In addition, the
performance of the status estimation approach was com-
pared with that of the conventional methods to assess the
effectiveness of the proposed approach. Representative
methods used for comparison include the intrusion detec-
tion (IDS) method [52], which is widely used to identify DoS
attacks and to evaluate the status estimation approach.
Several studies have used the estimation approach based on
game-theoretic (SEBG) [27]. 'e SEBG and IDS approaches
are compared to the status estimation approach in the
subsequent subsection.

6.3.1. Speed/Distance Trajectories of Trains. 'e x-axis in
Figure 10 shows station positions, while the y-axis shows
train velocities. 'e line chart presented in Figure 10(b)
shows the trajectories of 12 trains, which are decoupled from
three train convoys caused by DoS attacks. 'e operation
speed of members of the train convoy during the control
area of ZC represents the region between the third station
and the tenth station, which is defined by the multiple ZC
control areas in Section 2. However, the speed limits, which
are due to emergency braking, disappeared under the es-
timation approach as shown in Figure 10(c). Train trajec-
tories, which are not limited by speed limits, can reduce the
delay in train operation under DoS attacks. 'e simulation
results indicate the validity and stability of the defense
strategy. Similarly, SEBG and IDS approaches can limit the
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Figure 8: 'e energy distribution comparison of specific attacks strategies: (a) the random attacks strategy and (b) the optimal attacks
strategy.
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Figure 10: Train’s trajectories in specific scenarios: (a) virtual coupling in IIoT-based VCTS, (b) decoupling trains in IIoT-based VCTS,
(c) impacts of DoS attacks on the IIoT-based VCTS, (d) train status estimation approach, (e) SEBG approach, and (f ) IDS approach.
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Figure 11: Dynamic schedule in specific scenarios: (a) virtual coupling in IIoT-based VCTS, (b) decoupling trains in IIoT-based VCTS, (c)
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number of emergency brakes due to DoS attacks. When
compared to the effects of the train status estimation ap-
proach, the effects of these conventional methods on speed
are significant. An increase in effects is attributed to the
processing time of SEBG and IDS approaches.

6.3.2. Train Dynamic Schedule. Dynamic schedules of the
Yizhuang subway line in specific scenarios with the 12 trains
are shown in Figure 11.'e simulation represents the 1 hour
schedule of the train.'e train dynamic schedule under DoS
attacks with delays in train operations exceeding normal
operations is presented in the chart in Figure 11. MAs
overdue or dropout indicates the unreliable communication
network under DoS attacks; thus, the subsequent train does
not receive the MA in real time, resulting in the frequent
emergency braking, occurring between the 1400 s and the
3000 s. Emergency braking causes delays in the arrival time
for the train under DoS attacks as shown in Figure 11(c).'e
simulation result under the train status estimation approach
is presented in Figure 11(d). 'e effects of DoS attacks on
train operations are minimal better between the 2400 s to the
3000 s. 'ese findings indicate that the dynamic schedule
under the train status estimation approach resembles that of
the original timetable and that this approach significantly
minimizes delays in train operations (as shown in
Figures 11(c) and 11(d)). On the contrary, delays in train
operations of SEBG and IDS approaches are superior,
compared to the status estimation approach. 'ese results
show different degrees of delay within one hour (as shown in
Figures 11(e) and 11(f)), mainly with the IDS approach,
which were attributed to the ineffective detection time.
However, the arrival time of the last train for SEBG and IDS
approaches is not significantly different when compared to
the arrival time under normal conditions (as shown in
Figure 11(e)). 'is can be attributed to manual interventions
when train operation delays are extended beyond the
specified limit in the subway. Notably, a small margin

between adjacent dynamic operational curves improves the
serious safety risk (as shown in Figure 11(f )).

6.3.3. Train Operational Delay Covariance. Variations in the
weighed sum of train operational delay variance in the
Yizhuang line are presented in Figure 12(a). 'e findings
showed a general upward trend in the weight sum of train
operational delay variance. When the train convoy is
decoupled, the delay fluctuated from 1,400 to 2,000. How-
ever, when the wireless communication is under DoS at-
tacks, the weight sum of train operational delay variance
shows an upward trend reaching a maximum value sev-
enfold higher compared to the maximum value under a
normal scenario. 'e red line in Figure 12(a) indicates that
the train status estimation approach in comparison with
other specific scenarios is superior. In particular, for the
status estimation approach, the weight sum of train oper-
ational delay variance shows an upward trend, reaching a
peak value below 2,300. 'is indicates that the status esti-
mation approach is effective and consistent with the normal
environment. Analysis shows a steady increase in delay
variance of the train under SEBG and IDS approaches, with
the maximum values less than 4,500 and 4,100, respectively.

'e train operational delay covariance for each station,
which is increased for each station, in the Yizhuang line
under DoS attacks is shown in Figure 12(b). Notably, be-
tween the tenth and the fourteenth stations, operational
delay covariance of the train under DoS attacks is higher
compared to those under the trains decoupling and under
the state estimation approach. 'ese findings indicate that
the delay time is proportional to the distance covered under
DoS attacks. Findings for the estimation approach under
DoS attacks are shown in Figure 12(b).'ese results indicate
that compared to conventional methods, the estimation
approach significantly reduces the operational delay time of
the train. A steady rise in the number of delays from 0 to
15,000 is observed in the SEBG approach (as shown in
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Figure 12(b)). Notably, when compared to the SEBG ap-
proach, the increase in the delay variance of the train in the
IDS approach is not significantly different.

6.3.4. Average Waiting Time of the Passenger. Variations in
the average waiting time of passengers, which is the average
value of the fourteen stations, are presented in Figure 13(a).
'e average waiting time of the passenger rapidly increases
when the DoS attacks are jammed in wireless communi-
cation. For the train status estimation approach, SEBG
approach, and IDS approach, the average waiting times of
passengers increased (as shown in the line chart
Figure 13(a)). However, analyses revealed a steady trend in
both the normal environment and under the train status
estimation approach scenario, with a waiting duration of less
than seventies seconds, in the entire process of train op-
eration. 'ese findings indicate that the train status esti-
mation strategy is effective.

Findings for variations in the average waiting time of
passengers at each station are presented in Figure 13(b).
Significant increases in the average waiting time of pas-
sengers are observed under the DoS attacks, SEBG approach,
and IDS approach. Notably, the train status estimation
approach effectively decreases schedule delay.

7. Conclusion and Future Work

In this study, a novel train status estimation approach was
established for the protection safety and punctuality in the
IIoT-based VCTS system under DoS attacks. DoS attacks
can affect T2T communications; as a result, it causes train
convoy decoupling and enormous packet dropout. For
mitigating and estimating the effects of DoS attacks on the
IIoT-based VCTS system, we consider that the attack
strategy of a rational attacker is optimal with the energy
limited, which will most cause the system state offset, and
explore a trade-off between the best gain of the attack
strategy and the performance of the system, such as the real-
time capability, train operational delays, the train dynamic

schedule, trajectories of trains, and the average waiting time
of passengers. In the study, six specific scenarios were de-
fined to investigate the impacts of DoS attacks on the IIoT-
based VCTS system. Final findings show that the train status
estimation approach can mitigate the effects of DoS attacks
on the punctuality of train dynamic schedule and effectively
enhance the train operation safety prominently under DoS
attacks. Moreover, further studies would be performed to
evaluate other features of DoS attacks.
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