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As one of the next generation networks, Named Data Networking (NDN) performs well on content distribution. However, it is
vulnerable against a new type of denial-of-service (DoS) attacks, interest flooding attacks (IFAs), one of the fatal threats to NDN.
'e attackers request nonexist content to occupy the Pending Interest Table (PIT), and it causes the degradation of network
performance. Because of the great harm and strong concealment of this attack, it is urgent to detect and throttle the attack. 'is
paper proposes a detection mechanism based on Long Short-Term Memory (LSTM) with attention mechanism, which uses
sequence with different treatments. Once IFA is detected, the Hellinger distance is used to recognize malicious Interest prefix.'e
simulation results show that the proposed scheme can resist IFA effectively compared to state-of-the-art schemes.

1. Introduction

'e purpose of traditional network architecture based on
TCP/IP is to meet the end-to-end data transmission, which
cannot meet the diversified needs today. 'erefore, the
researchers began to study new network architectures. In-
formation Centric Networking (ICN) [1] aims to build a new
content-centric future network architecture, and it trans-
forms the current host-centric communication mode into
the content-centric network communication mode. Typical
representative projects of ICN include information-oriented
network architecture (Network of Information, NetInf ) [2],
publish/subscribe Internet routing paradigm, and publish/
subscribe Internet topology (PSIRP/PURSUIT) [3], Data-
Oriented Network Architecture (DONA) [4], Content
Centric Networking (CCN) [5], and Named Data Net-
working (NDN) [6]. 'e most representative ICN archi-
tecture is NDN, which was proposed by Zhang Lixia of
UCLA (University of California-Los Angeles) and Van
Jacobson of Xerox PARC (Xerox Palo Alto Research Center)
in 2010. 'e architecture of NDN is shown in Figure 1.

In the NDN network, there are two types of packets:
Interest packet and Data packet [6]. 'e users send Interest

packet to request content, and the returned content is called
Data packet.'ere are three data structures in NDN: content
store (CS), Pending Interest Table (PIT), and forwarding
information base (FIB) [6]. NDN implements routing and
forwarding via these three data structures:

(i) FIB: it stores the interface information pointing to
the specified content, and the Interest packet is
forwarded according to the FIB.

(ii) PIT: it records the unsatisfied Interest packet and
the corresponding interfaces and can aggregate the
Interest packets, and the Data packets are returned
in the original way according to the interface in-
formation of the PIT.

(iii) CS: the router caches the received Data packet to
realize intranetwork caching and reduces the delay
for users to obtain data.

'eNDN forwarding process of Interest packet andData
packet is shown in Figure 2.

When an NDN router receives an Interest packet, first it
checks if CS has a matching data. If so, the router returns the
Data Packet. Otherwise, the router checks whether PIT has a
matching entry. If it exists, the router adds incoming
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interface of the Interest packet to the entry. Otherwise, the
router forwards Interest packet based on the FIB. When
receiving a Data packet, the router first checks if PIT has a
matching entry. If it exists, the router returns the Data
packet based on the information of the PIT and caches the
Data Packet. Otherwise, the router will drop the Data
packet.

Denial of service (DoS) and distributed denial of service
(DDoS) are rampant in the traditional TCP/IP architecture
[8]. NDN can mitigate the impact of DDoS in TCP/IP ar-
chitecture. However, the researchers discover a new type of
DDoS attack called IFA [8]. As shown in Figure 3, the at-
tacker forges a number of fake Interest packets to consume
the memory resources of routers, which cause the degra-
dation of network performance.

'e IFA attack has great harm and strong conceal-
ment, and the researchers have tried various defend
mechanisms, mainly including machine learning and
statistical method. Due to the characteristics of network
traffic, it is difficult to accurately identify attacks of a single
time interval, resulting in low accuracy of attack detec-
tion. 'is paper uses past data through sliding window
and proposes an attention-based Long Short-Term
Memory (LSTM) [9] for IFA detection. Once IFA is de-
tected, the Hellinger distance [10] is used to identify the
malicious prefix.

'e contributions of this paper are summarized as
follows:

(1) 'is paper uses the LSTM model with attention
mechanism to detect IFA by exploiting the past data
sequence and with different treatments

(2) 'is paper proposes a Hellinger distance-based
malicious Interest prefix identify mechanism

(3) 'e simulation results show that the scheme pro-
posed can detect IFA effectively

'e rest of the paper is organized as follows: Section 2
gives a review of related works. Section 3 presents detection
mechanism and mitigation mechanism in detail. Section 4
gives an evaluation of the proposed mechanism and com-
pares the proposed mechanism with state-of-the-art
mechanism. Finally, Section 5 concludes the paper.

2. Related Works

Various literature works have been proposed on detecting
and mitigating the IFA. Some approaches use machine
learning to detect IFA. In paper [11], linear SVM and SVM
with Gaussian radial basis kernel function were used to
detect IFA. It consisted of two phases: the training phase and
the test phase. In paper [12], the Isolation Forest was used to
calculate the abnormal score of each Interest prefix at the
end of each fixed time interval to detect abnormal Interest
packet prefix. In paper [13], the deep reinforcement learning
was used to detect IFA. In paper [14], the naı̈ve Bayes (NB),
J48 decision tree, multilayer perceptron with back-
propagation (BP), and radial basis function (RBF) network
were used to detect IFA. In paper [15], the authors used
multilayer perceptron (MLP) with backpropagation (BP),
radial basis function (RBF) network with particle swarm
optimization (PSO), JAYA and teaching–learning-based
optimization (TLBO), linear support vector machine (SVM),
and fine k-nearest neighbours (KNN) to detect the attack. In
paper [16], the authors used association rule algorithm to
find the correlation between features and used decision tree
algorithm to detect the attack.

Some approaches use the mathematical model to detect
IFA. In paper [17], every NDN router computed the Gini
impurity to detect IFA by measuring the Interest name in a
router. In paper [18], the 'eil index was used to detect IFA
and the Interest packets were divided into groups by 'eil
entropy to evaluate the intragroup and intergroup difference
of Interest name distribution. In paper [19], two traffic
features were used to establish confidence interval, respec-
tively, to detect IFA. In paper [20], the authors used mean
and variance of packet hop counts to distinguish legitimate
users from malicious users. In paper [21], the authors used
hash-based security label to identify the malicious prefix. In
paper [22], the authors used wavelet analysis to detect IFA.
In paper [23], the routers used active queue management
(AQM) to defend IFA. In paper [24], each edge router used
token-based router monitoring policy (TRM) to mitigate the
IFA by controlling the data requestors. 'e detection
method used in the related work is shown in Table 1. 'e
main drawback of existing IFA detectionmethod is counting
the traffic information on a fixed time interval, which ig-
nores the temporal relationship of traffic.
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Figure 1: TCP/IP architecture vs NDN architecture [6, 7].
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3. Detection Mechanism Based on Attention
Mechanism with LSTM

'is section gives an overview of proposed defend mech-
anism, detection mechanism, and mitigation mechanism.

3.1.Overview. 'edefendmechanismmainly consists of five
parts, the data collection module, the data preprocessing
module, the detection module, the response module, and the
mitigation module, as shown in Figure 4.

In the data collection module, the traffic data is collected
and it is then input to the preprocessing module. In the
preprocessing module, the traffic characteristics are

extracted. 'e traffic characteristics are used to detect IFA in
the detection module. Once IFA is detected, the response
module will start identify the malicious prefix. Finally, the
mitigation module uses malicious prefix to limit the mali-
cious Interest packet.

3.2. Long Short-TermMemory. Deep learning is popular and
is used in various applications. Recurrent neural network
(RNN) [27] is a type of deep learning methods, which can be
used to detect anomaly. However, there is a gradient van-
ishing problem in RNN [28]. Long Short-Term Memory
(LSTM) [9] is an improved version of RNN, which solves the
problem of RNN. 'e LSTM structure is shown in Figure 5.

It mainly includes three structures, input gate, forget
gate, and output gate, which are used to update the LSTM
cell as follows [9]:

ft � σ Wf ht−1, xt  + bf ,

it � σ Wi ht−1, xt  + bi( ,

Ct � tanh WC ht−1, xt  + bC( ,

Ct � ft ∗Ct−1 + it ∗ Ct,

ot � σ Wo ht−1, xt  + bo( , and

ht � ot ∗ tanh Ct( ,

(1)

where W is the weight, b is the bias, ht is the hidden state at
time step t, and xt is the input at time step t.

3.3. Attention Mechanism. 'e Attention mechanism is
inspired by human attention behaviour and is well applied to
deep learning.

In paper [29], the attention mechanism was proposed.
Given an input X � [x1, x2, . . . , xN] ∈ RD×N, where N is the
length of input, xn ∈ RD, n ∈ [1, N], and D is the number of
dimensions in each time step, the calculation of the attention
mechanism is divided into two steps: first calculate the at-
tention probability of all input and then calculate the

Table 1: Comparison between related paper.
Paper Year Offline Online Detection method
[12] 2021 7 ✓ Isolation forest
[16] 2021 ✓ 7 Association rules + decision tree
[23] 2021 7 ✓ AQM
[24] 2021 7 ✓ Token
[19] 2020 7 ✓ Confidence interval
[21] 2020 7 ✓ Hash
[11] 2019 ✓ ✓ SVM
[18] 2019 7 ✓ 'eil index
[25] 2019 7 ✓ Hypothesis testing
[26] 2019 7 ✓ AQM
[13] 2020 7 ✓ Deep reinforcement learning
[17] 2018 7 ✓ Gini impurity

[14] 2019 ✓ 7

MLP with BP
RBF classifier

J48
Naive Bayes

[20] 2018 7 ✓ Mean-variance

[15] 2017 ✓ 7

MLP with BP
RBF with PSO
RBF with JAYA
RBF with TLBO
SVM linear
Fine KNN

[22] 2017 7 ✓ Wavelet analysis
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R4
R5
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Malicious user

Legitimate user

Provider

Legitimate packet
Malicious packet

Figure 3: IFA sample.
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weighted average of the input information according to the
attention probability.

3.4. Detection Mechanism. 'is section presents the detec-
tion mechanism in detail. First, some used notations are
listed and some features are defined. 'e notations used are
listed in Table 2.

Definition 1. (Router PIT Utilization Size). It denotes the
number of PIT entries in PIT during one time slice.

U ti, Rj  � e ti, Rj . (2)

Definition 2. (Router Interest Satisfaction Ratio). It denotes
the number of Data packets received to the number of
Interest packets received in one time slice.

S ti, Rj  �
φ ϕ ti, Rj  

ϕ ti, Rj 
. (3)

Definition 3. (Router Interest Request Frequency). It de-
notes the number of Interest packets received in one time
slice.

I ti, Rj  � ϕ ti, Rj . (4)

Definition 4. (Router Data Reply Frequency). It denotes the
number of Data packets replied in one time slice.

r ti, Rj  � φ ϕ ti, Rj  . (5)

'e feature calculation is shown in Algorithm 1.
'e detection mechanism detects IFA through a sliding

window, as shown in Figure 6.
A network traffic formally as a time series:

Z � z1, z2, . . . , zi, . . . , zF , which consists of F time steps.
zi(1≤ i≤F) represents the i th time step. For each sliding
window, which consists of φ time steps, the detection model
is used to classify the sliding window as legitimate or
malicious.

Figure 7 shows the LSTM with attention mechanism for
IFA detection. 'e attention mechanism can improve the
performance of LSTM by discriminatively utilizing each step
of hidden state information [30]. 'erefore, this paper uses
the traditional LSTM with attention mechanism to detect
IFA. 'e hidden states of each step are multiplied with
attention weights.

In LSTM layer, the input of each step is mapped to a
hidden state.

hi � LSTM zi( , i ∈ [1, F], (6)

where hi is the hidden state at time step i and zi is the input at
time step i.

In attention layer, the hidden state of each step is input to
a subsequent attention layer. It takes the form as follows [31]:

H � 

N

t�1
αth(t) and

αt �
exp gt Wt, h(t)( ( 


N
t�1 exp gt wt, h(t)( ( 

,

(7)
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Figure 4: 'e architecture of defend mechanism.
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Figure 5: An LSTM cell structure [9].
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where αt is the weight for each time step and gt(·) is a
fully connected layer with ReLU activation and pa-
rameters Wt.

'e illustration of attention mechanism is shown in
Figure 8.

In output layer, the attention layer resultsH is input to a
fully connected layer with sigmoid activation to obtain the
final result.

output � simoid(v). (8)

'e detection mechanism is shown in Algorithm 2.

'e algorithm works as mentioned in the following
steps:

Step (1): count the traffic information in time slice ε, use
Algorithm 1
Step (2): when the sliding window size is φ, fed to the
detection model, get output y

Step (3): if the detection result is legitimate, forward the
sliding window and return to Step (2)
Step (4): if the detection result is malicious, trigger the
malicious prefix identification mechanism

Table 2: Notation used.

Notation Description
ti 'e i-th time slice
Rj 'e j-th router
ϕ(ti, Rj) 'e number of receiving Interests of the j-th router in the i-th time slice
φ(ϕ(ti, Rj)) 'e number of receiving corresponding Data packets
e(ti, Rj) 'e number of PIT entry of router j at the i-th time slice

Input:
ε ▷ 'e time slice size
Output:
i ▷ 'e request frequency
r ▷ 'e reply frequency
s ▷ 'e satisfaction ratio

(1) procedure IncomingInterest(slice ε)
(2) i⟶ i + 1
(3) end procedure
(4) procedure IncomingData(slice ε)
(5) r⟶ r + 1
(6) end procedure
(7) s⟶ r/i
(8) return i r s

ALGORITHM 1: Interest features computing.

Input:
ε ▷ 'e time slice size
φ ▷ 'e sliding window size
Thr ▷ Detection threshold
Output:
Detection result

(1) Compute the metrics during time slice ε
(2) for the consecutive time step with length φ do
(3) fed the sequence Z to the detection model
(4) y � LSTMAtt(Z)

(5) if y>Thr then
(6) return legitimate
(7) else
(8) return malicious
(9) end if
(10) end for

ALGORITHM 2: LSTM with attention mechanism-based detection.

Security and Communication Networks 5



3.5. Response Mechanism. 'is paper recognizes the mali-
cious Interest prefixes based on the Hellinger distance [10].
'e Hellinger distance is used to measure the deviation

between two probability distributions independent of
parameters.

H(P,Q) �
1
�
2

√

��������������



n

i�1

��
pi


−

��
qi

√
 

2




, pi ≥ 0; qi ≥ 0, (9)

where P and Q are two probability distributions, P and Q

are n-tuples (p1, p2, .., pn), and (q1, q2, .., qn), ipi � 1, and
iqi � 1.

'e malicious prefix recognition process is shown in
Algorithm 3.

3.6. Mitigation Mechanism. When malicious prefixes are
recognized, the router will send notification packet that

time

current

. . .

. . .
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Figure 6: 'e sliding window.
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Figure 8: Illustration of temporal attention mechanism.
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includes the malicious prefixes to the downstream router, as
shown in Figure 9. 'e downstream routers extract the
malicious prefix and limit its sending rate when receiving the
notification packet.

4. Performance Evaluation

In order to evaluate the performance of the proposed
scheme, this paper conducts a set of simulations in ndnSIM
[32]. 'en, this paper compares the proposed scheme with
the state-of-the-art defend scheme. 'e simulations pa-
rameters are shown in Table 3.

'is paper considers tree topology as shown in Figure 10.
'e tree topology which is one of the most severely affected
by the IFA is widely used in detection mechanism evaluation
of IFA.

In tree topology, Rx denotes the NDN router, Cx de-
notes the legitimate user, Px denotes the data provider, and
Ax denotes the malicious user. 'e red lines denote con-
nections between the malicious user and NDN router, the

green lines denote connections between the legitimate user
and NDN router, the black lines denote connections be-
tween NDN routers, and the blue lines denote the con-
nections between the data provider and NDN router.

In tree topology, there are 9 legitimate users and 7
malicious users. 'e simulation lasts 800s. 'e legitimate
users issue Interest with the Zipf-Mandelbrot distribution
[33], and the malicious users issue Interest with uniform
distribution. In Zipf-Mandelbrot distribution, the content
items with k-th rank in the whole content popularity ranking
list are requested with probability qk k�1,2...K, where
qk � c/(k + q)s, c � 

K
k�1 1/(k + q)s

 
− 1
, K is the size of the

popularity list, and q and s are parameters.

4.1. Performance Metrics. 'e performance of detection
mechanism is evaluated by the confusion matrix, as shown in
Figure 11, where TP represents the number of abnormal traffic,
which is classified as abnormal, TN represents the number of
normal traffic, which is classified as normal, FP represents the

Input:
Interest prefix distribution when IFA is detected: P
Interest prefix distribution before IFA is detected: Q
Interest prefix set: I

Output:
Malicious prefix set

(1) Q′ � Q

(2) for prefixi ∈ I do
(3) Qi
′ � Pi

(4) calculate the Hellinger distance H(Qi
′,Q)

(5) if H(Qi
′,Q)> thr then

(6) add prefixi to malicious prefix set
(7) end if
(8) end for
(9) return malicious prefix set

ALGORITHM 3: Hellinger distance-based malicious prefix recognition.

R1

R2 R3

R4
R5

R6

Malicious user

Legitimate user

Provider

Legitimate packet
Malicious packet
Notification packet

Figure 9: IFA mitigation sample.
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number of normal traffic, which is classified as abnormal, and
FN represents the number of abnormal traffic, which is clas-
sified as normal.'is paper compares the detectionmechanism
with SVM and LSTM from the following metrics:

(i) Interest satisfaction ratio: it is defined as the ratio
between the number of Data packets received and
the number of Interest packets sent.

(ii) PIT size: it is defined as the number of entries in the
PIT.

(iii) Accuracy: it is defined as the overall performance of
the model and is calculated as follows:

accuracy �
TP + TN

TP + FP + TN + FN
. (10)

(iv) Recall: it is defined as the proportion of attack
samples that are correctly identified as attacks, and it
is calculated as follows:

recall �
TP

TP + FN
. (11)

4.2. Hyperparameter Tuning. 'e detection model’s archi-
tectures are built using Pytorch in Python on a machine with
32GB RAM.'is paper trains detection model for 50 epochs
with Adam optimizer [34] at a learning rate of 0.001.

4.3. Loss Function. 'e binary cross entropy is a loss
function that is used in binary classification problems. 'e
objective of the detectionmechanism is to label time window
as normal or abnormal; therefore, this paper uses binary
cross entropy loss function for training the LSTM and LSTM
with attention mechanism, which is computed as follows:

L � −
1
N



N

i�1
yi · log p yi( (  + 1 − yi(  · log 1 − p yi( ( . (12)

where yi is the binary label and N is the total number of
samples in training set.

4.4. Impact of the IFA. Attack intensity (λ) is defined as the
ratio of malicious user’s sending rate to the legitimate user’s
sending rate. In this section, this paper evaluates the impact
of the IFA and considers two types of routers: the router only
connected to legitimate user and the router connected to
legitimate user and malicious user.

In Figure 10, this paper evaluates PIT size of the routers
R11, R10, and R8 under IFA and evaluates the Interest
satisfaction ratio of normal users under the IFA.

Figure 12 shows the PIT size under IFA with different
attack intensities. When there is no attack, the routers have a
constant PITsize.When IFA is launched at the 400th second,
the PIT size begins to increase and the greater the attack
intensity, the greater the PIT size. 'e impact on PIT size is
also different for routers in different locations; the router
R11 is least affected by the attack because it is not connected
to a malicious user; the router R10 is greatly affected by the
attack because it has the most connections with malicious
users.

Figure 13 shows the Interest satisfaction ratio of normal
user under IFA with different attack intensities. 'e Interest
satisfaction ratio is stable without IFA, and the Interest
packet sent by the user can receive the corresponding Data
packet. At the 400th second, the IFA is launched, the Interest
packets sent by users can hardly receive the corresponding
Data packets, and the Interest satisfaction ratio decreases
instantaneously. Moreover, with the increase of attack in-
tensity, more malicious Interest packets are sent and the
impact on Interest satisfaction ratio of normal users is
greater.

4.5. Performance of Detection Mechanism. In this section,
this paper compares our detection mechanism with SVM
and LSTM from detection accuracy and recall. 'en, this
paper evaluates the defend mechanism from Interest sat-
isfaction ratio and PIT size with expired-PIT-based defend
mechanism [35].

Firstly, the learning rate and batch size used in this paper
are introduced. 'is paper selects learning rate and batch
size by comparing the detection accuracy. 'e learning rate
is 0.001, 0.005, and 0.01, respectively. 'e batch size is 512,
256, and 128, respectively.'e simulation results of different
learning rates and batch sizes on the detection accuracy are
shown in Figures 14–16, respectively.
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R11
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C5

A6

R7

A5

A4

R4 C4R10

R13

R14

R12

R8
R0

R9

R15 P0

A3R3

C3

A2

R2

C2
C1

R1A0

C0

A1

Figure 10: Tree topology.

Table 3: Simulation parameters.

Parameters Value
Legitimate request distribution Zipf-Mandelbrot
Malicious request distribution Uniform
Number of content types 1000
Malicious request rate 100
Legitimate request rate 100
Lifetime of PIT entries (second) 1
Attack time (second) 400
Simulation time 800
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Figure 14 shows the detection accuracy under different
attack intensities with different learning rates when the batch
size is 512. When the learning rate is 0.001, the accuracy is
the highest.

Figure 15 shows the detection accuracy under different
attack intensities with different learning rates when the batch
size is 256. When the learning rate is 0.001, the accuracy is
the highest.

Figure 16 shows the detection accuracy under different
attack intensities with different learning rates when the batch
size is 128.

Finally, this paper sets the batch size 512 and the learning
rate is 0.001. As shown in Figures 17 and 18, with the in-
crease in the number of epochs, the accuracy increases and
the loss decreases. When the epochs are equal to 50, the
model tends to be stable.

Next, this paper compares the accuracy and recall of the
detection mechanism with SVM and LSTM, and the results
are shown in Figures 19 and 20.

Figure 19 shows the detection accuracy of the proposed
detection mechanism under different attack intensities.
Compared with LSTM and SVM, the detection mechanism
proposed in this paper has the highest accuracy.

Figure 20 shows the recall of the proposed detection
mechanism under different attack intensities. Compared
with LSTM and SVM, the detection mechanism proposed in
this paper has the highest recall.

4.6. Performance of Mitigation Mechanism. 'is section
evaluates our mitigation mechanism on the Interest satis-
faction ratio and PIT size.

Figure 21 shows the Interest satisfaction ratio with the
proposed defend mechanism and expired-PIT-based defend
mechanism under attack. When the malicious users launch
IFA at the 400th second, the Interest satisfaction ratio drops
rapidly. Under high attack intensity, the proposed detection
mechanism quickly detects the attack and limits the sending
of malicious packets and the Interest satisfaction ratio

returns to the normal level. 'is paper also tests the impact
of the detection mechanism on the burst traffic of normal
users, and the proposed detection mechanism will not
misjudge the burst traffic of normal users.
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Figure 21: Interest satisfaction ratio with different defend mechanisms.

Security and Communication Networks 11



Figures 22 and 23 show the PIT size with the proposed
defend mechanism and expired-PIT-based defend mecha-
nism under attack. When the attacker starts the attack at the
400th second, the PIT size rises rapidly. Under high attack
intensity, the detection mechanism quickly detects the attack
of different attack intensities and limits the sending of
malicious packets and the PIT size returns to the normal
level.

5. Conclusions

'is paper proposes a defend mechanism for Interest
flooding attack in NDN. 'e defend consists of three parts:
detection, response, and mitigation. 'e LSTM with at-
tention mechanism is used to detect IFA; once IFA is de-
tected, the Hellinger distance is used to identify malicious
Interest packet prefix. Finally, the malicious prefix is sent to
the downstream routers to cooperate to limit the attack. 'e
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Figure 22: PIT size with the proposed defend mechanism.
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Figure 23: PIT size with expired-PIT-based defend mechanism.
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experimental results show that the LSTM with attention
mechanism shows better performance than the LSTM and
SVM. In future work, this paper will consider multiple at-
tacks in NDN, such as collusive attack, low-rate IFA, and
large-scale topology.
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