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As a special scenario of mobile cloud computing, mobile edge computing can meet the requirements of low latency of data
integrity verification and support of mobility in mobile scenarios. However, most existing data integrity verification methods have
relatively large computational overhead and few considerations of data dynamic update. To address the above problems, we
propose a lightweight data integrity verification method that can support data dynamics in mobile edge computing scenarios. )e
proposed method is based on an algebraic signature and data integrity verification framework, which ensures security and reduces
the computational overhead to achieve the requirement of lightweight. On this basis, analysis and proof of the feasibility, security,
and privacy are given. At the same time, in order to support the dynamic update of the data, an optimized strategy based onmatrix
index is designed with low overhead. In comparison with other baselinemethods, simulation experiments show that ourmethod is
superior in terms of computational overhead and has good performance in supporting data dynamics.

1. Introduction

With the development of cloud computing, mobile edge
computing (MEC) has been proposed as a special scenario of
mobile cloud computing (MCC), which plays an important
role inmobile scenarios with low service latency [1, 2].When
verifying the integrity of data stored on remote servers, MEC
can provide lower service latency and support mobility,
which is more appropriate for data integrity verification in
mobile scenarios than MCC.

Most of the existing data integrity verification methods
are based on cryptography theory, signature strategy, and
blockchain. Cryptography theory includes elliptic curve
cryptography theory [3] and homomorphic verification [4],
and signature strategy includes ZSS short signatures [5, 6]
and aggregate signatures [7]. )ese methods can safely and
reliably verify the data stored in remote servers. However,
for mobile users, the computing performance and com-
munication resources of their portable mobile devices are
limited, such as when users are on a high-speed train or bus
journey. Most of the existing methods for data integrity
verification are based on mobile cloud computing scenarios,

which consume a large computational overhead. Moreover,
the methods have poor support for data dynamic update
operations, which is not conducive to the dynamic update
operation of user data in mobile scenarios. )erefore, data
integrity verification in mobile scenarios to meet the rapidly
growing needs of low latency, low computing overhead, and
support for mobility has important research significance.

To solve the above problems, based on our previous work,
combined with mobile edge computing and data integrity
verification, we propose a lightweight data integrity verification
method supporting data dynamics in a mobile edge computing
scenario. )e method can take into account both security and
computing overhead to achieve lightweight requirements. In
addition, considering the low performance of the user’s mobile
device and difficulty in independently verifying the integrity of
the data, we introduce a third-party audit (TPA) and assume
that it is not fully trusted to verify the security of our method.
When the data block being queried ismissing at the edge, cloud
servicesmay provide additional assistance, and ourmethodwill
check all data blocks in the data set to eliminate any illegal
operations that may exist. )e main contributions of our work
can be summarized as follows:
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(i) Firstly, we design a system framework based on data
integrity verification in mobile edge computing
scenarios. In our framework, we use edge nodes to
prestore the data blocks to be checked and use a
semitrusted third-party auditor to verify the in-
tegrity of the data blocks that users need to query.
Our method can ensure that the data blocks are
securely protected, and users’ privacy will not be
disclosed.

(ii) Secondly, we propose a data integrity verification
protocol based on algebraic signatures (ASDIV-
MEC); this protocol can not only ensure security
and reliable verification of data but also ensure low
computational overhead in the case of verifying all
data blocks to achieve lightweight requirements,
allowing users to verify the integrity of data under
acceptable computational and communication
overhead. On this basis, the feasibility, security, and
privacy of the algorithm and performance are an-
alyzed and proved.

(iii) )irdly, based on previous research, we propose an
optimization strategy for data dynamic update,
which uses the data dynamic operation based on
matrix index to support dynamic update of user
data in mobile scenarios and reduces the computing
overhead of dynamic update.

(iv) Finally, we carry out a series of simulation exper-
iments. )rough simulation and comparison ex-
periments, our method is superior to other methods
in terms of computational overhead, which verifies
the efficiency of the method. At the same time, we
conduct comparative experiments on several data
dynamic update operations to further verify that our
optimization strategy has better performance than
other methods.

)e rest of the paper is organized as follows: Section 2
introduces the background of data integrity verification,
mobile edge computing, and algebraic signatures. Section 3
expounds the system framework from the design goal and
the architecture. Section 4 describes the content of the
ASDIV-MEC agreement in detail. Section 5 analyzes and
proves the performance of the proposed method. Section 6
gives the specific content of the dynamic update optimi-
zation strategy. In Section 7, a simulation experiment is
carried out, and the experimental results are given. Finally,
Section 8 summarizes this paper.

2. Background

In this section, we describe the related work. Firstly, the
development of data integrity verification methods and the
shortcomings of each method are introduced. Secondly, the
application of data integrity verification in the mobile edge
computing scenario is given. Finally, we introduce the al-
gebraic signatures used in this paper.

2.1. Data Integrity Verification. Data integrity verification
was first proposed by Deswarte et al. [8], who proposed two
data integrity verification methods using hash operation and
Diffie–Hellman key exchange protocol. However, the
method based on hash operation requires a lot of calculation
and communication overhead. Subsequently, Venkatesh
et al. [9] considered using homomorphic encryption tech-
nology based on RSA signatures for integrity verification,
but this method also requires a lot of computational over-
head. On this basis, Ateniese et al. [10] proposed a proba-
bilistic verification method using message authentication
codes to reduce communication overhead. )e work of
Shacham and Waters [11] used the Boneh–Lynn–Shacham
(BLS) signatures mechanism to construct a homomorphic
encryption verifiable label and proved the security and re-
liability of the mechanism. Wang et al. [12] considered the
characteristics of the Merkle hash tree and proposed using
the Merkle hash tree to verify the correctness of the data
block.

In recent years, the combination of data integrity veri-
fication and cloud computing has also been studied. Zhu
et al. [6] proposed a cloud-IoT data integrity verification
method combined with ZSS signatures. However, they use
ZSS signatures-based data integrity verification, which is
limited by the large computational overhead required and
cannot verify all data blocks to ensure that 100% of the data
blocks are complete. Shen et al. [13] proposed the use of
algebraic signatures for data integrity verification, but this
method did not achieve faster data processing and analysis in
mobile edge scenarios to reduce latency and support mo-
bility. Ren et al. [14] proposed a sensor data integrity ver-
ification mechanism based on bilinear mapping
accumulators. Compared with other works, this method is
considered to verify the integrity of the entire data set, but
bilinear mapping-based methods require relatively high
computational overhead, and they do not consider whether
the verifier is secure and reliable, so they cannot completely
ensure the correctness of data verification results. Fan et al.
[7] used aggregate signatures to verify data integrity. X. Lu
and Pan [15] proposed a security and lightweight integrity
verification method for IoT mobile terminal devices, which
ensures the privacy and efficiency of data sharing in the
cloud and achieves relatively lightweight operations for data
owners.

At the same time, based on the key characteristics of
blockchain decentralization, many researchers have studied
the data integrity verification scheme based on blockchain.
Aiming at the shortcomings of existing data integrity ver-
ification schemes, Wang et al. [16] proposed a data integrity
verification scheme based on blockchain, which greatly
improved the efficiency and security of the verification
process. In order to avoid overreliance on TPA, Yue et al.
[17] proposed a data integrity verification framework for
distributed edge cloud storage (ECS) based on blockchain,
which adopted aMerkle tree with random challenge number
to verify data integrity without relying on TPA. Similarly,
Liu et al. [18] believed that the reliability of the framework
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based on TPA was not satisfactory and then proposed a data
integrity verification framework based on blockchain. While
existing blockchain-based data integrity verification
schemes can avoid the trust issues of TPA, they must face
another challenge, the issue of huge computing and com-
munication overhead.

2.2.MobileEdgeComputing. Mobile edge computing (MEC)
is a special scenario of mobile cloud computing (MCC). It
provides lower service latency than MCC. It is used to meet
the low latency and high mobility requirements of data
integrity verification in mobile scenarios to enhance the
ability of IoT terminal devices to process data. With the
development of 5G technology and the widespread appli-
cation of mobile networks, MEC has received widespread
attention. MEC has been applied to many fields, such as
healthcare, education, and public services [2]. In recent
years, the security issues of MEC have also attracted some
attention. For example, Tong et al. [19] first studied the data
integrity verification of mobile edge computing. )ey pro-
posed twomethods, which are suitable for users who want to
verify the integrity of unilateral or multilateral data. On the
basis of Zhu et al. [6], Wang et al. [5] proposed integrity
verification based on ZSS signatures [20] in mobile edge
scenarios. )is method transfers the data integrity verifi-
cation to the edge node closer to the user to provide lower
delay and meet the user’s strong mobility, but the consid-
eration of computational overhead is relatively insufficient.
Liu and Shen [4] proposed using homomorphic verification
technology to ensure data integrity, but this method is
similar to ZSS short signatures, which are based on bilinear
mapping, and the problem is also that the computational
cost is relatively high.

2.3. Algebraic Signatures. )e algebraic signatures are a
signature defined on the Galois field. It is a kind of hash
function with algebraic properties; that is, the signature of
taking the sum of a certain file block is the same as the
signature of taking the sum of the corresponding block.
)erefore, the algebraic signatures can be regarded as a kind
of algebraic hash function, which can return a part of the
data signature for data integrity verification, thereby saving
the computational overhead of data integrity verification at
the edge node.)e algebraic signatures method in this paper
is based on Mokadem and Litwin [21] and Schwartz and
Miller [22]. Algebraic signatures are similar to crypto-
graphically secure hash functions such as MD5 and SHA-1.
But MD5 and SHA are not secure in terms of encryption
because it is easy to deliberately construct two strings with
the same signature [22].

Mokadem and Litwin [21] first used algebraic signa-
tures in Scalable Distributed Data Structures (SDDSs) to
check distributed files stored in distributed networks.
Schwarz andMiller [22] used algebraic signatures to check
data in remote servers. Later, Luo et al. [23] used algebraic
signatures in the cloud to check the data possession in the
cloud. In the method of Luo et al., a trusted third-party
auditor is used to check data in the cloud. In addition, this

method uses an index table method to support dynamic
operations of data. Ping et al. [3] and Shen et al. [13] based
on the work of [22, 23] further proposed the use of al-
gebraic signatures in cloud computing to verify the in-
tegrity of data. However, these tasks are based on data
integrity verification in cloud computing scenarios, which
cannot meet the needs of low latency and strong user
mobility.

3. System Model

3.1. Design Objective. Compared with the data integrity
verification in the traditional MCC environment, the data
integrity verification in the MEC environment faces addi-
tional and complex interaction problems, which are more
challenging. Although previous work has conducted re-
search on scenarios and data integrity verification, the
consideration of low latency and low computing overhead is
relatively insufficient, and the research on data dynamic
update operations needs to be improved. )erefore, in this
paper, we propose a lightweight data integrity verification
method that supports data dynamics in mobile scenarios.
Our goals are as follows:

(i) Design a data integrity verification framework in a
mobile scenario and design an algebraic signature-based
data integrity verification protocol (ASDIV-MEC)
under this framework. )e verification protocol will
verify all required data blocks instead of randomly
selecting data block verification and, on the premise of
guarantee security, maintain a low computational
overhead to meet the requirements of lightweight. At
the same time, the protocol ensures that the semitrusted
third-party auditor will not obtain the user’s private
information from the verification, ensuring the security
and privacy of the entire verification process. On this
basis, in order to ensure the complete verification of the
data, the situation where a single edge node, multiple
edge nodes, and the cloud collaborate together is
considered.

(ii) A data dynamic update optimization strategy with a
lower computational cost is designed for mobile
users to dynamically update data. )is strategy is
based on an index matrix to support the correct
update of mobile user data and ensure low com-
putational cost.

3.2. Architecture of ASDIV-MEC. )e overall architecture of
our method is shown in Figure 1, which consists of four
types of entities: users, edge, cloud, and semitrusted third-
party auditor (semi-TPA). )e following is a detailed
functional description of these four main components:

User: the user is the initiator who queries the data block
and requests verification of integrity. Each user has a
different fixed or mobile device, and the location is also
different. )rough our method, the user quickly signs
the uploaded data with low computational overhead,
stores the data in the cloud, and sends the signatures to
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TPA. When the user needs to query a data block, a
request is sent to the edge node through the method,
and the verification result is obtained with lower la-
tency and computational overhead so as to achieve a
lightweight effect. User can also update data dynami-
cally according to the data update optimization strat-
egy, which consumes less computing overhead.
Edge: it is deployed at the edge node of the network
close to the terminal device and the user.)e edge node
has the characteristics of miniaturization, distribution,
and being closer to the user, which can realize the
processing of data on the edge of the network, reduce
the request and response time and computing over-
head, and support users’ strong mobility. After the user
sends the integrity verification request, the edge node
finds the corresponding data block from the pre-
downloaded data, uses our method to quickly generate

the corresponding proof with low overhead, and
returns the result to the TPA for verification.

Cloud: it is a server that stores and processes user data.
Each cloud service provider has powerful capabilities
and huge storage space to provide comprehensive
services with a short execution time, which greatly saves
local storage space. In addition to storing the entire data
file for the user, the cloud can also generate a certificate
for the missing data block in the edge server and send it
to the TPA.

Semi-TPA: it has powerful computing and storage
capabilities and performs data integrity verification.
Our method introduces TPA to reduce the user’s
computing overhead and the communication overhead
between the user and the edge node and replace the
user to perform integrity verification, which can meet
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Figure 1: )e architecture of ASDIV-MEC.
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the lightweight requirements. TPA collects and verifies
the proof sent from the edge node and returns the
verification result to the user.

As shown in Figure 1, in the MEC environment, due to
the low computing and storage performance of mobile
devices, mobile users use our method to quickly divide data
into multiple data blocks with a small amount of overhead
and generate signatures for each data block and then upload
the data blocks to the cloud storage device and delete the
data on the local device. After that, the signature generated
by the corresponding data is sent to TPA. In many studies, it
is generally assumed that TPA is completely reliable. )is is
unrealistic because TPA may be attacked by external or
internal attacks and return wrong results to users, posing a
threat to data security. Our model system can handle this
situation well, so we assume that TPA is semireliable. Edge
nodes deployed near mobile terminals periodically pre-
download data blocks from remote clouds to provide data
integrity services with low latency and computing overhead
to achieve lightweight requirements.When a user requests to
verify data blocks, the user sends the request to the edge
node, which generates a proof of the data blocks to be
verified with low computational overhead and sends it to the
TPA. After that, TPA verifies whether the received data
block proof and the data block signature uploaded by the
user are correct according to the characteristics of the al-
gebraic signature and returns the result to the user.

Users usually verify the integrity of data stored on edge
nodes before querying the stored data. When the queried
data is not predownloaded on the edge nodes, the cloud
server will provide a certificate to help return the stored data
to the TPA for verification. When a user needs to update
stored data, he can send an update request through our
method. )e method adopts the data dynamic update op-
timization strategy to dynamically update the user’s data
with a low computational overhead to ensure lightweight
operations.

4. Protocol of ASDIV-MEC

4.1. Preliminaries. )is paper introduces a secure and effi-
cient data integrity verification signature, which is a hash
function with algebraic properties, that is, algebraic

signatures, which can quickly sign data blocks to improve
signature efficiency. Algebraic signature is a hash function
with algebraic properties proposed by Schwarz and Miller
[22]; that is, the sum of the signatures of a certain file block is
the same as the signature of the sum of the corresponding
block. Algebraic signatures have homogeneity and algebraic
properties, consume less computational overhead when
signing and verifying data, and can be used for lightweight
integrity verification of remote data [22].

Assuming that a block of data in data file F is composed
of F1, F2, . . . , Fn, then the algebraic signatures have the
following properties.

4.1.1. Compressibility.

ASα F1, F2, . . . , FN(  � 
N

i�1
Fiα

i
. (1)

It can be seen from equation (1) that algebraic signatures
are compressible and can compress a file into a small string,
where AS is the algebraic signature method and α is the
algebraic signature parameter. When the original file is
modified, the corresponding algebraic signatures value will
also change accordingly. )is attribute is similar to the hash
functions MD5 and SHA in cryptography. However, when
using MD5 and SHA, users need to keep all hash values and
must retrieve all their own data, which causes huge com-
munication and computational overhead. )erefore, MD5
and SHA are not suitable for remote data integrity verifi-
cation [22]. )e algebraic characteristics and compressibility
of algebraic signatures enable users to check all data stored
remotely with less overhead. )erefore, algebraic signatures
are an ideal way to verify whether remote data is stored
intact.

4.1.2. Algebraic Property. In addition, the technology has
low communication and computing overhead. Suppose two
large data files X and Y are composed of n subblocks, which
are, respectively, expressed as x1, x2, . . . , xn and
y1, y2, . . . , yn. )e algebraic properties of algebraic signa-
tures can be observed as follows:

ASα(X) + ASα(Y) � ASα x1, x2, . . . , xN(  + ASα y1, y2, . . . , yN( 

� 
N

i�1
xiα

i
+ 

N

i�1
yiα

i
� 

N

i�1
xi + yi( αi

� ASα(X + Y).
(2)
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)erefore, algebraic signatures enable edge nodes to
return a portion of the data signature for data integrity
checking, thus saving bandwidth for edge node data integrity

checking applications. In the face of the diversity of data, the
following expansion can also be carried out:

ASα(X) + ASα(Y) + · · · + ASα(Z)

� ASα x1, x2, . . . , xN(  + ASα y1, y2, . . . , yN(  + · · · + ASα z1, z2, . . . , zN( 

� 
N

i�1
xi · αi

+ 
N

i�1
yi · αi

+ · · · + 
N

i�1
zi · αi

� 
N

i�1
xi + yi + · · · + zi(  · αi

� ASα(X + Y + · · · + Z).

(3)

Algebraic signatures consist mainly of the following
three functions:

KeyGen: in the KeyGen phase, it generates some ini-
tialization parameters, such as the master key k, the
signatures parameter, and some random parameters.
Sign: the algebraic signatures of a data block are as
follows: ASα(Fi) � Fi · αi.
Verify: given a fixed key k, data block Fi

′, and signature
Sig, the verifier needs to verify that the signature of the
stored data block is equal to the original signature. If
they are equal, then the signature is generated by the
user who has the signature, and verification can be
confirmed as follows: ASα(Fi

′) � Sig.

For the sake of clarity, we list some notations and their
descriptions in Table 1, which will be used throughout the
paper.

4.2. ASDIV-MEC. ASDIV-MEC includes five stages: pa-
rameter generation stage, signature generation stage, chal-
lenge generation stage, proof generation stage, and
verification proof stage. We use Paragen, SigGen, Chall-
Gen, ProofGen, and VerifyProof to represent these five
stages. )ese five stages are described in detail as follows.

Step 1. KeyGen() ⟶ , (k, a, r1, r2): first, some parameters
need to be generated in the initial stage. )e user needs to
generate a master key k and signature parameter a from the
secure hash function. Meanwhile, the user and the TPA
generate two security parameters r1 and r2, according to the
secure hash function. Finally, the TPA sends r2 to the user
over a secure channel between the client and the TPA.

Step 2. SigGen (F, k, r1, r2)⟶ (Sig): this stage generates
an algebraic signature for each data block. )e user divides
the data file F into blocks: m1, m2, . . . , mn . Since TPA is
not necessarily honest, in order to ensure the security of data
blocks, data owners need to preprocess data blocks mi ∈ F to
prevent the disclosure of user data when TPA is attacked.

Fi � mi ⊕H r1‖i( , (4)

whereH is a one-way hash function with collision resistance,
used to protect security parameter r1 and block of the

confidential nature of IDi, and ‖ is a concatenation
operation.

From the above operation, the data block of data file
F � F1, F2, . . . , Fn . According to our method, the signa-
ture of block i can be generated with little overhead.

Sigi � Fi · a
i·r2 . (5)

On this basis, the signature of the data file F is
Sig � Sig1, Sig2, . . . , Sign , which reduces communication
overhead and facilitates support for TPA auditing.

After that, the user sends the data file block
F � F1, F2, . . . , Fn  that is uploaded to the cloud server for
storage, and the edge node periodically downloads the data
block that the user needs to query in advance and signs the
data block Sig � Sig1, Sig2, . . . , Sign  that is uploaded to
TPA.

Step 3. ChallGen (r1), ⟶ , (chall): when a user wants to
check whether some of his data is stored intact in the cloud,
the user initiates a data integrity request. )e user first
generates a random x in the Galois field and calculates
ck � fk(r1 + x), generates the challenge chall � (ck, x) ,
and sends it to the edge node and TPA.

Step 4. ProofGen (chall, r2), ⟶ (proof): the edge node
stores all the data that users need to query. After receiving
the chall, our method requires the edge node to generate a
certificate based on the algebraic signatures, generate a
certificate for the data block to be queried with a lower
computational cost, and reply to the TPA with a storage
certificate. Considering the possible lack of data transmis-
sion between the cloud and edge nodes, we consider three
cases in Figure 2 in this step, which are described in detail as
follows:

Case 1 (Single Edge). )e edge node first calculates the
position of the selected block, as shown as follows:

li � σk r2 + i( , 0≤ i≤ c. (6)

And let L � li 0≤ i≤ c, c is the number of blocks per
chall.
)en the edge node computes the algebraic signatures
of the sum of the selected blocks:
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β � ASα 
l∈L

Fl
⎛⎝ ⎞⎠. (7)

)e signature of the sum of the computed data blocks is
sent to TPA as proof.

Case 2 (Multiple Edges). In this case, a single edge node
cannot provide enough data blocks, and it queries
nearby edge nodes for help. Let us assume that there are
T edge nodes working together to solve this tricky
problem, and each edge node has its own index set of
data blocks Oj, j ∈ 1, 2, 3, . . . , t{ }; on this basis, for

Table 1: Summary of main notations.

Notations Descriptions
F Data file
mi ith data block of data file F

n Number of data blocks
k Master key
a Signature parameter
ri Security parameter
H Hash function
ck Pseudorandom number
x Random number generated in Galois field
Chall Challenge request chall � (ck, x) 

Proof Proof of data blocks
li )e position of ith data block
c )e number of blocks per chall
t Number of edge nodes working together in Case 2
I Queried data block index set

Single Edge Node

Data query

Proof

Algebraic Signature

Algebraic Signature

Algebraic Signature

Algebraic Signature

User TPA

Case 1

Case 2

Case 3

Multi Edge Nodes

Information of missing
data blocks

Cloud

Figure 2: )ree cases in our verification protocol.
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every j ∈ 1, 2, 3, . . . , t{ }, edge node Ej can extract the
valid data block index set for the missing data block, as
shown as follows:

Ij � I − I∩O1( ∪ I∩O2( ∪ . . . ∪ I∩Oj−1  ∩Oj

� I − I∩ O1 ∪O2 ∪O3 ∪ . . . ∪Oj−1  ∩Oj

� I∩Oj − I∩Oj ∩ O1 ∪O2 ∪O3 ∪ . . . ∪Oj−1 j ∈ 1, 2, 3, . . . , t{ }.

(8)

We define the edge node Et as the last one if
O1 ∪O2 ∪O3 ∪ . . . ∪Ot−1 ∪Ot � I. Assume that

Ij � s1, s2, . . . , sej
  and ej ∈ 1, 2, 3, . . . , n{ }; according

to formula (8), we can get

β � ASα 
t


l∈L

Fl
⎛⎝ ⎞⎠. (9)

)e last edge node sends the signature of the sum of the
computed data blocks to TPA as proof.
Case 3 (A Joint of Multiple Edges and Cloud). In this
case, a single edge node and its nearby edge nodes
cannot provide enough data blocks and will eventually
seek help from the central cloud. )e last edge node
communicates with the central cloud for the missing
data block. )e calculation is similar to Case 2. Finally,
the central cloud returns the integrated evidence to the
TPA.

Step 5. Verify(chall, proof ) ⟶ \{TRUE, FALSE\}: when
TPA receives the storage proof proof from the edge node, it
verifies the correctness of proof

proof � 
n

Sigi. (10)

If the above equation is true, TPA will return true to the
user to confirm that the outsourced data is complete; oth-
erwise, it will return false to notify the user that the out-
sourced data is corrupted.

5. Performance of Analysis

In this section, we analyze the performance of the proposed
ASDIV-MEC model system from three aspects, namely,
feasibility, security, and privacy. Both edge nodes and TPA
are semitrusted in our model. For the sake of description, we
examine the case of Case 1 in detail.

5.1. Feasibility

Lemma 1. If both TPA and edge nodes can carry out data
transmission and communication normally, then the data
integrity verification scheme ASDIV-MEC proposed in this
paper is feasible.

Proof. According to the protocol described earlier, if the
data block on the edge node is stored intact, then TPA can
verify the correctness through the proof generated by the
edge node and the user-generated signature. We can ac-
curately infer and verify the feasibility of the scheme through
the following calculations:

ASα(X) + ASα(Y) � ASα x1, x2, . . . , xN(  + ASα y1, y2, . . . , yN( 

� 
N

i�1
xi · αi

+ 
N

i�1
yi · αi

� 
N

i�1
xi + yi(  · αi

� ASα(X + Y).
(11)

From the above derivation that the sum of the user’s
signatures for each data block is equal to the sum of the
signatures of the data block stored in the edge node, it can be
concluded that our verification algorithm is feasible. □

5.2. Security and Privacy

Lemma 2. If our model system is maliciously attacked, TPA
can detect data file corruption.

Proof. Assume that the edge node is attacked and tamper
with the data block Fi stored in the edge node. If an attacker
wants to pass TPA authentication, then they need to build an
alternative signature:

Sig′ � ASα X
∗

(  � Sig. (12)

Make

ASα X
∗

(  + ASα(Y) + · · · + ASα(Z) � ASα(X + Y + · · · + Z).

(13)
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In order to ensure the security of the original data, this
paper uses the hash function and random parameters to
blind the original data block and uses the hash function to
encrypt the security parameters r1 and i, which can not only
protect the security parameters but also resist forgery attack.
)e data file is hidden in Fi · ai·r2 , and a is the security
parameter randomly generated by the data owner in the
KeyGen stage. In addition, a is masked by the data block i

and the user identifier r1, enhancing the privacy of the data.
)erefore, if the attacker modifies the block mi, but

cannot obtain the user’s security parameter r1, then the
following cannot be constructed:

F
∗
j � m

∗
j ⊕H(·) � Fi � mi ⊕H(·). (14)

)us, (13) cannot be verified through TPA, so the at-
tacker cannot pass TPA verification by constructing a new
signature. □

Theorem 1. When the attacker attacks the TPA or the edge
node, the attacker cannot obtain the user’s private infor-
mation by intercepting the signature information.

Proof. In our approach, TPA has a signature set
Siga � Sigi , and the signature set is the hidden user data
information generated by Fi · ai·r2 . Even in batch authenti-
cation, the information of multiple users will be hidden in
the data block. )erefore, the security parameters block ID
and signature parameters to hide the user’s private
information. □

Theorem 2. If the TPA and edge nodes are honest, the in-
tegrity verification process is feasible and secure.

Proof. On the basis of Lemmas 1 and 2, we can prove the
theorem directly. □

6. Data Dynamics Optimization Strategy

In mobile scenarios, users need to update the data stored on
the server, which consumes a large amount of overhead.
However, the limited computing resources of the devices
carried by users are not conducive to the data dynamic
update in mobile scenarios. )erefore, it is necessary to
develop corresponding optimization strategies for the data
dynamic update to reduce the computing cost of data update
and support the data dynamic update operation of users in
mobile scenarios, which has important research significance.

According to the validation method proposed in Section
4, if all entities can honestly communicate and transmit data,
we design a data dynamic update optimization strategy that
allows users to dynamically insert, delete, and modify data
blocks with low computational overhead. We propose two
functions: UpdateReq, an update request algorithm, and
UpdateExec, an update execution algorithm, to implement
dynamic update operations on data blocks. Update opera-
tions include adding, deleting, and modifying data blocks.
Some existing methods to realize data dynamics mainly
focus on using linked lists [3], index tables, and trees [5].

Reference [13] proposed using the matrix to realize the
dynamic change of data, and through simulation experi-
ments, it is concluded that the calculation cost of using the
matrix method is lower than that of using the index table and
tree method. )erefore, this paper uses a matrix-based
approach to achieve dynamic data change.

First, we represent the file block in the form of a matrix
index. Each row index of the matrix corresponds to a data
block, as shown as follows:

F �

F1 f11 · · · f1k

F2 f21 · · · f2k

F3 f31 · · · f3k

⋮ ⋮ ⋱ ⋮

Fn fn1 · · · fnk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

F1, F2, . . . , Fn, respectively, represent the index value of
the data block; fij represents the data subblock j under data
block i. If the data subblock exists in the edge node, it is
represented by 1; if it does not exist, it is represented by 0.
)e following matrix index can be obtained:

MI �

1 1 · · · 1

2 1 · · · 1

3 1 · · · 1

⋮ ⋮ ⋱ ⋮

n 1 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

When a data block is modified, the index matrix needs to
be changed accordingly. Because of the hierarchical struc-
ture of data, we can modify both a data block and a data
subblock, which is very suitable for the operation of a large
amount of data on edge nodes. )e index matrix is managed
by the user, and the edge nodes and cloud services process
the data according to the index matrix provided by the user.

UpdateReq: a function that handles user requests. )e
input is 〈BlockOperation, Index, M〉, where
BlockOperation is based on the specific data block
requested by the user, In de x is the index of the
updated data block, and M is the index matrix. )e
output is 〈BlockOperation, Index, block′, t′, M′〉,
where block′ is the updated data block, t′ is the updated
signature, and M′ is the updated matrix index.
UpdateExec: it handles functions executed on the edge
server. )e input is the output of UpdateReq, which is a
new copy of the file. After each update, the user can
perform challenge validation to ensure that the update
operation is correct.

6.1. Insertion Operations. Data insertion includes data block
insertion and data subblock insertion. When a user wants to
insert a data block after a data index, he finds the row in the
index matrix that needs to be inserted and then inserts the
new row in the next row. )e change process of the index
matrix of data block insertion is shown in Figure 3.
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)e insert operation also supports the insertion of data
subblocks. When the user wants to insert a new data block
fi,i+1 after the data subblock fi,i, the system needs to de-
termine the index position of the inserted block. After that,
the system will add a column to the index matrix, move the 1
after the index i backward, and finally insert the data sub-
block at the position of the index i + 1. )e changing process
of the index matrix is shown in Figure 4. No subblocks are
inserted except for the index i row, and the other data blocks
remain unchanged.

6.2. Deletion Operations. Similarly, data deletion operations
include two parts: block deletion and subblock deletion.
During block deletion, when you need to delete data block
Fi, set the corresponding row matrix to −1, and the row
index changes accordingly. )e MBID block index deletion
matrix is used to assist in data deletion as follows:

MBID �

0 0 · · · 0

0 0 · · · 0

⋮ ⋮ ⋱ ⋮

−i −1 · · · −1

⋮ ⋮ ⋱ ⋮

0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

During the subblock deletion process, if the subblock fi,i

needs to be deleted, the value of the relative position of index
matrix S in the deletion matrix can be changed to −1.
)erefore, we can write the subblock index deletion matrix
MSID as the following matrix:

MSID �

0 0 · · · 0

0 0 · · · 0

⋮ ⋮ ⋱ ⋮

0 · · · −1 0

⋮ ⋮ ⋱ ⋮

0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

As mentioned above, the edge node has an index matrix
and a modification matrix for the data. If we need to delete
the data block Fi, we can use the index matrix plus the
corresponding block index delete matrix to get a new index
matrix NMI. )e block Fi deletion process can be written as
follows:

NMI � MI + MBID. (19)

If the subblock fi,i needs to be deleted, the index can be
modified using the index matrix plus the corresponding
subblock index deletion matrix. )e new index matrix NMI

can be obtained by

NMI � MI + MSID. (20)

Using matrix addition operation, the proposed data
dynamics method can reduce the deletion operation over-
head [13].

6.3. Update Operations. Another common operation is data
update. When a block or subblock is updated, the index is
first found and deleted, and then the new block or subblock
is inserted into the original block location.

Assume the data block Fi is updated to Fi
′. First, find the

i-th row of the index matrix. Second, delete the values of the
matrix rows. Again, after the new data is inserted into the
original data location, the corresponding index value is
updated. )e block update process in an index operation is
shown in Figure 5.

Similarly, our scheme supports subblock updates, as well
as the other two dynamic operations. To update the data
subblock fii to fii

′ , the corresponding index value needs to
be found and deleted. After the new subblock is inserted, the
value of the index matrix is updated. )e operation method
is similar to data block update. )e detailed process of index
matrix operation is shown in Figure 6.

)rough the above analysis, we can prove the dynamic
nature of our integrity verification algorithm. None of these
changes breaks the signature policy technology, so the
privacy of the data is still protected.

For Cases 2 and 3, we can get similar results because the
main difference in performance compared to Case 1 is the
additional communication costs from the edge nodes and
the cloud.

7. Performance Evaluation

7.1. Experimental Settings. In the experiment, we carried out
experiments on the proposed prototype system. For the four
entities involved in the system, namely, users, edge nodes,
CSP, and TPA, we deployed these entities using machines
with different configurations according to the roles and
functional requirements in the system model. CSP and TPA
are deployed on two Dell Precision T9720 tower servers. )e
user and edge nodes are deployed on two different laptops.
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Table 2 shows the detailed parameters of our prototype
system.

)e experiment was carried out under the PBC library-
0.5.14, GMP library-6.1.2, and VC ++ 6.0 software envi-
ronment. In the experiment, the key size is 160 bits, and the
pseudorandom number size is 80 bits. )ese data were the
mean values of 40 replicates.

7.2. Baseline Methods. In order to prove the efficiency and
effectiveness of our ASDIV-MEC method, two traditional
signature methods (RSA signatures and BLS signatures) and
two recently worked signature methods (aggregate signa-
tures and ZSS short signatures) are compared with our
method.

(1) RSA signatures: the RSA signatures bit ranges from
1024 to 4096. Under the same security condition, the
BLS signatures are shorter than the RSA signatures.

(2) BLS: because the RSA algorithm mainly relies on the
difficulty of factorization of a large integer, the
calculation cost of the RSA-based method is high.

(3) Aggregate signatures scheme: Fan et al. [7] used
aggregate signatures to verify data integrity. Ag-
gregation signature is a variant signature method
used to aggregate any multiple signatures into a
signature. It can combine the public key and sig-
nature of each participant in a multisign transaction
into a single public key and signature. )e entire
merge process is invisible, the premerge information
cannot be derived from the merged public key and
signature, and the verification only needs to be done
once.

(4) ZSDIV-MEC: ZSS signature is a bilinear pin-based
short signature proposed by Zhang et al. [20], which
is based on encrypted hash functions such as SHA-2
or SHA-3. While the overhead of a ZSs-based sig-
natures system is smaller than that of BLS and RSA,
the user must store the hash of SHA and then retrieve
the entire data file from the edge node or cloud to
verify its integrity, resulting in significant commu-
nication and computing costs.

7.3. Performance Comparisons

7.3.1. Response Time for Different Cases. Firstly, we evaluate
the calculation cost of each signature policy in the edge node to
compare the performance of each signature policy. We choose
the time cost as the index; that is, the time cost is related to the
number of data blocks queried. In this experiment, we set a
total of 200 data blocks, and the abscissa represents the number
of data blocks queried and validated by the user. )e size of
each data block is 64 kb.)e ordinate indicates the query time.
At the same time, since there are three cases of our strategy,
experiments are conducted on the calculation overhead of
queries in different cases.

Figure 7(a) shows the experimental results of Case 1, where
the edge node has predownloaded all the data blocks requested
by the user for verification. As shown in Figure 7(a), with the
increase of the number of queried data blocks, the time cost of
the five schemes is getting higher and higher. )e RSA-based
scheme has the highest time cost, and the time cost increases
exponentially. )e performance of the scheme based on BLS is
slightly worse than that based on aggregate signatures scheme
and ZSDIV-MEC, but better than that based on RSA. At the
same time, the response time of our method is better than that
of the baseline, so the ASDIV-MEC policy is better than the
three baseline policies, which illustrates the low computational
cost and effectiveness of algebraic signatures in data integrity
verification, and meets the requirements of lightweight.

Figure 7(b) shows the experimental results of Case 2. In this
experiment, we set a total of 5 edge nodes. It can be seen from
the experimental results that our scheme also has the lowest
cost, and the RSA-based scheme has the highest cost. In ad-
dition, in the case of multiple edge nodes, the response time of
each scheme increases significantly compared with the case of a
single edge node, which is due to the additional communi-
cation costs between the edge nodes. Figure 7(c) shows the
experimental results of Case 3. Obviously, the increasing trend
is very similar to Case 2. However, for each scenario, the overall
response time of Case 3 is slightly greater than that of Case 2
because of the residual costs due to increased communication
between the edge nodes and the cloud.

As can be seen from the experimental results, compared
with the other three baselines, the proposed ASDIV-MEC
solution has lower latency and low computational overhead
and can better meet the requirements of lightweight.

7.3.2. Computation Overhead for KeyGen and SigGen. As we
all know, KeyGen and SigGen are two important steps in
data integrity verification. And depending on the protocol,
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Table 2: Experiment environments.

Entity
Experiment environments

Device CPU RAM
(GB)

TPA Server Intel XEON silver 4210 @2.20GHz× 20 64
CSP Server Intel XEON silver 4210 @2.20GHz× 20 128
Edge Laptop Intel Core i7 @2.70GHz× 4 16
User Laptop Intel Core i7 @2.70GHz× 4 16
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the process is very different. )erefore, after comparing the
overhead on the edge nodes, we further conducted exper-
iments on the other two important steps in the strategy,
KeyGen and SigGen, for different schemes and calculated
the computational overhead of each scheme.

In this experiment, we evaluated the time overhead of
key generation and signature generation for data block sizes
ranging from 1 kB to 128 kB. As shown in Figure 8(a), we can
see that, with the increase of data block size, the proposed
time cost plan of ASDIV-MEC is about 20–30ms, while the
time cost plan based on aggregate signatures scheme,
ZSDIV-MEC, and BLS is about 30–40ms. )e time cost of
the RSA-based solution was much higher than the other
three solutions at about 90milliseconds, nearly three times
the cost of the plan. As shown in Figure 8(b), it is clear that
our proposed scheme always outperforms the baseline
during the signature generation phase. )is is because the
computational security of the RSA algorithm depends on the

difficulty of factorizing large integers, while the BLS sig-
natures require a specific hash function, which is especially
efficient for large-scale data. )e strategy based on aggre-
gation signatures is based on bilinear mapping, which leads
to high overhead. Although ZSS signatures use general hash
functions (such as SHA-2 and SHA-3), the calculation of its
short signatures is complicated and increases the time cost,
while the proposed ASDIV-MEC is relatively simple.
)erefore, in terms of KeyGen and SigGen for data integrity
verification, our ASDIV-MEC has better performance in
terms of computational overhead, which can improve the
efficiency of signature and meet the requirement of
lightweight.

7.3.3. Computation Overhead Comparison. In order to
better explain the reasons for the low latency and low
computational overhead of ASDIV-MEC, we compared the
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Figure 7: Comparison of response time. (a) Single edge. (b) Multiple edges. (c) A joint of multiple edges and the cloud.
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computational complexity of the BLS-based method, the
ZSDIV-MEC method, and our method. Figure 9 shows the
calculation times for user and TPA.

As can be seen from Figure 9(a), with the same number
of data blocks, the ASDIV-MEC scheme spends less time
on users than the scheme based on BLS, aggregate signa-
tures scheme, and ZSDIV-MEC. )is is because an alge-
braic signature is a signature similar to a hash function, but
with relatively low computational complexity. As shown in
Figure 9(b), due to the algebraic signatures, our protocol
also takes less time than the schemes based on BLS, ag-
gregate signatures scheme, and ZSDIV-MEC. By com-
paring the computational overhead of the BLS-based
method, the aggregate signatures scheme-based method,

the ZSDIV-MEC method, and our ASDIV-MEC method,
the lightweight performance of the method is further
proved.

7.3.4. Comparison of Computational Overhead for Data
Dynamics. To verify the low computational overhead of our
proposed data dynamics operation, we compare three main
data dynamics strategies. Figure 10 shows three data dynamic
update schemes. It can be seen from Figure 10 that the
computing cost of the tree-based scheme increases exponen-
tially, while that of the other two schemes increases linearly.
)is is because the tree-based scheme needs to calculate split
subtrees, making its cost much higher than the other two.
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Further, we simulate the dynamic operation on the
MATLAB platform and construct the index matrix MI in
MATLAB, where all the matrix values are 1, and the first
column of the matrix is numbered 1 to n in MATLAB. Each
operation is implemented three times according to different
data blocks. )e number of blocks is 50, 100, and 200. In
order to reflect the rule of time overhead, we simulate three
data block operations with different subblock numbers,
namely, 50, 100, and 200.

Figure 11 shows the computing cost of data insertion and
deletion in three dynamic operation methods. Figures 11(a)
and 11(b) are the insertion operations of blocks and sub-
blocks.)e computing cost of thematrix-basedmethod used
in our dynamic update strategy is slightly lower than that of
the table-based method, while that of the tree-based method
is much higher than that of the matrix and table-based
method. Figures 11(c) and 11(d) are block and subblock

deletion operations. )erefore, the computational cost of
dynamic operations based on matrix indexes is the lowest.

8. Conclusion

In this paper, data integrity verification in a mobile edge
computing environment is studied. We propose a light-
weight and dynamic data integrity verification method in an
MEC environment. In order to achieve low latency and
acceptable computational overhead, we design a data in-
tegrity verification protocol based on algebraic signatures.
)rough detailed performance analysis, the feasibility, se-
curity, and privacy of the proposed method are proved. At
the same time, a data dynamic update optimization strategy
is proposed to further reduce the computing cost. We have
conducted a series of experiments to compare the compu-
tational overhead of the proposed method with other

0.05

0.04

0.03

0.02

0.01

0.00
50 100

Number of Data Blocks
200

C
om

pu
ta

tio
n 

Ti
m

e (
m

s)

Matrix Method
Table Method
Tree Method

(a)

0.06

0.05

0.04

0.03

0.02

0.01

0.00
50 100

Number of Data Blocks
200

C
om

pu
ta

tio
n 

Ti
m

e (
m

s)

Matrix Method
Table Method
Tree Method

(b)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
50 100

Number of Data Blocks
200

C
om

pu
ta

tio
n 

Ti
m

e (
m

s)

Matrix Method
Table Method
Tree Method

(c)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
50 100

Number of Data Blocks
200

C
om

pu
ta

tio
n 

Ti
m

e (
m

s)

Matrix Method
Table Method
Tree Method

(d)

Figure 11: Comparison of computation time in insertion and deletion. (a) Block insertion. (b) Subblock insertion. (c) Block deletion.
(d) Subblock deletion.

14 Security and Communication Networks



methods at various stages. Simulation results show that the
performance of our method is better than the baseline
methods.

In future work, we will study how to ensure that the
algebraic signatures-based integrity verification method is
more secure and efficient, and we will also consider the
problem of data integrity verification for multiple mobile
users.
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