Retraction

Retracted: Systematic Assessment of the Interoperability Requirements and Challenges of Secure Blockchain-Based Electronic Health Records

Security and Communication Networks

Received 11 July 2023; Accepted 11 July 2023; Published 12 July 2023

Copyright © 2023 Security and Communication Networks. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of one or more of the following indicators of systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content included in the article
(6) Peer-review manipulation

The presence of these indicators undermines our confidence in the integrity of the article’s content and we cannot, therefore, vouch for its reliability. Please note that this notice is intended solely to alert readers that the content of this article is unreliable. We have not investigated whether authors were aware of or involved in the systematic manipulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks did not identify these issues before publication and have since put additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research Publishing teams and anonymous and named external researchers and research integrity experts for contributing to this investigation.

References

Research Article

Systematic Assessment of the Interoperability Requirements and Challenges of Secure Blockchain-Based Electronic Health Records

Faheem Ahmad Reegu, Hafiza Abas, Zaid Hakami, Sanatan Tiwari, Rudzidatul Akam, Iskandar Muda, Hashem Ali Almashqbeh, and Rituraj Jain

1Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 50480, Malaysia
2Department of Computer Science, Jazan University, Jazan 45142, Saudi Arabia
3Faculty of Management Studies, University of Delhi, Delhi, India
4Faculty Economic and Business Universitas Sumatera Utara, Medan, Indonesia
5Department of Business, Qatar University, Doha, Qatar
6Department of Electrical and Computer Engineering, Wollega University, Nekemte, Ethiopia

Correspondence should be addressed to Faheem Ahmad Reegu; farfaheem6211@gmail.com and Rituraj Jain; jainrituraj@wollegauiversity.edu.et

Received 8 April 2022; Revised 13 June 2022; Accepted 22 June 2022; Published 21 July 2022

1. Introduction

Blockchain is a decentralized, fast, secure, and private technology used to exchange information. Blockchain technology can transform the traditional healthcare system by maintaining patient data privacy and security [1]. Blockchain has the power to change the way patients’ electronic health records are transferred and stored by providing safer ways for medical information transfer in the healthcare industry and securing it via a randomized peer-to-peer network [2, 3]. The implementation of technology makes electronic health records (EHRs) robust and secure [4]. Blockchain technology has the potential to improve health care by putting the individual at the center of the health system and promote health data security, transparency, and interoperability. By making electronic health records (EHRs) more efficient and secure, this technology might create a new paradigm for interoperability (HIE) [5, 6]. The EHR system contains the sensitive information of patients, including diagnostics and treatment. The patient data are an asset for the healthcare system. The collection and distribution of healthcare data are essential sources to analyze the healthcare system’s ability to provide healthcare services [7]. EHR includes critical and very sensitive private information for medical diagnosis and treatment. The sharing of healthcare data is an essential step in making the national healthcare intelligent and improving service quality.
[8, 9]. A structural and well-formatted patient health data are maintained and stored at various hospitals, clinics, and the government, and healthcare department is an EHR [10].

Interoperability in an EHR plays a key role, and it refers to the ease with which medical records and healthcare information may be shared from one provider or system to another. While healthcare systems can communicate in a variety of ways, the EHR is widely recognized as one of the simplest and most secure alternatives that do not result in data blockage. By concentrating on EHR interoperability and developing ways to improve it, healthcare systems may smooth out frequent communication channels, increase overall patient contentment, and even reduce common healthcare expenses. An electronic health record (EHR) is a digitally recorded structure of a patient’s health data that is produced and managed over the course of the patient’s life. It can often be stored and provided by various hospitals and clinics, including health professionals [11, 12]. The semantic interpretability concept of EHR [13] has several challenges. Security is the biggest challenge, and electronic healthcare systems are the primary prey of cyberattacks. According to research, one-third of all cyberattack victims were healthcare systems [14]. Blockchain, which supports a sharing and trust mechanism, might be a future option for data sharing, allowing for collective healthcare decision in telehealth and precision medicine [15, 16]. Ransomware 88% of attack victims were healthcare systems. Data of 80 million people are breached during the attack of 4 February 2015 called anthem breach attack. Another challenge is the size of the EHR database, which is increasing rapidly. The patient data [17] include patient information and X-rays, and computed tomography, which has a large size and requires ample storage space. In 2015, an average healthcare system had storage space of 665 terabytes, which increased to 25,000 petabytes in 2020. The main occupants of storage space are medical images in the unstructured form [18]. Another challenge is the heterogeneity of healthcare systems. Various health service providers used their database management system, different system architecture, and data infrastructures [19]. Data integrity and standardization are becoming challenging and prominent among cross-health service providers. The heterogeneity of health service providers makes it challenging to share precise and standardized data for useful applications. The study covers the following:

(i) Importance of interoperability of EHR using blockchain technology
(ii) Challenges of implementing blockchain technology in EHR systems
(iii) The requirement of an interoperable blockchain-based system
(iv) A summary of interoperable EHR requirements, problems, and solutions

The article has six sections. Section 2 elaborates on the relevant work on blockchain and its usage in the healthcare system. Section 3 enlightens the research methodology and step adopted for this systematic review followed by Section 4 that presents research question-based results. Section 5 presents requirements, standards, and solution. The article conclusion is presented in Section 6 followed by future directions.

2. Related Work

2.1. Blockchain. A peer-to-peer (P2P) ledger-based distributed technology used for Web-based information sharing is called blockchain and was initially invented for the financial sector for transactions by skipping the role of arbitrator. It is the same as the mediator in government and private organizations who play a trusted third party (TTP) to receive and process transactions. TTP is not valid and trustworthy because it can be malfunctioning, or a security breach can affect the whole transaction system [20]. The extensive use of electronic health records (EHRs) improves the efficiency and adaptability of medical services. It has the potential to dramatically improve the convenience, intelligence, and accuracy of public healthcare treatment, particularly when combined with cloud storage and mobile apps. Because of its centralized management, EHRs are more vulnerable to centralized assault, purposeful manipulation, and single-point failure. It suggests that protecting patient privacy and other sensitive data will become more difficult, leading to more frequent conflicts between doctors and patients [21, 22]. Technically, blockchain is a decentralized database presented over a P2P network. A typical blockchain contains nodes, contracts, and blocks. The information is stored on a block, and the nodes are the point of connection between the blockchain members. In the blockchain environment, every node contains a copy of local data called a block. When the nodes agree on a contract, the transaction is performed and has validity [23].

2.2. Use of Blockchain in Electronic Health Records (EHRs). Blockchain-based application robustness has provided decent support in the medical industry and medical support systems. Various applications are presented in the literature review for maintaining EHRs by taking into consideration the factor interoperability. Interoperability of EHR enables the health service providers to update a patient’s record over the synchronized blockchain network [24]. The EHR using blockchain is a new era system that monitors patient health and records patients’ treatments, surgeries, and therapies’ schedule.

Interoperable EHRs simplify the insurance system by processing the health insurance claims and updating the payment system authentications. Blockchain in EHRs enables researchers and biomedical scientists to utilize the health data to estimate statistical analysis and create robust diagnostic applications and medicines. The importance of blockchain is presented using research reviews, applications, and unique security solutions for problems.

Interoperability, scalability, and cross-platform implementation are challenges in the blockchain-based application in the area of health care. A distributed healthcare system that removes the central mediator creates a serious abrupt in the standard healthcare systems [25].
3. Research Methodology

The systematic research contains six primary tasks such as (1) research question, (2) research steps, (3) suitable article selection, (4) keywords, (5) data extraction, and (6) mapping. A research question is the most significant part of all research procedures before carrying out any research. The research question is the primary tool to determine the blockchain interoperability challenges in EHRs. Related articles need to be reviewed and the interoperability challenges and their possible solutions are found. Several applications of blockchain have been presented, but these are in prototype form. Numerous challenges are persisting in the real world while implementing blockchain applications. Localization of challenges can be performed by conducting studies on relevant manuscripts. The recognition of reliable solutions for specific problems is very critical. Studying relevant articles can lead to the identification of future directions and research gaps.

Mapping techniques summarize and categorize the presented solution by researchers to solve specific EHR system interoperability problems. The research question depicts the blockchain base solution for EHRs and future direction to improve blockchains’ applications for maximum performance. Several developments have been presented in the literature, which clearly defines the solution of problems. Clarity of explanations and direction makes it reliable to use blockchain in healthcare systems efficiently. Reliable findings require the implementation of various methods such as search planning, inclusion, and exclusion standard. Keyword and key term-based methods are used to search and extract EHR interoperability-related research articles to identify the challenges and solutions. Google scholar is used to search key terms such as “blockchain,” “healthcare,” and “interoperability of EHRs,” followed by downloading articles from start to latest reports. The items mentioned above are sourced from IEEE, SCOPUS, ACM, journals, and conferences.

The research question related to the problem is composed, and research is conducted to find suitable solutions related to challenges systematically. A total of 98 articles were excluded because of the focus on “blockchain” and does not include the “blockchain in health care.” The 18 standard research papers related to blockchain in EHRs with interoperability were selected for data derivation. The inclusion and exclusion criteria are presented in Table 1.

The selected articles were scrutinized based on citations using the available database. Citation of relevant research article citation for once is critical. According to interoperability, the article selection was performed based on the maximum number of citations related to the systematic review of EHRs. The selection of the most relevant articles is illustrated in Figure 1 in the form of a flow chart.

Figure 1 is the flow chart representing the functioning of electronic database. The selected articles are scrutinized and then reviewed. This will provide safer ways for medical information transfer in the healthcare industry and securing it via a randomized peer-to-peer network. In general, all research articles present their keywords after the abstract of the manuscript. Related keywords to this systematic review are blockchain, interoperability, and EHRs.

3.1. Data Derivation and Mapping.

Selected vital terms and keywords were used to search relevant manuscripts for systematic review, and quotes were compiled from related articles. The mapping of challenges and their possible solutions is extracted and formatted. A systematic method was adopted to highlight specific challenges related to the interoperability of EHRs and their possible solutions. The mapped solution and challenges are discussed in Results. The mapped requirements and standards are elaborated in Table 2. The selection of described standards and requirements from 18 selected articles was performed using the ATLAS.ti tool. The discussed tool is also used for keyword searching and the extraction of relevant articles and related information for the systematic literature review. The mapping techniques proved to be more efficient to screen out the most specific research question, requirements of interoperability, standards, challenges, and most appropriate interoperability of blockchain-based EHRs.

4. Bibliometric Analysis

Advancements in data collection and bibliometric analysis are playing vital role in screening out the specific and problem-oriented research articles. Several tools are being utilized in the scientific research to study and select the most relevant research. In this systematic literature review (SLR), VoStools were utilized to find and analyze the cooccurrence of citations, cooccurrence of authors, and key terms. VoStools were utilized in this SLR to analyze the cooccurrence of citation and references. The presented network draws a network of citation of research articles based on their references. The cooccurrence of co-citation is presented in Figure 2.

Cooccurrence of terms and keyword is presented in Figure 3. The selected keywords such as healthcare, blockchain, and EHR are utilized to search the related articles. The related articles are then scrutinized based on their relevant content to the SLR. The searched 116 articles were reduced to 18 by the implementation of selection criteria of research questions and requirements. The most occurred keyword during search of relevant articles is healthcare, health information, electronic record, electronic health record, blockchain, data sharing, medical research, health insurance, health information, and EHR connections.

The bibliometric analysis also includes the authors of specific country working together or the countries working on specific problem. In this SLR, the VOSviewer is used to create the network of authors and countries working on specific domain of research. The network of such countries is presented in Figure 4.

5. Results and Discussion

The results of the systematic review are presented in this section. In the following search strategy, 116 research articles were extracted from various sources. The first selection
method removes the duplicate records, and we have a total of 97 articles selected. The removed articles were not related to the interoperability of EHRs and blockchain. The selected articles were scrutinized further for refinement of the selection process. Exclusion criteria were implemented, and 45 articles were removed from 97 articles. During the screening process, the removed articles did not have the full text and could not qualify in the meta-analysis. The remaining 52 articles were accessed for eligibility of selection for systematic review. During the eligibility selection, 34 unrelated articles were removed from the list of selected articles. The remaining 18 articles possess the selection criteria and meet all the requirements for the systematic review of blockchain-based interoperable EHRs.

The selected articles are utilized to find the challenges and requirements of interoperable blockchain-based EHRs. The challenges, solutions, and standards of blockchain-based interoperable EHRs are divided into three research questions for the systematic review. The research questions are as follows:

Q1. What are the interoperable requirements of blockchain-based EHRs?
Q2. What are the blockchain-based interoperable standards for EHRs?
Figure 2: Reference-based cooccurrence of citations between articles.

Figure 3: Cooccurrence of keywords and terms.

Figure 4: Network of countries working on a specific research area.
Q3. What is the best approach for BC-based EHR in solving this interoperability issue?

The research questions are discussed as follows:

Q1. What are the interoperable requirements of blockchain-based EHRs?

According to the study for this systematic literature review, interoperable requirements of blockchain-based EHRs are categorized into three levels. The levels of interoperable requirements include semantic, technological, and organizational or legal requirements. The semantic requirements illustrate the standard databases, information collection, and exchange of information in this study. The technological requirements include protocols, standards, cross-platform information sharing, and management. Legal and organizational interoperable requirements of blockchain-based EHRs consider the business model and cooperation among different governmental and private health organizations to efficiently provide healthcare services by considering the privacy and security of health information.

Blobel et al. [35] presented a semantic model of requirements for interoperable blockchain-based EHR. The presented requirement set contains a vocabulary of protocols for efficient messages and health information transmission. The method implementation at the organizational level requires a good business model coupled knowledge-sharing system. Data standard [29] adaptation is required for data integrity to provide healthcare information sharing robustly. The standard usage makes the blockchain-based EHRs helpful in health insurance claims with adequate information. Data mapping standards [36] are required to make the data sharing among various shareholders seamless. Logical models and programming language components are helpful to reduce the pressure on the federal institutions for data manipulation for health service providers. Blockchain-based systems [37] require semantic consistency. Consistency requires coding standard implementation that can improve the security of EHR. Beštek et al. [36] presented blockchain-based EHR requirement list, including robust data acquisition of data, efficient sharing mechanism among EHRs, and medical scientists to improve healthcare robust and management. EHR blockchain compliance[38] requires sharing formatted and encrypted messages between different systems and decrypting messages according to various stakeholders, which can be achieved by specifying the message standards, allowed values, and technical database according to their predefined rules. The described integrity levels of privacy and security can be achieved by increasing cooperation between vendors, industry, scientists, and health service providing institutes. Information exchange between patients and health service providers requires a set of protocols and standards to ensure data privacy and security. Data integrity and privacy using blockchain created a secure insurance and incentive system at government and private health service providing institutions. EHRs require seamless data transmission to achieve the interoperability using blockchain. The information sharing required an efficient model to transmit health information between different information processing systems. The information sharing among different systems and organizations requires legal frameworks to achieve information integrity [39, 40].

The requirements of interoperable requirements of blockchain-based EHRs are described in Table 2. The researchers presented different interoperable requirements and application methods for semantic definitions. The semantic requirements of interoperable systems are as follows:

(i) Standard method and protocols for information sharing
(ii) Unambiguous database integrity
(iii) Standard data dictionary and message protocols
(iv) Standards for data acquisitions and sharing

The technological requirements of interoperable blockchain-based EHRs extracted from the study are as follows:

(i) Comparability protocols for plug-and-play services
(ii) Allowed data elements and formats
(iii) Coding standards for robust data creations and transmission
(iv) Secure data transmission protocols

The organizational and legal requirements of interoperable blockchain-based EHRs extracted from the study are as follows:

(i) Cooperation between EHR vendors and health service providers
(ii) Business models for information sharing between EHRs and industry vendors
(iii) Professional to maintain secure data and information sharing
(iv) Insurance and incentive issue information availability

Q2. What are the blockchain-based interoperable standard for EHRs?

The interoperability stands for blockchain-based EHR application are discussed in Table 3. The researchers presented different standards for information sharing, securing, and interoperability of EHRs. The various standards adopted better implementation of blockchain-based interoperable solutions for health service providers.

The standard classification performed on better quality, workflow, privacy, security, adaptation, and secure information sharing among various stakeholders. By taking into account of the harmonization, it became essential to determine which standard had the highest
Q3. What are the best approaches for blockchain-based EHRs in solving this interoperability issue?

The study presented different methods and techniques to solve the interoperability issues. The researchers came up with various techniques using different standards and protocols to solve the interoperability challenges. The study presented various solutions to increase the privacy, reliability, scalability, and interoperability of blockchain-based EHRs. The comparison of approaches conducted during the study shows that [42] presented the best approach for solving the interoperability issue. The author presented an interoperable information-sharing system for EHRs. The method has compliance with all standards and protocols. The techniques follow HL7 and FHIR, and ONC standards for information among EHRs. Blockchain connected off-chain storage used for data storage and on-chain authentication method implanted to satisfy the privacy and security protocols. The authors utilized the fairness algorithm for reliability and system robustness. The proposed interoperable method is HL7, FHIR, and ONC compliance. The latest version of HL7 has semantically interoperable compliance. The best approaches are mapped using the criteria of reliability (RE), the accuracy of data (AD), data privacy (DP), security (SC), scalability (SCA), access control (AC), authentication (AUTN), authorization (AUTR), robustness (RB), anonymity (ANON), confidentiality (COFD), immutability (IMMU), standards implemented, and suggested standards. The mapping and extraction of best approaches and their characteristics are presented in Table 6.

5.1. Open Issues in Blockchain-Based EHR. This section describes some issues and challenges in EHR systems based on this systematic literature review. Following issues have been observed, including the following:

(i) In [45], the model’s major drawback is the setup requirement at each healthcare facility. The healthcare facility must provide a minimum of one node to the blockchain to convert the servers into blockchain adapters. Another issue observed in the study is the scalability limitations of the blockchain protocol.
Table 4: Blockchain-based interoperable standard for EHRs.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Blockchain-based standard available</th>
<th>Description</th>
</tr>
</thead>
</table>
| [26] | FHIR | HL7-based resource containing data attributes
| | | Standard compliance of FHIR for information exchange |
| [27] | HL7 | FHIR-based emerging standard
| | | Robust performance on small devices |
| [28] | HITECH | Transformation of the healthcare system
| | | Interoperability, HER certification, and MIPS |
| [29] | PHR | Used HL7 for fast data sharing and tethering
| | | PHR and EHIR interchangeability using APIs |
| [30] | Open EHR | Designed EHR through open-source elements
| | | Validation of EHR standards through clinical implementations |
| [31] | DICOM | Secure transfer of medical images and health history
| | | APIs for different health system integrations |
| [32] | SNOMED CT | Present clinical methods in EHRs
| | | Accuracy, interoperability, and consistency |
| [33] | CEN/ISO EN13606 | Semantic standards for EHR information sharing
| | | Privacy and security standards for interface access |
| [34] | HIPAA | Privacy standards for patient’s data security
| | | Confident interoperable system for EHR |

Table 5: Properties of blockchain-based EHR standards.

<table>
<thead>
<tr>
<th>Properties</th>
<th>CEN13606</th>
<th>CEN</th>
<th>Open EHR</th>
<th>HL7</th>
<th>HITECH</th>
<th>DICOM</th>
<th>FHIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better workflow</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
</tr>
<tr>
<td>Reduced ambiguity</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quality of care</td>
<td>Yes</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reliability</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Information security</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
</tr>
<tr>
<td>Security and privacy</td>
<td>Moderate</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 6: Approaches for blockchain-based EHR interoperability challenges.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Technique used</th>
<th>Blockchain-based EHR framework</th>
<th>Standard used/rule</th>
<th>Suggested standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43]</td>
<td>Ciphertext-based attribute encryption</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
| [44] | Zero-knowledge proofs
| | Proxy re-encryption | No | No | Yes | Yes | Yes | No | Yes | HIPAA | FHIR |
| [45] | Distributed ledger technology
| | Smart contract
| | Hashing algorithm | No | No | Yes | Yes | Yes | Yes | Yes | Yes | No | — |
| [46] | SHA-256 algorithm
| | RSA encryption | No | No | Yes | Yes | Yes | Yes | No | Yes | — | HL7, FHIR |
Table 6: Continued.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Technique used</th>
<th>RE</th>
<th>AD</th>
<th>DP</th>
<th>SC</th>
<th>SCA</th>
<th>AC</th>
<th>AUTN</th>
<th>AUTR</th>
<th>ANON</th>
<th>RB</th>
<th>COFD</th>
<th>IMMU</th>
<th>Standard used/rule</th>
<th>Suggested standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>[45]</td>
<td>1. Public key infrastructure-based asymmetric encryption 2. Digital signatures to secure shared EHR data</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA</td>
<td></td>
</tr>
<tr>
<td>[47]</td>
<td>1. Smart contract 2. AWS</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA, HL7, FHIR</td>
<td></td>
</tr>
<tr>
<td>[48]</td>
<td>1. Smart contract 2. Hashing method-SHA-256</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA</td>
<td>—</td>
</tr>
<tr>
<td>[49]</td>
<td>1. Proxy re-encryption technology 2. DPoS consensus mechanism</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Unified standard</td>
<td></td>
</tr>
<tr>
<td>[50]</td>
<td>1. Blockchain base lattice cryptography 2. Deep learning as a service</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA, HL7</td>
<td>FHIR</td>
</tr>
<tr>
<td>[51]</td>
<td>1. Cryptographic hash key 2. Genetic algorithm</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Standard regulations</td>
<td></td>
</tr>
<tr>
<td>[52]</td>
<td>1. Smart contract 2. Cryptographic techniques</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA, HL7</td>
<td></td>
</tr>
<tr>
<td>[53]</td>
<td>1. Cryptographic techniques (encryption and digital signatures)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>[54]</td>
<td>1. Smart contract</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>[55]</td>
<td>1. Public key cryptography 2. Proof of work algorithm 3. Smart contract</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA, HL7, FHIR</td>
<td></td>
</tr>
<tr>
<td>[56]</td>
<td>1. Multi-authority attribute-based encryption 2. Smart contract</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>HIPAA</td>
<td>—</td>
</tr>
<tr>
<td>[42]</td>
<td>1. Smart contract 2. Digital identities</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>ONC, FHIR, HL7</td>
<td>New versions of HL7 to support semantic interoperability</td>
</tr>
<tr>
<td>[57]</td>
<td>1. Off-chain storage and on-chain verification</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
6. Conclusion and Future Work

The challenges presented in the literature include interoperability requirements, standards, and approaches to solve interoperability problems of blockchain-based EHRs. Table 2 presents the requirements of interoperable blockchain-based EHRs. The requirements include data acquisition, data transmission protocols, allowed data standards and formats, and coordination levels among EHRs and vendors. The interoperable standards of blockchain-based EHRs are presented in Table 3. FHIR and HL7 are the best standards for reliability, data security, privacy, and quality assessment. In Table 5, the approaches to solve the interoperability challenges are presented. 18 selected solutions against challenges presented different methods and techniques using different standards and protocols to address the interoperability of blockchain-based EHRs. The short-listed methods improve privacy, reliability, quality assessment, authentication, and interoperability.

This study may lead to future studies and research. In this study, we discuss different EHR models and answered the research questions. These answers to research questions may be utilized in the future to develop the EHR models or architectures that address the issues and challenges faced in blockchain-based electronic healthcare frameworks. Additionally, more exploration is required to resolve the current issues in blockchain-based systems combined with the Internet of things (IoT) and decentralized blockchain combined with AI, cloud computing, and big data. The organizational-level implementation should have the flexibility to adapt the cognitive solution using natural language processing and monitoring contextual facts to increase the interoperability of blockchain-based EHRs. Patient's consolidated database might be a route in electronic health records for future research. The consolidated database will house all of the patients' medical information. This will make it easier for doctors to access their patients' previous data and provide a more accurate diagnosis.

Data Availability

Data are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

