Hindawi

Security and Communication Networks
Volume 2022, Article ID 1955141, 13 pages
https://doi.org/10.1155/2022/1955141

Research Article

WILEY | Q@) Hindawi

A Novel Semifragile Consensus Algorithm Based on Credit
Space for Consortium Blockchain

Xiaohong Deng (»,"*? Zhiqgiong Luo (, Yijie Zou (,” Kangting Li ®,> and Huiwen Liu

1

!School of Electronics and Information Engineering, Gannan University of Science and Technology, Ganzhou 341000, China
2School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
*Key Laboratory of Cloud Computing and Big Data, Ganzhou 341000, China

Correspondence should be addressed to Zhigiong Luo; 6720200799@mail.jxust.edu.cn

Received 24 January 2022; Accepted 28 March 2022; Published 18 April 2022

Academic Editor: Jiewu Leng

Copyright © 2022 Xiaohong Deng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Nowadays, blockchain is known as a new generation of secure information technologies for realizing business and industrial
sustainability, and consensus algorithm is the key technology of blockchain. In order to solve the problem of “oligarchy” nodes
and excessive punishment for nodes in existing credit consensus algorithms, a novel semifragile consensus algorithm based on the
credit space for consortium blockchain is proposed in this paper. Firstly, the accounting node selection mechanism based on credit
space is proposed. The credit value of the node is calculated according to a novel credit evaluation model, and then the credit space
of the node is allocated according to the size of the credit value. Afterward, a random algorithm is used to select the accounting
node in the credit space. This mechanism effectively inhibits the generation of “oligarchy” nodes and maintains the enthusiasm of
nodes. Secondly, this paper proposes a semifragile hierarchical punishment mechanism, which punishes the malicious nodes with
severe measures and gives the nonmalicious nodes the opportunity to continue participating in the consensus. So, this semifragile
punishment mechanism solves the problem of excessive punishment of nodes. Experimental simulation results demonstrate that
the proposed consensus algorithm has randomness while maintaining the credit incentive among nodes. In addition, the node’s
punishment mechanism is more reasonable. This algorithm has better security and can be well applied to consortium
blockchain scenarios.

1. Introduction

In 2008, Satoshi Nakamoto publicly published Bitcoin [1].
Afterward, with the crazy of Bitcoin, blockchain as a core
technology of Bitcoin has received extensive research at-
tention [2]. Blockchain has the characteristics of decen-
tralization, hard  tamperability, traceability, and
transparency, which solves the data monopoly and security
problems current in the existing centralized platform [3]. At
the same time, many studies have found that blockchain has
many innovative applications in the field of IoT and sensor
networks. For instance, Satapathy et al. [4] proposed a secure
architecture based on open blockchain, which can solve
some of the challenges in IoT applications, like issues with
confidentiality and privacy of data; Mrinal et al. [5] proposed

a blockchain-based wireless sensor network for secure ve-
hicle tracking, reducing the need for an Internet connection
and eliminating the use of continuous GPS tracking; that is,
it can effectively protect the privacy of commuters and the
security of collected data. Therefore, blockchain is known as
a new generation of secure information technology. As the
core part of the blockchain system, the consensus algorithm
is the mechanism for each node of the blockchain to reach
consensus on the block information of the whole network
[6]. More precisely, it can ensure whether the latest block is
correctly added to the blockchain. It is worth mentioning
that the performance efliciency and security of the entire
blockchain system will be affected by the merits of the
consensus algorithm [7]. Similarly, consensus algorithm has
always been the key technology of decentralized system,
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which is widely used in resource-constrained edge com-
puting fields. For instance, Zeng et al. [8] proposed a scheme
by utilizing the idle resources in volunteer vehicles to handle
the overloaded issues in VEC servers; the scheme can reduce
the offloading cost of vehicles and improve the utility of VEC
servers; Zeng et al. [9] proposed a new vehicle edge com-
puting framework based on software-defined networks,
which introduces the reputation to measure the contribution
of each vehicle. The proposed scheme not only brings more
benefits to the edge server side but also reduces the average
delay a lot.

Generally, different blockchain frameworks use dif-
ferent consensus algorithms. In summary, a common
classification divides blockchain into three categories, in-
cluding public blockchain, consortium blockchain, and
private blockchain [10]. The number of nodes in the public
blockchain is large, so the transaction speed will be slower.
On the contrary, there are fewer nodes in private block-
chain and consortium blockchain than in public block-
chain, and the transaction speed will be faster [11].
However, the permissions in the private blockchain are
controlled by a few nodes, which deviates from the original
intention of decentralization [12]. Compared with the
private blockchain, the permission design requirements in
the consortium blockchain are more complicated and more
credible. Now, relevant researches show that the consor-
tium blockchain has more practical value in the fields of
IoT applications and medical scenarios. For example,
Thomas et al. [13] proposed an anonymous identity and
access control system based on consortium blockchain,
which improves the security of cross-domain identity
authentication in the Internet of Things; Huang et al. [14]
proposed a medical data privacy protection and safe
sharing scheme based on consortium blockchain, which
can effectively ensure the safety of patients’ medical in-
formation and can safely share information.

At present, the consensus algorithm of consortium
blockchain is mainly represented by the Practical Byzantine
Fault Tolerance (PBFT) protocol [15]. PBFT has a high
transaction speed; however, with the number of nodes in-
creasing, the network overhead of PBFT will increase rapidly,
and the consumption of computing power will be high [16].
Moreover, PBFT selects the leader node according to the
continuous switching of view number, which may select
malicious nodes as the leader node, resulting in poor system
security [17]. As such, in order to solve the problem of
malicious nodes becoming accounting nodes, researchers have
proposed a credit mechanism to generate accounting nodes.
The credit value was calculated on the basis of the node’s
performance in the system, and the node with a higher credit
value preferentially became the accounting node [18]. For
instance, Li et al. [19] proposed a consortium consensus al-
gorithm based on credit (CCAC), which calculated the credit
value of nodes by the contribution of node participation
consensus, and selected a node to become an accounting node
in turn according to the size of node credit. Notably, a con-
sensus mechanism based on credit reduced the consumption of
algorithm computing power and improved the efficiency of
consensus. However, this is not effective for the node with a
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small credit value and easily leads to low enthusiasm of nodes.
Wang et al. [20] proposed a proof of work algorithm based on
credit model (CPoW) and designed a node credit model based
on BP neural network, which effectively reduced the huge
resource consumption of repeated calculation in the produc-
tion process of new blocks. Unfortunately, generating new
blocks according to the order of credit value was easy to
produce “oligarchy” nodes. Li et al. [21] proposed a dynamic
hierarchical Byzantine fault-tolerant consensus mechanism
based on credit (DHBFT). The presented reward and pun-
ishment plan could effectively reduce the possibility of mali-
cious nodes becoming the leader node, but it could easily cause
node with high credit values to be selected as the master node,
which lacks fairness and easily causes other nodes to be less
motivated. Liu et al. [22] proposed a master-slave multichain
blockchain consensus mechanism based on reputation, which
introduced credit value evaluation into the consensus mech-
anism based on proof of stake. In addition, it designed a joint
consensus mechanism that integrates multiple consensus
mechanisms, which improved the throughput of the trans-
action and ensured the consistency and nontamperability of the
data. However, the punishment for all malicious nodes was too
heavy, resulting in nodes being unable to normally participate
in the consensus for a long time. Bugday et al. [23] proposed a
reputation-based consensus group learning model to calculate
the credit value based on the weight value of all nodes in the
trust committee, which could effectively avoid malicious nodes,
but the weight value of malicious nodes is large. Once a node
had malicious acts, the credit value of this node would fall to a
very low level, and it was difficult to continue to join the
consensus. Huang et al. [24] proposed a credit-based proof of
work mechanism for IoT devices, which improved security and
enhanced transaction efficiency. Similarly, the punishment for
malicious nodes was to reduce the credit value directly to a
negative value, which made it difficult for nodes to participate
in normal consensus.

To sum up, although the existing consensus algorithm
based on credit has improved the efficiency and security of
consensus, there are still problems that it is easy to generate
“oligarchy” nodes and the punishment for nonmalicious
nodes is too large. In order to solve the above problems, this
paper proposes a semifragile consortium blockchain con-
sensus algorithm based on credit space. The main contri-
butions of this paper are as follows:

(1) An accounting node selection mechanism based on
credit space is proposed. A credit evaluation model is
formulated to calculate the credit value of the node,
and the credit space of the node is allocated based on
the credit value. Based on the credit space, an al-
gorithm for randomly selecting accounting nodes is
designed. The nodes with large credit space have a
high probability of becoming accounting nodes. At
the same time, a threshold equation for the number
of accounting nodes is set for the problem of “oli-
garchy” nodes so that the number of times of be-
coming accounting nodes is limited.

(2) A semifragile hierarchical punishment mechanism is
designed. Nodes with good working conditions are
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in the normal layer, and the nodes with malicious
behaviours are placed in the prison layer for “cus-
tody.” Furthermore, we judge whether the node is
malicious or nonmalicious; for malicious nodes, the
“custody” time will be longer, and for nonmalicious
nodes, they can be returned to the normal layer
beyond the “custody” time. Therefore, the non-
malicious nodes have the opportunity to participate
in the following consensus, and this mechanism can
reduce the existence rate of malicious nodes.

2. Problem Statement

2.1. Problem of “Oligarchy” Nodes. Among the existing
consensus algorithms based on credit, most of the ac-
counting nodes are selected according to the size of the
credit value, which is easy to produce “oligarchy” nodes, and
the incentive degree for nodes with small credit value is not
enough, such as CCAC algorithm [19]. The credit value of
each node is calculated after the credit evaluation of the
node, then the credit value is sorted from largest to smallest,
and an accounting node is selected in this order, which can
easily lead to the production of “oligarchy” nodes and cause
other nodes to be less motivated. In this paper, we test the
proportion of “oligarchy” nodes as accounting nodes in the
total consensus times for CCAC to verify the adverse effects
of “oligarchy” nodes on the network, and the results are
shown in Table 1.

It can be seen from Table 1 that, with the number of
consensuses increasing, the number of “oligarchy” nodes
becoming accounting nodes also accounts for an increasing
proportion, which can easily cause other nodes to be less
motivated to work. Therefore, this paper proposes a
mechanism for selecting accounting nodes based on credit
space, which can effectively inhibit the generation of “oli-
garchy” nodes and increase the enthusiasm of nodes.

2.2. Problem of Node’s Excessive Punishment. In view of the
existing consortium blockchain consensus algorithm based
on credit, the punishment for malicious nodes is too severe.
More precisely, they do not judge whether the malicious
behaviour of a node is deliberate or not, and the credit value
of the nodes is always severely reduced so that these nodes
cannot continue to participate in the consensus, typically
such as the consensus algorithm in [22]. A PoS consensus
mechanism based on credit value is proposed, and a credit
value evaluation method is designed. The punishment
equation for the credit value of malicious nodes is as follows:

trust;l = —trust;;_l R (1)

where trust), represents the credit value of node i at the
end of the hth cycle and trust] ; represents the credit
value of node i at the end of the h-1th cycle. It can be seen
from equation (1) that the credit value of the malicious
node will be directly reduced to a negative value, making it
difficult for the node to continue to participate in the
following consensus. Besides, references [23, 24] men-
tioned in the Introduction also have the same punishment

for malicious nodes. Both have too harsh punishments for
malicious nodes, and normal consensus cannot be carried
out for a long time. In this paper, we compare these al-
gorithms to test the change in credit value of nodes with
malicious behaviours, and the experimental results are
shown in Figure 1.

It can be seen from Figure 1 that the credit value of
malicious nodes in [22] will rapidly decrease from positive
value to negative value, which is difficult to continue to
participate in consensus for a long time. Although the al-
gorithm in [23] did not reduce to a negative value, the credit
value is very close to 0 and cannot compete with the credit
value of normal nodes. In [24], the credit value of the
malicious node is always below 0, and it is difficult to
continue the normal consensus. By comparing the changes
in the credit value of nodes with malicious behaviour in
these three algorithms, it can be seen that they cannot
participate in normal consensus for a long time for nodes
with malicious behaviour. Therefore, this paper proposes a
semifragile hierarchical punishment mechanism. This
mechanism can make it difficult for malicious nodes to
participate in consensus again, but nonmalicious nodes can
continue to participate in consensus within a short amount
of time.

3. Proposed Algorithm

3.1. Credit Evaluation Model. The credit of nodes represents
the working performance of nodes in the process of par-
ticipating in consensus [18]. The credit evaluation model
proposed by the CCAC only considers the number of valid
and invalid blocks generated by the accounting node and the
time required to add on the chain [19]. However, it does not
consider the time when the node is passive and offline from
the block. In this paper, the credit evaluation of nodes will be
carried out according to the four indicators of the number of
transactions in the valid block, the time of the chain, the off-
chain time, and the generation of invalid blocks. The credit
evaluation indicators are given in Table 2.

Combined with these credit indicators, the data will be
standardized so that the data can be calculated uniformly. In
this paper, the minimum-maximum planning method is
used to standardize the data. This method is the linear
transformation of the original data, and the maximum max
and minimum min will be set. After calculation by the
standardized equation, the data range will fall between [0, 1],
and then the following credit value is calculated. The
computation equation is as follows:

- i—min. ) 2)

max — min

where max and min are obtained by preprocessing. In
particular, the result of preprocessing is based on 100
consensus experiments in this paper. In the process of
consensus experiments, the data of these indicators will be
obtained, and max and min are the maximum and minimum
values of data in each indicator. When an indicator in a node
needs to be measured, it is only necessary to put the data into
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TABLE 1: Percentage statistics of “oligarchy” nodes become accounting nodes.

Total consensus number

The proportion of times that nodes become accounting nodes (%)

400 52.4

600 58.3

800 62.8

1000 78.1

100 ., 1+C(x;)n=1,
30 _\\ Credit; = 1 (5)
. Credit; " +C(x;)n# 1.
60 "
o0r " In contrast, for nodes with malicious behaviour, it will be
5 20!} subtracted after calculating the corresponding credit value,
_E 0 E%F?i . . o o as shown in (6). For the initial malicious nodes, its credit
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© \ that is, the credit value obtained after work. But for the
40 - ' _ malicious nodes in the consensus process, the credit value
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FiGure 1: The credit value change diagram of the malicious nodes
of each algorithm, recorded in a 6000ms period. These dots
represent the credit value of the malicious node taken every 500 ms.

! ./ .
num> Lime> quf—time’

the (2) to obtain the standardized value: i
.

Linvalid-

After getting the standardized data, some data may be
positive or negative. Then, these data are added together, and
finally, a value x that reflects the quality of the credit value is
obtained, as shown in (3). Subsequently, the credit value

C(x;) is to be accumulated or deleted by node i by (4).

. . .1 ./
Xi = Ly t Lime T loff—time *+ Linvalid> (3)
X 1 (e )2 2
Clx) = J e T gy —c0 < x < 00, (4)
—co V270

where x; represents the number after processing of the
standardized data mentioned above. C(x;) represents the
credit value of node i. Besides, p is the mean value calculated
from the data obtained in the preprocessing, and o is the
variance calculated after preprocessing.

Similarly, the credit value of the accounting node that
works hard will be accumulated, as shown in (5). The initial
credit value of each node is 1. When node i becomes an
accounting node for the first time, its credit value is equal to
the initial credit value plus the C(x;) calculated by (4).
Moreover, when node i is selected as the accounting node
again, its credit value is the sum of the newly calculated
credit value and the previously obtained. The equation for
calculating the credit value of node i as an accounting node
for the nth time is as follows:

Credit]™ — C(x;)m# 1.

Through the credit evaluation model for node credit
evaluation, the nodes in working well condition can get a
larger credit value. That is, their opportunity to become an
accounting node will be greater, which creates a benign
network environment for nodes actively participating in
consensus.

3.2. Credit Space. In this paper, the credit space is used as the
basis for selecting an accounting node. After a node obtains
its credit value, its corresponding credit space is allocated
according to the proportion of the credit value in the entire
space. That is, the greater the credit value of the node, the
greater the allocated space, and the greater the probability of
becoming accounting node. For this reason, this method can
better motivate nodes to work. Furthermore, the random
algorithm also ensures the randomness of the algorithm, and
it does not mean that nodes with larger credit space will
certainly become accounting nodes. The credit space of node
i can be computed by
Credit;

C_Space; = ST Credit x L, (7)
where Credit; represents the credit value of node i and
Y, Credit; is the sum of the credit values of each node in
this round. L is the total length of the credit space. Figure 2 is
a graph of the change of credit space when a node is selected
as an accounting node. Figure 2(a) shows the distribution of
credit space of a certain round of nodes. Assuming that the
pointer is randomly selected to node 3, the credit value of
node 3 becomes larger after being selected as an accounting
node and packaged block successfully. Obviously, according
to the calculation equation of credit space, its credit space
will also become larger. So node 3 has a greater probability in
the next selection of accounting node, which is like playing a
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TaBLE 2: Credit evaluation indicators.

Indicator name

Explanation

Lime
Lo f f—time
i

1

num

invalid

The time when the node generates a block
The time the node leaves the blockchain
The number of transactions in a valid block
The number of invalid blocks generated by nodes in consensus

After
randomly
selecting

miner nodes

(®)

F1GURE 2: Credit space change diagram. Each sector in the figure represents the credit value of each node, and the pointer is like a turntable
to represent random selection. (a) Distribution of credit space of each node in a certain round. (b) Distribution of credit space after selecting

miner nodes.

roulette game. The greater the credit space of node 3, the
greater the probability of the pointer pointing to node 3.
Since the size of the whole credit space is fixed, each node’s
credit space is calculated according to the proportion of
credit value, so the credit space of other nodes will be
proportionally reduced.

What is more, after the node is selected as an accounting
node, the corresponding packaging work must be com-
pleted. The packaging work involves the block structure,
which is used to store and verify the credit value. The block
structure includes the following:

(1) Blockhead: block version number, hash value of the
previous block, timestamp, and random number.

(2) Blockchain time: record the time accounting nodes
successfully package block into chain, which helps to
verify whether the credit value is accumulated
correctly.

(3) The hash value of the block’s transaction data: record
the transaction data generated by the accounting
node of the block.

(4) Credit array in block: record the credit value ob-
tained by nodes on blocks.

(5) Counting array in block: record the number of times
a node becomes an accounting node.

Once completed the packaging work, the credit value
will be calculated and accumulated in the original credit
value. When the next accounting node selection begins, the
credit space will be allocated according to the size of the
credit value. However, there is a problem at present. Nodes
with larger credit values may always be selected as

accounting nodes, which leads to the generation of “oli-
garchy” nodes. Therefore, a threshold for becoming an
accounting node is set. When it exceeds the current number
threshold, it cannot continue to be selected as an accounting
node. The threshold equation is as follows:

SN um,
=55 iy (8)
Num

where 7 is a threshold, Num represents the number of nodes,
num,; denotes the number of node i becoming an accounting
node, and Y N4 num; represents the total number of times
that all nodes become accounting nodes. The threshold
calculated by the equation will change with the number of
nodes becoming accounting nodes in the whole consensus
network. When the threshold of this round increases, nodes
may still be selected as accounting nodes. The constant ¢ in
the equation will be obtained through experiments, and the
specific value is explained in the subsequent experimental
part.

3.3. Semifragile Hierarchical Punishment Mechanism.
Generally, the punishment of malicious nodes in the existing
credit mechanism is too severe, which directly reduces the
credit value of malicious nodes and makes it too difficult to
continue to participate in consensus. Consequently, this
paper proposes a semifragile hierarchical punishment
mechanism. Semifragile refers to the ability to distinguish
whether a node with malicious acts is deliberate or non-
deliberate. In our algorithm, the nodes judged as nonde-
liberate are given the opportunity to reparticipate in
consensus.



In order to determine whether the malicious node is
deliberate or nondeliberate, this paper judges the node by the
number of malicious acts. When the number of malicious
acts of a node is less than m, it is judged as a nondeliberate
node, and vice versa. With respect to the value of m, this
paper counts the number of malicious nodes through many
experiments, and the results are shown in Table 3.

It can be seen from Table 3 that the nodes with the
number of malicious acts less than or equal to 2 account for
98.53%, basically covering most of the nodes. Therefore, this
paper selects 2 as the value of m, which is determined as the
critical value of nonmalicious nodes.

The specific process of the semifragile hierarchical
punishment mechanism is as follows; the general process is
shown in Figure 3. First, all nodes will be placed in the
normal layer, and then the credit space of nodes is calculated
to select the accounting node. Moreover, the credit evalu-
ation of the accounting node will be carried out. If the node
has malicious behaviour, the node will be placed in the
prison layer after calculating the credit value. It is worth
mentioning that the nodes in the prison layer have no chance
to be selected as accounting nodes and only the nodes in the
normal layer have the chance to allocate the credit space to
be selected as accounting nodes. The nodes in the prison
layer will allocate the “custody” time according to the
number of malicious acts. During this period, the nodes still
need to participate in the data synchronization of the cluster.
In particular, if the node is found to have malicious be-
haviour such as not performing block data synchronization
or not working, it will continue to increase the “custody”
time. After the time has passed, it is determined whether the
node is deliberate or nondeliberate. If the node is a non-
deliberate node, it will return to the normal layer and give it
the opportunity to be selected as an accounting node again.
Otherwise, the malicious node will continue to be punished.

About the node’s “custody” time, when the number of
nodes performing malicious acts increases, the time will
increase obviously with the number of times. According to
this characteristic, this paper uses the following function:

T =e". (9)

The function is monotonically increasing, where Tis the
“custody” time and x is the number of malicious acts. It can
be seen from (9) that T'is monotonically increasing, that is,
when x increases, that is, when the number of malicious acts
increases, the time increases exponentially. In contrast, for
nonmalicious nodes, only one or two malicious activities are
performed, and the “custody” time is relatively appropriate.
It conforms to the principle of the proposed punishment
mechanism, gives a good buffer to the nodes that do not
deliberately perform malicious acts, and then gives the
opportunity to participate in the consensus.

4. Algorithm Design

Firstly, the credit value of all nodes is initialized to 1. In the
beginning, each node is placed in the normal layer, and each
participating node is numbered. Moreover, the
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TABLE 3: Statistics of the number of malicious acts. The proportion
indicates the proportion of nodes with different times of malicious
acts in the total nodes.

Number of malicious Proportion of the number of nodes (%)

acts
<0 96.25
=1 97.84
<2 98.53
>2 1.47
The node initially enters the network
Pick
accounting l
node from
them Normal
No,
Punish Se}tisfying
nodes that time can
have return to
malicious the normal
behavior layer

whether the
node is
deliberate

Yes, add
“custody” time

FIGURE 3: Semifragile hierarchical punishment mechanism.
Malicious nodes will judge whether the node is deliberate and take
corresponding measures.

corresponding credit space is allocated according to the
credit value of each node. Obviously, the size of the space
allocated by each node is the same, and the total space is
unchanged. Then the credit array Cn and count array Cc are
constructed. Cn is used to store the credit value of the node,
and Cc is the number of times the storage node has become
an accounting node. Thereafter, begin the cycle of selecting
the accounting nodes. The process of credit consensus is
shown in Figure 4. As shown in Figure 4, the whole process
can be divided into four steps: initialization stage, cyclic
selection of accounting node stage, constructing block stage,
and checking the new block stage.

4.1. Initialization Stage. In the initial stage, the initial credit
value of each participating node in the normal layer is set to
1, and the total credit space length is set to 100. The credit
space of each node is calculated by equation (7), and the
number of participating nodes is assigned. Thereafter, the
credit array Cn and the count array Cc are constructed to
store the credit value of the node and the number of nodes
becoming accounting nodes, respectively. Algorithm 1
shows how to allocate the node’s credit space.

4.2. Cyclic Selection of Accounting Node Stage. Through
Algorithm 1, we have obtained the credit space of each node.
Then, the algorithm randomly selects the accounting node.
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Credit array
initialization

Calculate node
credit value

Hierarchical
nodes

Normal layer
[ Prison layer

initialization stage

Allocate space for each node of the
normal layer

__________________________ _l_________________

Randomly select
miner nodes

Put back to
the normal
layer

cyclic selection of
accounting node

Non-deliberate
stage

node has
malicious acts?

Put into the
prison layer

whether the node
is deliberate?

deliberate

Increase the

Cheek the new block

Compute the node’s credit value

Continue the
consensus?

"custody” time

check the new block
stage

FIGURE 4: Credit consensus process. This flowchart describes how nodes select accounting nodes and how to punish malicious nodes.

More precisely, each interval represents each node's credit
space, and the algorithm selects accounting node by setting a
random number and judging which interval the random
number falls into. As a result, the node represented by this
interval is selected as accounting node. Subsequently, the
accounting node will complete the corresponding work and
obtain the corresponding credit value. Generally, if an ac-
counting node does not work, the node will be punished
beyond the given time and enter the next accounting node’s
selection. When the next accounting node selection is
conducted, the corresponding space will be allocated
according to the credit value. If the credit value is larger, it is

easier to obtain the packaging right. Since it is randomly
selected, there will be nodes with low credit values that get
the right to package. In order to avoid the generation of
“oligarchy” node, 7 is set. If num, exceeds 7, node i cannot be
selected as an accounting node. But it does not mean that i
cannot be selected as an accounting node anymore because 7
will change with ¥ " num, in the whole consensus network.
When 7 becomes larger, node i may still be selected as the
accounting node. Algorithm 2 gives the process of randomly
selecting an accounting node.

If the node has malicious acts, the node will be placed in
the prison layer for “custody.” “Custody” time will be
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Input: Cn (node’s credit value array)
Output: spaceArray (node’s credit space array)
(1)  spaceArray[] ={0}; //Initialization of Credit Space Array
2) for i=1 to n do //Traversing all nodes
(3) if JudgePrsion (Cnli]) //Judge if the node is in the prison layer, if it is, do not allocate
(4) space
(5) continue;
(6) end if
7) if i= =0 //When i is the first node in space
(8) spaceArray[i]=(Cn[i]/countSum (Cn)) * spaceLength; //Calculating the length of credit
(9) space
10) continue;
@1n) end if
12) spaceArray[i] = (Cnl[i]/countSum (Cn)) * spaceLength + spaceArray[i —1]; //The length of
(13) credit space after becoming an accounting node, Cn is an array of normal layers
(14) end for

ALGORITHM 1: Node layering and credit space allocation algorithm.

calculated according to (9). Then, it will determine whether
the time has expired. If it has expired, determine whether the
node is a malicious node. If it is not a malicious node, it will
be released back to the normal layer. If it is a malicious node,
continue to stay in the prison layer for “custody.” If it has not
expired, it will continue to stay in the prison layer. Algorithm
3 gives the penalty mechanism of malicious nodes.

4.3. Construct Block Stage. Once the accounting node is
selected, the accounting node will broadcast the constructed
block to all adjacent nodes. Afterward, adjacent nodes will
receive the new block and broadcast it to the whole network
after successful verification. When the block is verified, the
block will be added to each node’s blockchain copy. After all
nodes have received and verified the block, the work of the
next block construction will proceed.

4.4. Check the New Block Stage. After selecting the ac-
counting node and completing the related transactions on
the block, the node will broadcast the generated block to the
whole network and then verify the credit value. Once the
verification is correct, the node will obtain the corre-
sponding credit reward. On the contrary, if the node has
malicious behaviour, the behaviour will be recorded in the
block, and the corresponding credit punishment will be
carried out.

5. Experimental Results and Analysis

In our experiments, we use Golang programming language
and JetBrainsGoLand 2020.3.4 for the simulation test. First,
we use the Go language to write a single-machine multinode
platform to simulate the consensus process. Then, we
compare the performance of the consensus algorithm
proposed in this paper with CCAC algorithm [19], CPoW
algorithm [20], and master-slave multichain algorithm [22],
and test the number of malicious nodes, punishment
mechanism, and the consensus delay of nodes. Finally, the

images are drawn according to the experimental data for
comparative analysis.

5.1. Threshold Equation Constant Experiment. 'This experi-
ment is to analyze the value of threshold equation constant.
We selected 40 nodes for 600 consensuses and tested the
average time consumption to select accounting nodes under
different threshold equation constants.

It can be seen from Figure 5 that the average time
consumption of selecting accounting nodes with a constant 3
is the least, while the average time consumption of other
nodes is relatively high. Therefore, we choose constant 3 as
the value of t in the threshold equation.

5.2. Statistics of Accounting Node Number. In this experi-
ment, we test the number of times nodes become accounting
nodes to verify the credit evaluation model and the
mechanism of selecting accounting nodes. First, set 20
nodes, conduct consensus on them 600 times, and select
accounting nodes. The experimental results are shown in
Figure 6. As can be seen from the data in Figure 6, each node
can become an accounting node in the consensus process.
Some nodes have become accounting nodes only 5 or 6
times, and some nodes have become accounting nodes 18 or
20 times. This shows that the proposed algorithm can reflect
the role of credit value and ensure the randomness of
selecting accounting nodes through credit space.

In order to test whether the threshold 7 can better limit
the “oligarchy” node, this paper tests 20 nodes, carries out
1500 consensuses on them, selects the accounting node, and
then records the number of rounds of threshold change and
the highest number of accounting node in this round. The
experimental results are shown in Figure 7. As shown in
Figure 7, the threshold 7 will change with the number of
nodes becoming accounting nodes in the whole network,
and the number of accounting nodes is also limited to the
threshold 7. The number of accounting nodes increases more
and more slowly and requires a longer consensus time. This
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Output: i (accounting node’s serial number)

(2) the initial value is true

(12)  end while

Input: spaceArray (Node’s Credit Space Array)

(1)  while (nodeSelect) //nodeSelect is whether to select the miner to complete the identifier,

(3) rand.Seed (time.Now().Unix()); //Set random number time seed

(4) randomSize = randomFloat (0, spaceLeangth); /Random number selected in space
(5) node = judgeSelect (spaceArray, randomSize); //Determine which node is selected
(6) if CoutArray [node] < Exceeded //The requirement cannot exceed the threshold
(7) nodeSelect = false; //The selection is complete, jump out of the loop, otherwise
(8) continue to choose

9) Ccli]++; //Count value plus 1

(10) return i

(11) endif

ALGORITHM 2: Random selection accounting node algorithm.

Input: U (the set of malicious nodes)
Output: prisonArray (prison layer array)

(2)  while (node in U)

(20)  end while

(1)  prisonArray(] = {}; //Initialize the prsion layer

(3)  if JudgeMalicious (node) //Determine whether the node is malicious
(4) time = pow (e, x); //Calculate penalty time

(5) insert (node, prisonArray, time); //Put the node in jail and record the punishment time
(6) node++; //Pointer moved to the next malicious node
(7) continue;
(8) endif
(9)  if JudgeTimeOut (node) //Determines whether the node penalty time expires
10) if (maliciousCount <2) //Determines whether the node is a malicious node
@11) remove (node, prisonArray); //Remove the node
12) node++; //Pointer moved to the next malicious node
13) continue;
(14) else
(15) stayPrison (node); //Leave the node in the prison layer
(16) node++; //Pointer moved to the next malicious node
17) continue;
(18) end if
(19) end if

ALGORITHM 3: Punishment algorithm for malicious nodes.

shows that the proposed threshold mechanism can effec-
tively restrain the emergence of “oligarchy” nodes.

5.3. Semifragile Hierarchical Punishment Mechanism
Experiment. In order to prove that the punishment mech-
anism proposed in this paper can effectively avoid malicious
nodes destroying the consensus process, we do an experiment
to test the number of malicious nodes in different algorithm.
The experimental results are given in Figure 8. At first, 1000
nodes are set in the system, and 273 malicious nodes are set
and labelled artificially in these nodes. With the increase of
consensus times, it can be found that the number of labelled
malicious nodes in each algorithm is gradually decreasing, but
it should be noted that the number of malicious nodes in the
proposed algorithm in this paper has a more obvious decline.

From Figure 8, it can be seen that when the 70th consensus is
carried out, the number of labelled malicious nodes in the
algorithm proposed in this paper is reduced to 32, and the
number of malicious nodes in other algorithms is more than
that of this algorithm. This shows that the credit evaluation
model proposed in this paper will gradually reduce the credit
value of the malicious nodes. At the same time, the hierar-
chical punishment mechanism will also punish malicious
nodes, which further restrains malicious nodes from doing
evil. With the increase in the number of consensuses, the
probability of selecting the malicious nodes as accounting
nodes will be greatly reduced; as such, it will make the
blockchain system more safe and reliable.

In order to further test the performance of the proposed
semifragile hierarchical punishment mechanism, this paper
does an experimental test to determine the malicious
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behaviours of nodes. Firstly, a deliberate node and a non-
deliberate node are marked, respectively, and they are placed
in the prison layer. According to the proposed mechanism,
nondeliberate nodes will be put back to the normal layer over
time to continue to join the consensus, we record their credit
values to observe the work of the node, and the results are
shown in Figure 9.

It can be seen from Figure 9 that the credit value of a
nondeliberate node decreases after malicious acts. After
putting it into the prison layer, the credit value remains
unchanged. If it is put back to the normal layer after ex-
ceeding the “custody” time, it can normally participate in the
consensus. However, the credit value of the deliberate node
declines after committing malicious acts. It is worth men-
tioning that if the deliberate node continues to commit
malicious acts in the prison layer, the “custody” time will be
double. It shows that the mechanism gives an opportunity to

nondeliberate nodes and does not reduce its credit value to
the point of being unable to participate in the consensus.
That is, it makes nondeliberate nodes become normal nodes,
while deliberate nodes are punished accordingly.

5.4. Consensus Delay. The consensus delay comparison re-
sults are shown in Figure 10. As can be seen from Figure 10,
with the increase of consensus times, consensus delay in-
creases gradually. The consensus delay of the CCAC algo-
rithm is the lowest, the consensus delay of the proposed
algorithm is only higher than that of CCAC, and the con-
sensus delay of the CPoW algorithm is the highest. This is
because the proposed algorithm in this paper selects ac-
counting nodes based on the credit space and introduces the
hierarchical punishment mechanism, which results in higher
delay than CCAC. However, the consensus delay of the
algorithm is within an acceptable range, and it does not
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affect the normal operation of the entire blockchain system.
Compared with the proposed algorithm in this paper, CPoW
is more difficult to solve the hash problem with the increase
of blockchain length. Therefore, CPoW will consume a lot of
computing power and have a high consensus delay. Because
the master-slave multichain algorithm is based on the PoS
algorithm, compared with CPoW, it saves a lot of energy
consumption without mining. However, compared with the
algorithm proposed in this paper, its consensus process is
more complex and prone to bifurcation. Thus, the consensus
delay is higher than that of the proposed algorithm in this

paper.

5.5. Limitation. It can be seen from the results of the above
experiments that the algorithm proposed in this paper can
suppress the “oligarchy” nodes and deal with the deliberate
nodes very well, but there are still some limitations. In this
part of the credit evaluation model, the evaluation indicators
set are not complete enough, so the evaluation of the nodes
may not be comprehensive enough. This is a relatively
limited point, and there is room for improvement in the
future.

6. Conclusion

This paper proposed a semifragile consortium blockchain
consensus algorithm based on credit space. According to the
working situation of the node, we designed a credit evalu-
ation model to calculate the credit value of the node and
allocated the credit space. Besides, we proposed a randomly
select mechanism for the accounting node based on the
credit space, which solved the problem of insufficient in-
centive in the consensus algorithm and ensured the ran-
domness of the node to become an accounting node. The
experimental results show that the consensus mechanism in
this paper has randomness while ensuring credit incentive; it
enhances the security of the algorithm. In addition, it is more
reasonable for the node penalty mechanism and has better
performance in consensus efficiency, which is suitable for

Security and Communication Networks

consensus in the consortium blockchain. Nonetheless, the
algorithm still has shortcomings in the determination of
malicious nodes and the design of the “custody” time
equation of the semifragile hierarchical punishment
mechanism. The next step will continue to conduct in-depth
research on these two aspects.
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