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As an emerging type of network architecture, SDN is widespread used and security issues have also received more and more
attention. Fingerprint attacks represent one of the most significant threats to network security. Attackers obtain key fingerprint
information of the target network, which lays the foundation for subsequent more threatening attacks. Currently, research on
domestic and international SDN fingerprint attacks focuses on how to attack, and less research is being done on how to defend
against fingerprinting attacks. -is paper proposes a mechanism for defending fingerprint attacks that combines dynamic
disturbance and information entropy detection. -is mechanism adopts the principle of fingerprint attack, combined with a
moving average algorithm, Bloom Filter, and packet delay tool, to confuse opponents by disturbing a small number of packets,
simultaneously, combined with the information entropy detection to make real-time processing feedback to the network. -e
experimental results show that this mechanism works effectively to defend SDNs against fingerprint attacks without affecting the
normal network communication.

1. Introduction

Software-Defined Network (SDN) is an emerging network
architecture consisting of the application layer, control layer,
and infrastructure layer. -e decoupling between the control
plane and data plane is realized by OpenFlow technology, and
a more flexible way to manage network traffic is introduced
with high programmability [1]. With the rapid development
of SDN technology and its wide application in various fields,
more and more attention has been paid to its security issues.
Researchers at home and abroad have analyzed and sum-
marized the security threats faced by SDNs from different
perspectives. -e packet processing speed on the data plane is
multiple orders of magnitude faster than that on the software-
based control plane due to the characteristics of SDN’s ‘three
layers —three interfaces’ architecture, particularly when
performing packet forwarding on hardware. As shown in
Figure 1, when the host1 communicates with the host 2, the
data header is parsed by Step 1 to query the internal flow table
of the switch. If a matching rule exists, the corresponding
action (Forward or Drop) is executed, otherwise, Step 2 and

Step 3 are executed, after the computation and processing of
the SDN controller, the corresponding rules are issued and
the corresponding actions are performed on the packet. -e
round-trip delay RTT values of packets in these two cases are
greatly different due to the different processing processes of
packets with or without matching rules as shown in Figure 2.
-e attacker can send two identical detection packets, mea-
sure their RTTvalues, and calculateΔRTT � RTT1 − RTT2. If
ΔRTT ≈ 0, it can be inferred that there are related matching
rules in the switch flow table or that the target network is a
traditional network type. If |ΔRTT|≫ 0, it can be speculated
that the target network is an SDN and the detection packet
leads to the installation of flow table rules. Furthermore, the
attacker can infer more fingerprint information such as flow
matching rules of the target network by carefully constructing
detection packets [2–4], thereby exposing the entire SDN to a
sea of threats as well as laying the foundation for the attacker
to carry out the next more threatening and precise attack,
such as Distributed Denial of Service (DDoS) attacks through
forged data packets, etc. Panjwani et al. concluded that up to
70% of network attacks were carried out after fingerprint
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attacks [5]. SDN �ngerprint attacks have become an urgent
problem to be solved.

At present, the research on domestic and international
SDN �ngerprint attacks is mainly about how to attack, and
there is only a little literature on the defense research of SDN
�ngerprint attacks.�e defense against SDN�ngerprint attacks
is mostly through certain active measures, mainly through
packet delay forwarding [5–10], moving target defense (MDT)
[11–14], and setting honeypots [15, 16] to confuse attackers.
�e method of packet delayed forwarding takes countermea-
sures to �ngerprint attacks based on the attack principle, which
can bemuse the attacker available. Without a�ecting the net-
work performance, delayed forwarding of a small number of
initial packets is an e�ective defense against �ngerprint attacks.
However, there is currently no detailed method for its speci�c
implementation, and it is arduous to determine the speci�c
value of the packet delay.MTD continuously changes the attack
surface by dynamically changing the infrastructure. Attackers
are forced to use tremendous resources to continuously analyze
and detect the architecture of this change, which becomesmore
di�cult with time. However, this type of method needs to
consider users’ normal needs in the network. High-speed

address hopping may interrupt the communication in the
connection while defending against �ngerprint attacks, and the
communication between legitimate hosts is seriously a�ected.
Honeypots lure attackers through trap technology and study the
characteristics of attackers at the same time. But traditional
honeypots have shortcomings such as static con�guration and
�xed position. Once the attacker �nds or bypasses them, the
honeypot will immediately fail. One of themajor problems faced
by the existing honeypot solutions is the overhead of system
resources, honeypots need to continue to operate, even if no
attack occurs.

�e focus of this study is how to use the principle of �n-
gerprint attack to interference with the round-trip delay RTTof
the detection packet to confuse the attacker, and how to quickly
discover the ongoing �ngerprint attack and take measures
through real-time monitoring of the entire SDN. Based on this,
this paper proposes a �ngerprint attack defense mechanism that
combines dynamic disturbance and information entropy de-
tection for SDN �ngerprint attacks, and designs as well as
implements the system SDFADS (Software De�ned �ngerprint
attack defense system). �e main research contributions of this
paper are as follows:

(1) �e �ngerprint attack threat faced by the SDN is dis-
cussed and its attack principle is analyzed, and a �n-
gerprint attack defense mechanism combining dynamic
disturbance and information entropy detection is
proposed.

(2) �e �ltering strategy of the multi-feature data stream
is proposed, and Bloom �lter technology is used to
analyze the data packet to judge whether the current
data stream appears for the �rst time;

(3) �is paper analyzes the common characteristics of time-
based �ngerprint attacks in SDNs and puts forward a
dynamic disturbance strategy. It is proposed for the �rst
time to dynamically disturb the round-trip delay RTTof
a small number of initial data packets by combining the
moving average algorithm and the packet delay tool, to
achieve the e�ect of confusing the detection packet RTT,
which has little impact on the network performance
while confusing the attacker;

(4) A lightweight information entropy initial detection
mechanism based on multi-dimensional features is
proposed. �e suspected abnormal tra�c is inferred by
statistically calculating the information entropy of data
packets, and the suspicious ports are further processed
and abnormal logs are recorded.

(5) �e e�ectiveness of the proposed method is demon-
strated by evaluating the RTTdistribution after dynamic
interference, the detection e�ect of information entropy,
and the change of the number of �ow tables in SDN
switches.

2. Related Works

Liu et al. [2] estimated the distribution of �ow table rules in
the switch by constructing a Markov model of the SDN
switch and further used the distribution to launch
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fingerprint attacks. Patwardhan et al. [5] assumed that the
attack will rely on a fixed address to send probe packets, and
the structure of probe packets should show similarity from
the same source IP address and source port number to
numerous different destinations. -e controller checks the
header and data of the detection packet (deep packet in-
spection) to identify the attack detection packet, checks the
suspicious host, and prevents the attack. Analyzing the time
interval between consecutive packets from the same source
IP address can also provide the characteristics of fingerprint
attacks butmight increase the load on the switch. Yu et al. [6]
proposed a fine-grained attack scheme by inferring the flow
table fingerprint information such as flow table capacity and
flow table replacement strategy. Yadong et al. [7] pointed out
that the attackers can proactively generate probe packets to
trigger the interaction between the controller and the switch
about the insertion and deletion of flow table rules, and then
the attackers can estimate the internal state of the SDN by
measuring the changes in network performance, including
flow table capacity and flow table usage situation. And
propose a route aggregation scheme based on a packaging
optimization algorithm and a multi-level flow table archi-
tecture combining TCAM and SRAM. However, route ag-
gregation cannot replace long-term architecture solutions
because it cannot solve the fundamental problems of flow
table scalability and fingerprint inference attacks. -e ca-
pacity and update speed of TCAM are inherently rooted in
the hardware design of the memory chip and cannot be
improved immediately. Zhang et al. [8] proposed a two-stage
detection trigger attack strategy, including the detection
phase and the trigger phase, which make fingerprint attacks
more effective and powerful.

At present, the defense against SDN fingerprint attacks is
mostly through a few active measures, such as packet delay
forwarding, moving target defense, and honeypot setting.

2.1. Packet Delay Forwarding. Unified delay for all packets is
one method to defend against fingerprint attacks, but this
approach seriously affects the performance of the entire
network, which is job desirable.

Cui H et al. [9] proposed to focus on existing matching
rules of data flow, using group table to forward active flow
directly, inactive flow forward to specific port utilizing
network delay device for delay processing. However, the
processing of the new flow is not involved. When the de-
tection packet involves the installation of a new flow rule, the
attacker can observe the difference between the round-trip
delay and the existing matching rule, and the delay network
device is not described in detail and its availability is un-
known. Wang and Chen [10] proposed to impose pertur-
bation on the probability of the initial data packet. By
defining a new action bucket selection logic for the group
table, different data packets can be implemented with dif-
ferent delay operations, and the scrambling strategy can be
converted into a data plane executable instruction. None-
theless, the specific implementation method has not been
mentioned and the situation when there are matching rules
in the flow table has not been considered, and the parameter

settings in the probability model are affected by human factors.
In the real SDN, the location of the host will not change fre-
quently, and the host connected to the switch port will not
change frequently in the network [17]. Based on this, Hou et al.
[18] analyzed the common characteristics of time-based fin-
gerprint attacks in SDNs, and explored a lightweight method to
counter fingerprint attacks, taking the source IP and source
MAC changes of the host address as potential fingerprint de-
tection behavior, when the host address changes, delay the
installation of matching rules in the switch, thereby increasing
the difficulty of fingerprint attacks. Notwithstanding, if the at-
tacker only uses one host to perform a fingerprint attack, this
method is not applicable. -e paper does not explain how to
implement the delayed installation of the rules. Yuwen et al. [19]
proposed an unpredictable delay strategy that will send packets
to the SDN with adjustable probability delay, which aims to
confuse the time information received by the attacker and re-
duce the performance cost as much as possible. However, the
method proposed in this paper to increase the delay of data
packets by issuingmatching rules and the controller itself is open
to discussion. Achleitner et al. [20] proposed to delay the at-
tacker’s detection packets to invalidate the information they
collect to hinder network reconnaissance, and at the same time
limit the performance impact on benign network traffic. But a
specific value of the delay added to the packet is easily found by
the attackers.

-e method of packet delay forwarding takes counter-
measures to fingerprint attacks based on the attack principle,
which can befuddle the attacker efficiently.Without affecting
the network performance, the delayed forwarding of a small
number of data packets is an effective method to defend
against fingerprint attacks. But the specific implementation
method of the above literature is not described in detail.

2.2. Mobile Target Defense (MTD). Zhao et al. [21] intro-
duced the idea of moving target defense against and
proposed a defense method that uses intermediate fin-
gerprint jumps to display a jump fingerprint to the attacker,
which increases the attacker’s exploration space and in-
tegrates the interaction process of fingerprint attack and
defense. Modeled as a signal game, analyze the equilibrium
point of the game, and propose the optimal defense
strategy. Sengupta et al. [22] pointed out that it can benefit
delay the spread of network attacks by hiding the real
response and responding with random responses, thereby
confusing the attacker. Sharma et al. [23] proposed a
flexible random virtual IP multiplexing method FRVM,
which enables the host to have multiple random virtual IP
addresses that change over time, multiplexed to the real IP
address of the host, multiplexed, or demultiplexed use
events to dynamically remap all virtual network addresses
of the host to increase the attacker’s cost. Zhang et al. [24]
combined end hop and routing hop, and proposed a two-
hop communication based on an SDN. -is increases the
complication for the attacker to obtain the complete
communication data.

Mobile target defense is to dynamically change the
environment of cyberspace targets and continuously adjust
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the attack surface. Attackers are forced to use massive re-
sources to continuously analyze and detect the structure of
this change, and the difficulty increases with time. However,
this type of method needs to consider users’ normal needs in
the network. High-speed address hopping may interrupt the
communication in the connection while defending against
fingerprint attacks, and the legal communication between
legal hosts is seriously affected.

2.3. Set Honeypots. Wang and Wu [11] proposed a new
architecture of a hybrid honeypot system, which combines
the characteristics of high and low interaction honeypots for
network topology simulation and attack traffic migration.
-e system can simulate a large and real network to capture
attackers, and redirect high-level attacks to a high-interac-
tion honeypot to capture attacks and conduct further
analysis. Honeynets is a network architecture that uses
multiple honeypots to deceive attackers and analyze their
malicious behavior. Kyung et al. [12] designed an SDN
honeynet (HONEYPROXY) to monitor all internal traffic
globally, using a new connection management mechanism
that spans different honeypots in the network to support the
honeypot transition. By multicasting malicious traffic to
relevant honeypots, and choosing responses that do not
contain fingerprint indicators, fingerprint attacks are avoi-
ded, and data capture capabilities are improved. But the
honeynet was built under the condition that the honeypot
can capture fingerprint attacks.

Honeypots use trap technology to deceive the attacker
while studying the characteristics of the attacker. However,
traditional honeypots have the disadvantages of static
configuration and fixed location. Once discovered or
bypassed by the attacker, the honeypot will immediately
become invalid. A major problem faced by some honeypot
solutions is the overhead of system resources. Honeypots
need to operate continuously even if no attack occurs.

2.4. Other Methods. Khorsandroo and Tosun [13] proposed
various methods of defense of different types of detection
packets. For ICMP packets, after the controller and the
switch complete the handshake process, the controller ac-
tively installs rules to make the response time of scanning
traffic independent of the network state. However, when the
number of hosts throughout the system is significant, this
method will make the flow of each switch. -ere are many
useless matching rules in the table. TCP packets use TCP
proxy in the data plane to defend. -is method requires that
the proxy server be effective in defending. Once the proxy
server is hijacked by an attacker, the entire network will be in
a more dangerous state. For UDP packets, defense is carried
out by limiting the forwarding rate of detection packets and
filtering methods. -e results of UDP detection packet
fingerprint attacks are largely dependent on the ICMP-re-
lated information received from the target destination, fil-
tering specific types of ICMP message delivery, and limiting
ICMP. -e response rate makes the UDP scan traffic very
slow and greatly reduces its reliability. As long as time
permits, the attacker may break through the defense and

obtain information about the target. Cusack et al. [14] used
machine learning to write a stream processor and used
random forests and binary classifiers to use these rich stream
records to fingerprint malicious network activities without
deep packet inspection. Nonetheless, real-time is extremely
paramount in the detection of fingerprint attacks. Malik
et al. [15] proposed a control plane-based coordination of
various complex threats and attacks. -e mechanism con-
sists of a hybrid CUDA-supported DL-driven architecture
that utilizes the predictive capabilities of long- and short-
term memory (LSTM) and convolutional neural networks
(CNN) for efficient and timely detection of multi-vector
threats and attacks. Krzysztof et al. [16] introduced a ded-
icated integrated security framework based on SDN and
introduced how to use this method to detect and mitigate
scanning activities based on TCP and SYN.

It should be noted that the mobile target defense method
adopted in [21–24] and set honeypots defense method
mentioned in [11, 12] are mainly aimed at the detection of
the entire SDN architecture and target host information in
the network. -e data packet delay forwarding defense
[9, 10, 17–20]. -e authors of [13–16] are mainly aimed at
the fingerprint attack of the flow table matching rule. -is
paper focuses on the fingerprint attack defense against flow
table matching rules. Considering that SDN fingerprint
attacks are very different from previous attacks against SDN,
these solutions cannot prevent the SDN fingerprint attacks
studied in this article. -erefore, it is of great significance to
propose a defense scheme against SDN fingerprint attacks.

3. System Design

3.1. Problem Statement. -rough problem analysis, it can be
seen that the attacker mainly judges whether the constructed
detection packet triggers the interaction between the data
plane and the control plane, observes the change of the
round-trip delay RTT of the packet, and infers the finger-
print information of the matching rule in the network. -is
article proposes a fingerprint attack defense mechanism that
combines active interference and passive detection against
SDN fingerprint attacks. Due to the “three layers three in-
terfaces” architecture characteristics of SDN, the attackers
can infer whether the detected detection packet triggers the
interaction between the data plane and the control plane by
observing the change of the round-trip delay RTT of the
constructed detection packet, and further infer the finger-
print information such as network type and relevant
matching rules. Based on the analysis of the introduction,
this paper proposes a fingerprint attack defense mechanism
combining active interference and passive detection for SDN
fingerprint attacks.

3.2. SystemModel of SDFADF. -e system framework of the
mechanism proposed in this paper is shown in Figure 3,
which is composed of a Monitor, an active interference
module, and a passive detection module. Among them, the
Monitor monitors and regulates the entire system in real-
time. -e active interference module is the focus of this
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article, and the passive monitoring module is used as an
auxiliary module to better adjust the real-time attacks. �e
detailed introduction of the active interference module and
passive detection module is shown in Figure 3.

3.3. Dynamic Disturbance Module. Since the attacker infers
the �ngerprint information by observing the change in the
round-trip delay (RTT) of the detection packet, here we
propose for the �rst time to use the moving average

algorithm combined with Bloom Filter and the packet delay
tool to dynamically change the RTT of the packet. Distur-
bance achieves the e�ect of confusing the RTTof the packet,
thereby confusing the attacker.

As shown in Figure 4, active interference is mainly
composed of theMonitor module, Bloom Filter module, and
disturbance module. �e entire work�ow is as follows:

(1) As the incoming packet, �rst perform step 1 to
initialize and start the Monitor module to monitor
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Packet delay
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Figure 3: System framework of SDFADS.
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the entire network in real-time. After the data �ow is
input to the data plane, perform step 2 packet header
parsing to obtain the header �eld information of the
data packet, and then perform step 3 to query the
Flow Table for related processing rules that match
the data packet.

(2) If the match is successful, perform step 4, update the
corresponding counter, and perform the corre-
sponding actions. When the Monitor module detects
that the �rst data packet is successfully matched,
execute the (Add) disturbance module, call the
packet delay tool, and Delay Table to compare the
current switch, and the port number speci�ed by the
rule is processed for the delay. �e Delay table
records the average value of the RTTwhen the rule is
installed in the network environment (tested 100
times). When the Monitor module detects that the
number of matches of the �ow table rule reaches the
set threshold n. �at is after the existing n data
packets are successfully matched, execute (Remove)
to remove the delay processing of the above-men-
tioned switch and the corresponding port, and
subsequent data packets will continue to match the
corresponding �ow table rule to be forwarded. If
there is no correspondingmatching rule, encapsulate
the data packet and perform step 5, Packet-in to the
control plane. After the control plane receives the
Packet-in message, it constructs a four-element
group [Src_IP, Dst_IP, Src_MAC, Dst_MAC]
composed of source IP, destination IP, source MAC,
and destinationMAC. At this time, step 6 is executed
and the four-element group Group input Bloom
Filter module determines whether the data packet
corresponding to the quadruple appears for the �rst
time, if it appears for the �rst time, record the switch
ID and port number [dpid, port] corresponding to
the current data packet for subsequent data �e
package delay tool is called.

(3) Perform step 7, Packet-out issues the corre-
sponding forwarding rule of the data packet to the
Flow table; the Monitor module detects that the
�rst packet matches the rule and executes the
(Add) disturbance module, and at the same time,
executes step 8 to call the packet delay. �e tool
and the moving average algorithm delay pro-
cessing the [dpid, port] obtained by the Bloom
Filter in step 6. As the data packet forwarding is
performed, the packet processing speed on the
data plane is several orders of magnitude faster
than the software-based control plane. �rough
analysis, it can be seen that the main time dif-
ference is the packet in between the data plane
and the control plane, and the controller’s cal-
culation and processing of the data and the time
required for Packet-out, so the delay added to the
�rst packet in this article is the time di�erence
between the start of Packet-in and the end of
Packet-out. Since the entire network may have

more than one OpenFlow Switch, and commu-
nication may pass through multiple switches, the
moving average algorithm MA (Moving Average)
is used for optimization to reduce the volatility of
the measurement time di�erence.

(4) When the Monitor module detects that the number
of matches of the �ow table rule reaches the set
threshold n, that is, the existing n data packets are
successfully forwarded, execute the (Remove) op-
eration to remove the delay processing of [dpid,
port] obtained by the Bloom Filter in step 6. Sub-
sequent data packets will continue to match the
corresponding �ow table rules to be forwarded
smoothly.

At this point, the entire active interference is completed,
and the e�ect of delaying forwarding processing on sub-
sequent n data packets of the �rst data packet is realized.�e
speci�c execution Algorithm 1 of the above process is as
follows: Among them, Flow is the incoming �ow, n is the set
number of data packets that need to be delayed, and the
Delay table records the average RTT during the installation
of this rule in the network environment (100 tests), R and R′
are Matching rules.

�e data packet delay tool used in this paper is Tra�c
Control (TC), which is used for the �ow control of the Linux
kernel. It mainly realizes the �ow control by establishing a
queue at the output port. �is paper mainly uses TC to delay
and forward data packets at the output network card.

�e Bloom Filter in the algorithm is also called the
Bloom �lter, which is used to quickly determine whether an
element is in a set. It is composed of an extremely long
binary vector (bit vector) and multiple Hash functions. Map
the element to a unique point in the bit vector, and set the
value of the point to 1. When you need to determine whether
an element is not in the set, you only need to check whether
the value of the point corresponding to the element is 1.

�e p-order MA model in the algorithm is de�ned as
follows:

X(t) � a0 + et + a1et−1 + · · · + apet−p. (1)

When a0 � 0 in formula (1), it is called a centralized MA
(p) model; the highest price parameter ap is not 0. �e
random interference item sequence et is a zero-mean white
noise sequence. �e model used in this mechanism is the
centralizedMA (p) model, where ap is the processing time of

RTTn-1RTTn RTT3 RTT2 RTT1

RTTn-1RTTn RTT3 RTT2+ξ RTT1

Delay Processing

Figure 5: RTT comparison of packets before and after processing.
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each switch, so the delay value T added to subsequent data
packets after MA processing is calculated as follows:

T � t1θ1 + t2θ2 + · · · + tnθn. (2)

Among them, tn is the time required for the data packet
to go from the previous switch to the nth switch and
calculation processing, and θn is the transmission weight of
the nth switch in the entire communication process and
meets:

θ1 + θ2 + · · · + θn � 1. (3)

Furthermore, through the model of each switch in this
experimental environment is the same, θn is the reciprocal of
the number of switches, therefore formula (2) can be
transformed into

T � ∑
n

p�1

tp
n
, (4)

where n is the number of packets passing through the switch.

In the MA model constructed in this paper, the pro-
cessing delay of the switch through which the detection
packet passes is approximately regarded as the RTT dif-
ference between the �rst packet and the subsequent packet,
the time required for the packet to pass through each switch
is recorded, and then the �nal required delay value is cal-
culated according to the weight.

As shown in Figure 5, we can observe the changes before
and after the packet RTT delay processing. Given that a
single packet is delayed, this has little impact on the overall
performance of the network. It can be seen from the above
that as a consequence of the interaction between the data
plane and the control plane, RTT1 will be much larger than
RTT2,. . .RTTn, which can be approximated as
RTT2 ≈ · · ·RTTn. After processing, make

RTT2 + ξ ≈ RTT1. (5)

�at is the processing process of the 8th and 19th lines
of the above algorithm. �e ξ in formula (5) is a value that
dynamically changes under the action of the moving

Incoming
packet

Monitor Packet
parsing

Flow table
lookup

Packet-in

SDN Controller
Calculation
processing

Packet-outExecute
actions

Matching times >W
Information

Entropy
calculation

Information entropy
gain > S

Speed limit or
delay forwarding of
the incoming port

Exception
logging 

No Match

Match

Y

N

Y

N

Figure 6: Flowchart of the information entropy detection module.

Security and Communication Networks 7



average algorithm according to the number of switches
that the forwarding process passes through, it can be
considered that ξ � T.

3.4. Information Entropy Detection Module. OpenFlow is
currently the most in�uential protocol in the SDN framework
[25]. �e matching �eld that can be used as a forwarding rule

Input: Flow, n, Delay table
Output: Flow of the 2 to n+ 1 packets is delayed

(1) Monitor ()
(2) while TRUE do:
(3) packeti← Flow
(4) P�Parser (packet1)
(5) if R in (Flow table with P satis�ed):
(6) R.action (packeti)
(7) counters + 1
(8) Add (dpid, port) with Delay table
(9) while counters�� n:
(10) Remove (dpid, port)
(11) else:
(12) Packet-in, t1← nowtime
(13) V� [Src_IP, Dst_IP, Src_MAC, Dst_MAC]
(14) if Bloom Filter (V) � � 1:
(15) [dpid, port]
(16) Packet-out, t2← nowtime
(17) R’.action(packeti)
(18) counters + 1
(19) Add (dpid, port) with MA (t2− t1)
(20) while counters�� n
(21) Remove (dpid, port)
(22) end while
(23) end while

ALGORITHM 1: Active jamming algorithm.

Attacked host Normal host

OVS

SDN Controller

OVS OVS OVS

Figure 7: Experimental topology.

Table 1: Comparison of information entropy gain standard de-
viation with di�erent thresholds.

W Standard deviation
70 2.037137
80 2.057096
90 2.016084
100 1.966543

Table 2: Experiment host-related information.

Host IP MAC
Attacked host 10.0.0.1 00 : 00 : 00 : 00 : 00 : 01
Normal hosts 10.0.0.2 00 : 00 : 00 : 00 : 00 : 02

10.0.0.3 00 : 00 : 00 : 00 : 00 : 03
. . . . . . . . .

10.0.0.8 00 : 00 : 00 : 00 : 00 : 08
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is continuously increasing as the OpenFlow version continues
to update. In OpenFlow 1.0, there were only 12 types. In
OpenFlow 1.5, the supported matching �elds have been in-
creased to 44 [26]. Attackers unknow the speci�c matching
rules when attacking SDN �ngerprints, which is necessary to

construct various data packets for detection [27]. �is article
focuses on information entropy gain detection for some
commonly used matching �elds [28–31], such as source IP,
destination IP, source MAC, destination MAC, TCP/UDP
source port, and TCP/UDP destination port. �e other

Table 3: ICMP probe packet parameter settings.

Attacker IP Destination host IP Number of packets

10.0.0.1
10.0.0.2 n1
10.0.0.4 n2
10.0.0.6 n3
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Figure 8: RTT distribution of probe packets. (a) RTT distribution without interference. (b) RTT distribution after interference processing
(no initial rules). (c) RTT distribution after interference processing (initially regular).

Table 4: TCP/UDP probe packet parameter settings.

Attacker IP Destination host IP Source port/destination port Number of packets
10.0.0.1 10.0.0.4 80/80–80 + n4 n4
10.0.0.1 10.0.0.6 80/80–80 + n5 n5
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matching condition detection methods are the same, so it is
no longer covered her repeatedly. �e passive detection
work�ow chart is shown in Figure 6.

�eMonitor module monitors the entire network in real-
time. If there is the correspondingmatching rule after the data
stream input is parsed in the packet header, the matching
actions will be executed, otherwise, the Packet-in, controller
calculation processing, and Packet-out will be installed and
the corresponding matching rules will be installed. Next, the
number of matches of the matching rule is judged. If the
threshold is not reached, monitor monitoring will be con-
tinued. Otherwise, the information entropy calculation will be
triggered, and the threshold will be judged after the infor-
mation entropy of each matching condition is obtained. �e
ingress port corresponding to the matching condition is
processed for speed limit or delayed forwarding, and the
exception log is recorded for the administrator to view.

�e de�nition formula of information entropy (empir-
ical entropy) is as follows:

H(X) � −∑
x,χ
p(x)log p(x). (6)

As a multi-characteristic data stream, to solve the in-
formation gain [32], the concept of conditional entropy is
introduced here. Conditional entropy H(Y|X) represents
the uncertainty of the condition of the random variable Y
under the condition of the known random variable X, which
satis�es the following formula:

H(Y|X) � −∑
x,X

p(x)∑
y,Y

p(y|x)log p(y|x). (7)

�e information gain infoGain satis�es the following
formula:

infoGain(X|Y) � H(X) −H(Y|X). (8)

�e thresholdW (window) mentioned above a�ects the
detection and calculation of the entropy value of the data
packet in a short time. If the threshold W is too small, the
experimental results are not convincing. If the thresholdW

is too large, the entropy value of each feature of the data
packet will unchange signi�cantly. �e selection of W is
related to the experimental environment. After testing and
calculating in this experimental environment,W � 80 is the
best choice, which is shown in Table 1.

For the threshold S, in this experimental environment,

S � log H(X)W + infoGainmax( )∗ 0.5, (9)

where log H(X)W is the empirical entropy of the data set
under window W and infoGainmax is the maximum infor-
mation entropy gain of the data set.

4. Simulation Environment

4.1. Simulation Setup. In this section, we will design ex-
periments to test the defense e�ect of this mechanism and
perform related simulation experiments under the experi-
mental topology shown in Figure 7.�is article uses Mininet
to build an SDN, which consists of 4 SDN switches and 8
hosts. �e deployment controller host system is
Ubuntu18.06, the controller uses Python-based open-source
Ryu4.3, and Scapy is used to construct the required data
packets. �e relevant information of the host is shown in
Table 2. One host is the attacker and the other seven hosts are
the normal network users.

In the evaluation of the passive detection strategy, we
constructed a detection data packet under W � 80 (window)
for testing.�e parameter settings of the detection packet are
shown in Tables 3 and 4:

4.2. Comparison Analysis. In order to evaluate the e�ect of
the defense mechanism proposed in this paper, we con-
ducted several groups of experiments. First, let the attacker
construct and send the detection data packet when the
dynamic disturbance mechanism is not started, send two
detection packets continuously for the destination address of
each detection, and record the round-trip delay RTTvalue of
the two detection packets, then start the dynamic distur-
bance mechanism under the initial irregular and regular
conditions, and repeat the above steps. Suppose that the
number of data packets that need to be delayed forwarded in
this experiment is n� 1, that is, the second data packet is
delayed forwarded.

As shown in Figure 8(a), the RTT values of two con-
secutive detection ICMP packets of the attacker to the normal
host are counted 80 times, when without interference pro-
cessing is performed. �ere is a signi�cant di�erence among
the RTTvalue of the �rst packet and the second packet. It can
be inferred that the detection packet causes the interaction
between the control layer and the data layer. After the in-
terference is processed on the detection packets, two con-
secutive ICMP detection data packets are sent again. �e
statistical results are shown in Figures 8(b) and 8(c). �e RTT
values of the detection packets tend to be uniformly dis-
tributed. �erefore, it can e�ectively confuse the RTT values
of the �rst two detection packets and e�ectively bemuse the
attackers after deploying the dynamic perturbation strategy.
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Figure 9: Comparison of delay values before and after MA
processing.
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Figure 10: Entropy detection results under di�erent detection packet settings.
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�e comparison of delay values before and after MA
processing is shown in Figure 9. It can be observed that
before MA processing, the parameter settings in the tradi-
tional probability model are a�ected by human factors. �e
delay value added each time when communicating with a
�xed destination host is �xed, which is easier to be recog-
nized by the attackers. �erefore, this paper proposes to use
the moving average algorithm to �t the delay value when
passing through multiple switches. �rough experimental
comparison, it can be realized that the delay value after MA
processing tends to dynamic transformation, which is closer
to the RTT value of the actual �rst packet, and the e�ect of
confusion is more e�ective and not accessible to be rec-
ognized by the attacker.

Figures 10(a)–10(g) are the results of information entropy
detection of di�erent types and di�erent numbers of detection
packets under window W, where IEG is Information entropy
gain and ECE is Empirical conditional entropy. According to
formula (9), the threshold S of di�erent types and di�erent
numbers of detection packets under the window W can be
obtained to further determine which feature may be �nger-
printed by the attacker as the detection condition, and at the

same time, the information entropy gain is the minimum
feature corresponding to the switch and the port number is
subject to the speed limit or delayed forwarding processing,
and abnormal log storage is recorded.

4.3. Security Analysis. �e general interference mechanism
implements di�erent delay operations on di�erent packets
by de�ning a new action bucket selection logic for the
group table, which will lead to an enormous increase in
the entries of the �ow table. In order to measure the
impact of di�erent strategies on switch �ow table entries,
we tested the changes of �ow table entries over time under
di�erent defense strategies. �e experimental results are
shown in Figure 11. As the test time passes, the number of
�ow table entries under other disturbance mechanisms
increases signi�cantly compared with that under the
production of the undisturbed machine, and the mea-
surement peak is about 120% higher than the normal
value, which may further lead to �ow table over�ow. �e
disturbance mechanism proposed in this paper does not
involve the installation of the �ow table, consequently, the
changing trend of �ow table entries tends to be the same as
that under the production of an undisturbed machine, and
the in�uence of convection meter capacity is similarly
limited.

In order to comprehensively measure the impact of the
defense strategy proposed in this paper on the overall
network performance, we test the average response time of
data packets before and after the experiment. �e experi-
mental results are shown in Figure 12. It can be observed that
when the defense mechanism is enabled, the initial average
response delay is slightly higher than that when the defense
mechanism is not enabled due to the delayed processing of
the second packet. However, as the test time passes, the
average response time of all subsequent packets tends to be
delayed under normal conditions. �erefore, the negative of
the mechanism proposed in this paper on the overall net-
work performance is comparatively limited and canmeet the
performance requirements of the normal network while
meeting the requirements of defenders.

5. Conclusion

As the �rst step of the network attack, the �ngerprint attack
is one of the most serious threats to network security. At-
tackers obtain the key �ngerprint information of the target
network to lay the foundation for subsequent more
threatening attacks. In this paper, a �ngerprint attack de-
fense mechanism combining active interference and passive
detection is proposed for SDN �ngerprint attacks. �is
mechanism uses the principle of �ngerprint attack to con-
fuse the attackers by dynamically disturbing a small number
of data packets. At the same time, it makes real-time pro-
cessing feedback to the network combined with the infor-
mation entropy detection mechanism.�e evaluation results
of the countermeasure demonstrate its e�ectiveness in de-
fense of �ngerprinting attacks in SDNs with minor over-
heads, preventing the leakage of network control
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information. In future work, we are concerned to introduce
the related technologies of network fingerprint information
hiding to make the optimization of this scheme more ef-
fective, which will be the content of the next optimization
research.
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