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Secure data publishing of private trajectory is a typical application scene in the Internet of )ings (IoT). Protecting users’ privacy
while publishing data has always been a long-term challenge. In recent years, the mainstream method is to combine the Markov
model and differential privacy (DP) mechanism to build a private trajectory generation model and publishes the generated
synthetic trajectory data instead of the original data. However, Markov cannot effectively model the long-term trajectory data
spatio-temporal correlation, and the DP noise results in the low availability of the synthetic data. To protect users’ privacy and
improve the availability of synthetic trajectory data, we propose a trajectory generation model with differential privacy and deep
learning (DTG). In DTG, we design a private hierarchical adaptive grid method. It divides the geospatial region into several
subregions according to the density of positions to realize the discretization of coordinates of the trajectory data. Second, GRU is
used to capture the temporal features of the trajectory sequence for good availability, and we generate synthetic trajectory data by
predicting the next position. )ird, we adopt the optimizer perturbation method in gradient descent to protect the privacy of
model parameters. Finally, we experimentally compare DTG with the state-of-the-art approaches in trajectory generation on
actual trajectory data T-Drive, Portotaxi, and Swedishtaxi. )e result demonstrates that DTG has a better performance in
generating synthetic trajectories under four error metrics.

1. Introduction

With the development of the Internet of )ings (IoT), the
surge in IoT devices has boosted the growth of trajectory
data, and users’ trajectory data could be recorded timely and
accurately by the advanced positioning technology. )e
great and accurate trajectory data contribute to the devel-
opment of location-based services (LBS), where the reports
indicate that the market value of location-based services in
2020 is $44.47 billion and will reach $155.13 billion by 2026
[1]. Currently, it has become a trend to provide users better
services based on the trajectory information from IoT. )e
increasing location-based services, such as navigation, car-
hailing, and living services, provide users with convenient
life [2, 3] by mining the trajectory data with intelligence
technologies. Furthermore, governments and organizations
guide social construction by human mobility data [4, 5]. )e
trajectory data have important implications for our society.

Protecting users’ privacy is the basis of service in the use
of trajectory data [6–8]. On the one hand, users’ trajectory
data may be collected without approval, and the user’s track
would be recorded by various devices [9]. Even after the user
turns off the track recording function, the trajectory in-
formation can still be recorded by the operating system or
SIM card [10]. )e collection and publication of the tra-
jectory data are a direct threat to users’ privacy.

On the other hand, if the data owner does not use the
appropriate privacy protection mechanism when publishing
the trajectory data, the attackers will have the opportunity to
obtain the sensitive information of mobile users [11–13]. As
shown in Figure 1, IoT converges the real-time trajectory
data, collected by various devices, to edge servers and
publishes the data to the third-party partners which are
trustless or honest but curious. )e edge servers generally
desensitize the aggregated data before publishing, but the
traditional anonymity-based privacy mechanisms are
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inadequate strength. �e malicious third party can infer the
data hidden in the anonymous area through the background
knowledge of the published data and get the user’s sensitive
information. �e sensitive information involves frequently
visited sites such as users’ homes, o�ces, hospitals, clinics,
entertainment venues, and religious places [9, 12].
According to users’ trajectories, applications could accu-
rately serve ads, such as catering, medical, and other services.
And some applications are paid promotion fees, so they
consider the interests of the payer more than those of users.
�ese are common violations of users’ privacy, and even
more than that, criminals may formulate crime plans based
on the leaked trajectory information.

�ese problems have inspired trajectory generation
technology. Researchers hope to extract mobility features
from the trajectory dataset and construct models to generate
synthetic trajectories based on the features. Recent studies
have developed dierentially private-based [14, 15] trajec-
tory generation [16–21] to provide strong privacy guaran-
tees. �e key challenge of developing a dierential privacy-
based generation model mechanism is to preserve the
mobility features accurately when adding noise. �ere are
three main works in the existing model. �e �rst is to divide
the geospatial region of the trajectory dataset and transform
continuous spatial coordinates into discrete region identi-
�cations. Second, it is to build a model that can model long-
term spatio-temporal trajectory data. �e third is to design
the privacy protection mechanism to protect the spatial and
temporal privacy of trajectory data. Traditional generations
that mostly use the Markov model are hard to accurately
extract and preserve the mobility patterns, and the dier-
ential privacy mechanism distorts the features of trajectory,
such as position distribution, trajectory diameter, and fre-
quent pattern. Researchers turn to the study of generation

models based on deep learning [22–24]. �e deep learning
model can learn the hidden patterns contained in the
original dataset. Particularly, a recurrent neural network
(RNN) has the advantages of modelling long-term time-
dependent sequence data, and it can capture geographic
features of trajectory data preeminently. Nevertheless, most
of the current research on trajectory generation based on the
deep learning model [22, 23, 25–27] ignores the protection
of mobility privacy. �e deep learning model has mass
parameters with a huge semantic space, which may contain
the features of the original trajectory data. �e attackers
could obtain the information of the original data by model
inference attack.

To solve the above problems, this paper presents a
trajectory generation model with dierential privacy and
deep learning (DTG). DTG preserves the spatial-temporal
correlation of trajectories and provides high-strength pri-
vacy protection by combining dierential privacy mecha-
nisms and the deep learning model. First, we propose the
private hierarchical adaptive grid model and index the co-
ordinates of trajectory data by the identi�ers of grid cells as
the training data. �e model could divide the extremely
dense regions of geospatial space hierarchically, and the
adaptive mechanism is adopted to �exibly determine the size
of the grid according to the density of the local region. �e
count of each cell of the grid is perturbed by the Laplace
mechanism to protect spatial privacy. Second, we extract the
features of the trajectories by GRU. A subsequence of a
trajectory is generated over a sliding window and the GRU
model train according to the sequence taking the �rst part of
a sequence except for the last node as input and the last node
as the output. �ird, to protect the temporal correlation
privacy, we take the optimizer perturbation method in the
training process. �e optimizer perturbation method is
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Figure 1: �e scene graph of aggregating and desensitizing data in IoT edge computing.
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implemented by adding the random noise with the Gaussian
distribution to satisfy differential privacy.

)e major contributions of this paper are as follows:

(i) For the first time, we introduce the private hier-
archical adaptive grid model. It is a density-aware
grid model that reduces the number of empty cells
and fully divides the dense regions to keep the cells
free of excess data.

(ii) We develop a trajectory generation model with a
differential privacymechanism and the GRUmodel.
)e GRU model could guarantee good availability
of the generated trajectory data, and the differential
privacy mechanism could protect the real model
parameters from being accessed by attackers.

(iii) )ird, we conduct an experiment on DTG over real-
life datasets and demonstrate that our solution
outperforms the state-of-the-art techniques
[6, 20, 22] in terms of the point distribution error
metric, frequent pattern error metric, region query
error metric, and diameter error metric.

)e remainder of this paper is outlined as follows. We
first discuss the state-of-art technology of trajectory syn-
thesis in Section 2 and introduce the background and main
theorems in Section 3. Section 4 presents the core com-
ponents of DTG. Section 5 describes the evaluation metrics
and the experiment setup to prove the superiority of our
method using real datasets. Furthermore, some research
emphasis is put forward in Section 6.

2. Related Work

We classify related work into two categories and discuss each
category.

2.1. Trajectory Generation with Differential Privacy. Most of
the existing trajectory generation schemes are mainly di-
vided into stochastic methods [28–32] and simulation-
based methods [33–37]. )e simulation-based method
generates simulated trajectory data by simulating the hu-
man mobility pattern in various road networks. )e sto-
chastic modelling method generates random variables
following a particular probability distribution to fit the real
data. And with the development of differential privacy
technology, using the stochastic model with perturbation
based on differential privacy to protect the privacy of
trajectory datasets [6, 16, 18, 20, 21] has become the
mainstream method.

Chen et al. [16] use the variable-length n-gram method
to process sequential data, counting the sequential tran-
sition probability and generating synthetic data. In the
process, they take differential privacy methods to add noise
and design an exploration tree to improve data availability.
He et al. [18] protect the privacy of the trajectory gener-
ation process by adding Laplace noise to the prefix tree. In
addition, they propose hierarchical reference systems and
direction weighted sampling to improve the availability of
generated data. AdaTrace [20] uses the low-order Markov

model to generate the synthetic trajectory data. )ey add
Laplace noise to the grid method, length histogram, start
and end distribution diagram, Markov model, and so on.
TGM [21] models the encoded data as the graphical
generative model method, specifies the starting point,
calculates the direction of advance, and transfers to the
adjacent grid or maintains the current position, thus
generating features of arbitrary length and retaining the
stop point.

)ese methods provide strong privacy protection, but
the availability of the generated trajectory data is inadequate.

2.2. Trajectory Generation with Deep Learning. Deep learn-
ing has brought new developments to trajectory synthesis,
having significant advantages in modelling sequential data
compared to the Markov model [38].

Kulkarni et al. [22] take four evaluation ways to measure
seven kinds of formation models, including Char-RNN [39],
RNN-LSTM [40], RHN (recurrent highway networks) [41],
PSMM (pointer sentinel mixture model) [42], SGAN [43],
RGAN [44], and Copulas [45]. )e results show that it is
feasible to use RNNs to generate trajectory data. Huang et al.
[46] combine variational autoencoder (VAE) based on
LSTM to get a well-constructed potential space to capture
the salient features of training data, showing excellent
performance. TrajGANs [23] framework applies generative
adversarial nets (GAN) to trajectory generation, and the
generator and discriminator of trajGANs are RNN net-
works. )e generator generates a synthetic trajectory
according to a random vector, and the discriminator is used
to identify the authenticity of the trajectory. Ouyang et al.
[25] propose trajectory generation technology based on
GAN, and its generator and discriminator use a convolu-
tional neural network. )is method treats the trajectory as a
stay sequence, and three features such as geographical lo-
cation, start time, and duration of the trajectory are extracted
for trajectory generation. Song et al. [26] use a four-layer
convolutional neural network within the GAN framework to
generate trajectories which are represented by a 512× 512
matrix. Movesim [27] uses a model-free generative adver-
sarial framework to generate synthetic trajectory data. )e
generator uses a self-attention-based sequential modelling
network to model human mobility, and the discriminator
distinguishes the generated trajectory sequence by a mobility
regularity-aware loss.

)e above methods by deep learning model ignore the
privacy protection of the generation model and training
data.

It is suggested that we should combine differential
privacy and deep learning in trajectory generation for im-
proving the availability and privacy of the generated syn-
thetic trajectory data.

3. Preliminaries

)is section introduces the preliminaries of DTG.We review
the trajectory dataset and the basic terminology of differ-
ential privacy.
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3.1. Trajectory Dataset and Notation. Let
T � 〈P1, P2, . . . , P|T|〉 be a trajectory with P1 as the start
point and P|T| as the endpoint of the trajectory. T is a time-
ordered sequence composed of |T| sequential points. And a
trajectory dataset D � T1, T2, . . . , T|D|  contains |D| tra-
jectories. A spatial-temporal point is a pair Pi � (li, ti),
where li indicates the geographic location and the timestamp
and ti indicates the time when li is visited. li is a pair of space
coordinates, which is usually represented by longitude and
latitude, as li � (longitudei, latitudei).

To simplify the problem of trajectory generation, we
preprocess the original dataset before trajectory generation. In
the datasetD, the intervals between the adjacent points are the
same. Hence, we simplify Pi � (li, ti) to Pi

′ � (li) representing
a point after data preprocessing because of the same intervals.
)e detailed process is in Section 4. And a trajectory is
denoted by T′ � 〈P1′P2′, . . . , P|T|

′〉, and the dataset is denoted
by D′ � T1′, T2′, . . . , T|D′|′ . We define two-dimensional
space Ω(D) as the geospatial region of D. Ω(D) is the
boundaries of space coordinates of the points in D.

3.2. Grid Method. )e grid method could discretize the
continuous two-dimensional (latitude and longitude) co-
ordinates. )e grid method divides the geospatial region
Ω(D) into multiple disjoint subregions, as shown in
Figure 2, and we take the identifiers of subregions to index
the points instead of the coordinates of latitude and
longitude.

Definition 1 (grid model). Let G be a grid model. For the
geospatial region Ω(D) of the dataset D, G contains n in-
dependent regions, represented as G � g1, g2, . . . , gn , and
it satisfies for ∀i ∈ n, gi ≠∅ and for ∀i, j ∈ n(i≠ j),
gi ∩gj � ∅. gi ∈ G has a unique identifier Ci.

If a pair of coordinates l of point P is in the region of gi,
we take Ci for P. )erefore, the grid model G could map
spatial coordinates to the identifiers of grid units.

3.3. Differential Privacy. )e standard privacy definitions
used in our paper are derived from the work of Dwork [47].
Differential privacy [15, 23] is a robust database privacy
protection standard. Dwork proves that it is impossible to
provide absolute privacy protection in the presence of
background knowledge [48] and further proposes the
concept of differential privacy based on indistinguishability.
Differential privacy [47] requires that the output of any
computation is insensitive to changes in a single data;
namely, the effect of an adversary learning information from
a database containing a record is the same as learning in-
formation from a database that does not have this infor-
mation. )erefore, the adversary cannot violate the privacy
of any piece of data in the database. Furthermore, it cannot
violate the privacy of the whole database.

Definition 2 (neighboring datasets). If datasets, D1 and D2,
differ in only one record such that |D1⊕D2| � 1, D1 and D2
are neighboring datasets.

Definition 3 (differential privacy [47]). Let D1 and D2 be
neighboring datasets. A randomized algorithm Q: D⟶ O

is ε− differentially private (ε − DP) for ε> 0, and
O⊆Range(Q) if equation (1) is workable. And Q is
(ε, δ)−differentially private ((ε, δ) − DP) for ε> 0, δ ∈ (0, 1),
and O⊆Range(Q) if equation (2) is workable.

Pr Q D1(  ∈ O ≤ e
ε

· Pr Q D2(  ∈ O . (1)

Pr Q D1(  ∈ O ≤ e
ε

· Pr Q D2(  ∈ O  + δ. (2)

Definition 4 (sensitivity). Let q: D⟶ Rd be a function on
the dataset D, and its output is a fixed dimension vector of d

numbers. )e sensitivity Δq of q is defined as

Δq � maxD,D′: D−D′‖ ‖�1 q D1(  − q D2( 
����

����2. (3)

)e D1 and D2 in (3) are neighboring datasets.
‖q(D1) − q(D2)‖2 represents the L2 norm of q(D1) − q(D2).
)e Laplace mechanism uses the L1 norm, and the Gaussian
mechanism uses the L2 norm.

)e most popular ε − DP algorithm is the Laplace
mechanism [47], and the most popular (ε, δ) − DP algo-
rithm is the Gaussian mechanism [49]. )ey perturb the
returned values by adding random noise according to the
sensitivity.

Definition 5 (Laplace mechanism [47]). Lap(λ) denotes a
random variable from Laplace distribution with mean 0 and
scale parameter λ. For a function q: D⟶ Rd with sensi-
tivity Δq, the randomized function M(D) � q(D) + Lap(λ)

satisfies ε − DP when λ≥Δq/ε.
)e Laplace mechanism provides a strict ε-differential

privacy, and some work considers the availability of data and
does not require excessive privacy. We use the Laplace
mechanism in the grid model and use the Gaussian
mechanism, which provides relaxed (ε, δ)-differential pri-
vacy constraints, in the deep learning model.

Definition 6 (Gaussian mechanism [49]). Let N(0, σ2) de-
notes a random variable from Gaussian distribution with
mean 0 and variance σ2. For a function q: D⟶ Rd with

Figure 2: )e grid method sketch. )e diagrammatic drawing of
discretizing geospatial space by the grid method.)is area is part of
Porto. DTG divides this region into multiple geographical units by
the grid method. )e sample map image is from Google Earth, and
the grid size in the figure does not represent the real grid size used
in the experiments.
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sensitivity Δq, the randomized function
M(D) � q(D) + N(0, σ2) satisfies (ε, δ) − DP when
σ >

����������
2 ln(1.25/δ)


Δq/ε for ∀δ ∈ (0, 1).

We will use the serial combination theorem when de-
signing the privacy protection mechanism of trajectory
composition.

Theorem 1 (serial composition theorem). For ∀ε> 0,
∀δ ∈ (0, 1), where ε �  εi, δ �  δi, if each step of the serial
mechanism satisfies, the whole process satisfies
( εi,  δi)-differential privacy, namely (ε, δ)-differential
privacy.

3.4. Problem Statement. A trajectory generation model M is
an algorithm able to generate a set of n synthetic trajectories
D � T1, T2, . . . , Tn , which describe the movements of the
given population. )e generated trajectory Ti should be a
time-ordered sequence Ti � 〈P1, P2, . . . , Pni

〉 composed of
ni spatio-temporal points. And the attackers could not vi-
olate the trajectory privacy of users. )e availability of the
synthetic trajectory dataset is evaluated concerning the point
distribution error metric, frequent pattern error metric,
region query error metric, and diameter error metric.

4. Synthetic Trajectory Generation

Figure 3 illustrates the system architecture of DTG. It mainly
includes data preprocessing, GRU model, gradient descent
algorithm with differential privacy mechanism, and trajec-
tory generation algorithm.

4.1. Data Preprocessing. Usually, what we get is the raw
trajectory dataset Draw � P1, P2, . . . , Pn , which is com-
posed of spatio-temporal points. We should first transform
Draw to the original dataset, denoted by D.

4.1.1. Transformation of the Trajectory Dataset. Pi of Draw �

P1, P2, . . . , Pn  contains geographical location and time,
including user identification, transportation, and other in-
formation. We divide Draw into subsets, denoted by Draw,id: i,
by user identification, and in each subset, the time of Pi is
earlier than the time of Pi+1. We require that the user’s
location should be collected at the same sampling rate.
)erefore, the sampling interval t between adjacent locations
in a trajectory is the same. Draw,id: i is movement records of
the user i for a certain period, and we need to divide this data
into multiple trajectories. Given the sampling interval t, if
the interval between the adjacent nodes is greater than t, we
divide it into subtrajectories. For Pi and Pi+1, if
ti+1(∈ Pi+1) − ti(∈ Pi)> t, we take Pi as the last point of the
previous trajectory and Pi+1 as the first point of the next
trajectory. )en, Draw is transformed to
D′ � T1′, T2′, . . . , Tn

′  by this way. Ti
′ denotes a trajectory and

consists of the sequence of locations 〈P1, P2, . . . , Pni
〉 where

Pi � (latitudei, longitudei). )e time intervals between ad-
jacent points in each trajectory of D′ are the same.

4.1.2. Discretization of the Trajectory Dataset. )e dis-
cretization process of DTG is as follows: DTG partitions the
geographic region by the private hierarchical adaptive grid
method. It divides the region according to the given pa-
rameters, including the count threshold of position points
nθ, the upper limit of the hierarchy H, the privacy budget
ε(

H
i�1 εi � ε), and the partition velocity parameters

β � βi| i ∈ Z, 1≤ i≤H . βi is used to reduce the speed of
partition, and its range is (0, 1]. )e maximum hierarchy of
the grid model of the target geographic space shall not
exceed H, and the partition shall be stopped if the number of
location points in the grid unit is lower than nθ.)e partition
process of hierarchy h(h ∈ Z, 1≤ h≤H) is as follows: firstly,
count points nj in each grid cell, respectively, and each grid
cell is divided into mj × mj subgrid cells of equal size, where

mj � 
�����
nj/nθ


× βh + 0.5; then, add noise with differential

privacy mechanism to the counts and take the noisy counts
as the final counts of the grid cells.

)en, DTG has discretized theΩ(D), and the grid model
G is already built. We index the points of D′ by the iden-
tifiers of the grids. As shown in Figure 4, the curves represent
the user’s movement trajectory, and the points on the curves
are the sampling points. For example, the point Pi of the
trajectory T1 � 〈P1, P2, P3, P4, P5, P6〉 stands for the loca-
tion of the trajectory. DTG indexes the locations of the
trajectories by the identifications of grid cells. DTG trans-
forms the location sequence T1 to the cell identification
sequence S1 � 〈C1, C5, C5, C10, C11, C15〉, where Ci repre-
sents the identification of the grid cells. DTG discretizes the
trajectory dataset D′ to the trajectory sequence dataset D �

S1, S2, . . . , Sn  by mapping spatial coordinates to the gird
identifiers.

4.2. GRU Model. RNN is qualified for modelling sequential
data. It can transfer the output and state of the current
moment to the next moment as input. )erefore, this serial
structure can reserve the relationship between eachmoment.
Considering it is difficult for RNN to reserve long-term
dependence, and there are problems of gradient disap-
pearance and gradient explosion, researchers further pro-
pose many excellent evolution models based on RNN, such
as LSTM (long short-termmemory) and GRU.)esemodels
solve long-term dependence by adding memory units and
avoiding gradient explosions by gating units. Compared
with LSTM, GRU has fewer parameters and faster training.
Hence, GRU is a better choice for our mechanism.

4.2.1. :e GRU Unit. )e input and output structure of
GRU is shown in Figure 5.

)ere is a current input xt and a hidden state ht− 1,
containing the relevant information, passed down from the
previous time steps. )e GRU model gets the output yt and
the hidden state ht of the current time step based on xt and
ht− 1. AndGRUpasses the hidden state ht to the next time step.

)e GRU unit structure, shown in Figure 6, consists of
two gates, the update gate and the reset gate. )ese are two
vectors that determine what information should be passed to
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the next steps and �nally to the output, and GRU could
retain useful information from long ago by them. We will
introduce the mathematics of the GRU unit.

�e update gate helps the GRU model to determine how
much of the past information, and we calculate the update
gate zt at time step t by equation (4). In equation (4), xt is
multiplied byWz, the weight matrix from the input layer to
the update gate, and the hidden state ht− 1 from t − 1 time
step is multiplied by Uz, the weight matrix from ht− 1 to the
update gate. Both result and the oset vector of the update
gate bz are added together, and we get a result between 0 to 1
by the sigmod function σ.

zt � σ Wzxt + Uzht−1 + bz( ). (4)

�e reset gate helps the GRU model to determine how
much of the past information to forget. We calculate the
reset gate rt by equation (5). In equation (5),Wr is the weight
matrix from the input layer to the reset gate,Ur is the weight
matrix from the hidden state to the reset gate, and br is the
oset vectors of the reset gate.

rt � σ Wrxt + Urht−1 + br( ). (5)

�e candidate’s hidden state h̃t retains the relevant in-
formation from the past by the reset gate rt. And we calculate
h̃t by (6), where Uh is the connection weight matrix between
the hidden states,Wh is the weight moment from the input
layer to the hidden state, bh is the oset vector of the hidden
unit, and ⊙ is denoted as the Hadamard product.

h̃t � tanh Whxt + Uh rt ⊙ ht−1( ) + bh( ). (6)

�e current hidden state ht contains the information of
the current unit which also includes the past information.
�e formula of ht is as follows:

ht � ztht−1 + 1 − zt( )⊙ h̃t. (7)

4.2.2. �e Training Set and the Generation Method. DTG
generates highly available and realistic synthetic trajecto-
ries by the GRUmodel. GRUmodel helps model sequential
data and could simulate the internal associations of the
trajectories. DTG generates trajectories by iteratively
predicting the next position. For trajectory
Tu � 〈C1, C2, . . . , Ci〉, the probability that the next position
is Ci+1 is Pr[Ci+1]. �e context constrains the choice of Ci+1,
and we introduce the Markov assumption to simplify the
problem as

GRU

yt

xt

htht-1

Figure 5: �e input/output structure of GRU.

1-

ht–1
yt

ht

rt

xt

σ σ

zt

tanh
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Figure 6: �e unit structure of GRU.
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Pr Ci+1  � Pr Ci+1|CiCi−1 . . . C1 . (8)

Andwe use the n-grammodel where the current location
Ci is determined by the n locations before it, to solve the
problem of oversize spatial dimension and data sparsity, as
shown in the following equation:

Pr Ci+1  � Pr Ci+1|CiCi−1 . . . Ci−n . (9)

Based on the n-grammodel, if n � N, DTG segments the
trajectory sequences into subsequences by sliding window
with width N + 1. For example, if n � 4, a trajectory se-
quence 〈C1, C5, C5, C10, C11, C15〉 could be divided into 2
subsequences: 〈C1, C5, C5, C10, C11〉 and
〈C5, C5, C10, C11, C15〉. We take the first n nodes of each
subsequence as the input data and the last node as the output
data, and then, we get input-output pairs as
(〈C1, C5, C5, C10〉, 〈C11〉) and (〈C5, C5, C10, C11〉, 〈C15〉).
According to this method, DTG transforms the dataset D to
the training set (X, Y), where xi ∈ X is input with length N,
and yi ∈ Y is output with length 1.

)e GRU model is trained on the (X, Y). And, in the
process of generation, GRU takes the last N nodes of the
given sequence as input, and DTG appends the output from
GRU to the end of the given sequence. DTG processes the
above process iteratively to generate synthetic trajectories.

4.3. Differentially Private Gradient Descent Algorithm.
)is section describes the algorithm by which DTG com-
bines the differential privacy mechanism and the gradient
descent algorithm. )e form of empirical risk minimization
(ERM) in machine learning is shown in equation (10). Our
target is to make the argmin function satisfy the differential
privacy mechanism. Hence, the output model parameter w∗

has a similar distribution for any adjacent data D andD′. We
could take differential privacy mechanisms at every step,
from processing the input data to generating the output data
of the machine learning process to protect privacy. We
choose to add noise to the process of gradient descent for
better availability. )is method is an optimization
perturbation.

w
∗

� argmin
1
n



n

i�1
ℓ w, xi, yi(  w. (10)

In Algorithm 1, it shows the process of minimizing the
loss function L(θ) by adjusting the parameter L(θ, xi, yi).
During training, DTG calculates the gradient of loss function
for each pair of input and output data, then truncates the
gradient, and adds noise by the Gaussian mechanism to the
truncated gradient. Finally, DTG updates the parameters.

We adopt the (ε, δ) − DP mechanism, which provides
looser privacy protection than ε − DP, improving the
availability of the generated data. Algorithm 1 shows the
training process of an epoch, and we choose to divide ε and δ
equally between the parameters of each epoch, sample, and
layer of the model.

DTG sets the threshold as C and truncates the gradients.
In g(xi)

i /max(1, ‖g(xi)
i ‖2/C), if the l2 norm of gi is equal or

greater than C, the gradient will take C, and if it is less than
C, the gradient will be reserved. )e global sensitivity Δq of
the function g(xi)

i /max(1, ‖g(xi)
i ‖2/C) is C.

DTG adopts the Gaussian mechanism to add noise. As
required by the Gaussian mechanism, ∀δ ∈ (0, 1),
σ >

����������
2ln(1.25/δ)


Δq/ε, the Gaussian distribution satisfies

(ε, δ)-differential privacy. )erefore, the noise added in the
gradient provides privacy protection and meets the differ-
ential privacy requirements. DTG allocates privacy, ε and δ,
to each epoch equally, and the privacy budgets satisfy ε �

nepoch
εi and δ � nepoch

δi. DTG adds Gaussian noiseΝ(0, σ2),
where σ >

�����������
2 ln(1.25/δi)


Δq/εi, to the parameters of gradient

in each epoch. According to the composition theorem of
differential privacy, the GRU satisfies the differential privacy.

4.4. Privacy Analysis. If we adopt the differential privacy
mechanism at any step in the process of DTG from data
input to output and ensure that the process after adopting
the differential privacy mechanism does not obtain the data
from the step before the differential privacy mechanism, the
whole process can be guaranteed to meet the differential
privacy in the theory.

We take (ε, δ) as the overall privacy budget and allocate
them to each calculation in the optimization process of the
neural network, and the privacy budget of each epoch is
(εi, δi). In the training process, adding noise consumes the
allocated privacy budget (εi, δi), and the overall disturbance
consumes the total privacy budget (ε, δ), where ε � nepoch

εi

and δ � nepoch
δi. Because the calculation of each round is

based on the same input dataset, hence, this process satisfies
the serial combination theorem. Based on the serial com-
bination theorem, the whole process also satisfies
(ε, δ)-differential privacy.

)e subsequent operation on the processed data does not
affect the sequential combination principle of differential
privacy.

5. Experiment Evaluation

We evaluate the availability of the generated data in terms of
geographic and semantic characteristics and select peer
trajectory generation tools as competitors.

5.1. Experiment Setup. We experiment on real datasets
T-Drive [50, 51], Portotaxi [3], and Swedishtaxi [52]. )e
T-Drive trajectory dataset records the trajectories of 10,357
taxis in Beijing, China, during a week. )e Portotaxi dataset
describes the trajectory of all 442 taxis in Porto, Portugal,
during the whole year (January 7, 2013, to June 30, 2014).
)e Swedishtaxi dataset is the trajectory data for Swedish
taxi cars during October and November 2018. )is paper
samples the T-Drive trajectory data at a sampling interval of
300 seconds. A total of 7,881 trajectories sample data are
obtained, including 90590 positions. We randomly selected
3962 trajectories from the Portotaxi dataset with 191868
positions in total and 10,000 trajectories from the Swe-
dishtaxi dataset. )ey are used as experiment datasets for
model training. Considering the average length of the
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trajectories, the length of the subtrajectories should not be
longer than half of the average length, and it should not be
overly short so that the model cannot obtain the long-term
dependent correlation. )erefore, the length of the sub-
trajectories in the T-Drive dataset is set to 5, and these of the
Portotaxi and Swedish datasets are 20 and 6, respectively.

To verify the effectiveness of the proposed method, we
choose to compare it with the current mainstream privacy
trajectory generation models DPstar [6], Adatrace [20], and
RNN [22]. Due to the small difference in the actual per-
formance of the two methods, they are combined into a
differentially private Markov (DPMarkov) model for ex-
periments. In addition, to further demonstrate the perfor-
mance of the proposed method, this section takes the
differentially private RNN model (DPRNN) as the perfor-
mance baseline. To eliminate the influence of the grid
method on the experiment results, three models are trained
and generated based on the private trajectory grid method
proposed in this paper.

In the experiment, the performance of the mechanisms
under different privacy budgets is compared, where the
privacy budget ε and δ adopt [0.01, 0.1, 0.5, 1, 5, 10] and
10(− 5), respectively. Undersized privacy budgets will add
massive noise to the gradient, resulting in the model cannot
converge, while oversize privacy budgets will increase the
possibility of privacy disclosure. )erefore, the privacy
budget is between 0.01 and 10 to compare various methods
efficiently. )e availability of the generated data is quantified
by the geographics and semantics similarity with the original
data, including the points’ distribution error, diameter error,
region query error, and frequent patterns error. )e ex-
periment is built on the Google Colab platform, configured
with Intel (R) Xeon (R) 2.20GHz processor and 12991MB
memory, and the operating system is Linux version 5.4.144.
)e simulation experiment is implemented based on
PyTorch 1.8.1 and Python 3.7.10.

5.2. Utility Metrics. We generate the synthetic data set D′
according to the original trajectory sequence dataset D,
where |D| � |D′|. Due to the difference between the gen-
erated data and the original data, there will be errors in the
results when the data user uses the synthetic data compared
with the real data. )e smaller the error between the results

from the generated data and the results from the original
data, the higher the availability of the generated data is
considered. Since the metrics of data availability are difficult
to define, therefore, the similarity between the generated
data and the original data is used to approximate the
availability of the generated data. We use four evaluation
metrics to quantify the similarity of the generated data. In
this experiment, we calculated the similarity between the
original dataset and the generated trajectory dataset of
different methods. )e methods are the point distribution
error metric, frequent pattern error metric, region query
error metric, and diameter error metric.

5.2.1. :e Point Distribution Error Metric. )e point dis-
tribution error metric can directly measure the similarity of
the point distribution of two trajectory data sets in the same
geographic region. Its disadvantage is that the evaluation
results cannot reflect the context between locations in the
trajectory. Its advantage is that the metric can reflect the
spatial density of locations in the geographic space. )e
point distribution error is defined as JSD(Pp, Pp

′), where
JSD(·) denotes the Jensen-Shannon divergence and Pp, Pp

′
are the point distributions of D and D′. JSD measures the
similarity of two probability distributions. It is a variant of
KL divergence. JSD is symmetric, whose value is from 0 to 1.
We calculate the probability distribution of points by the
ratio of the number of locations in each region to the total
number of locations for each data set and then measure the
difference between the distributions by JSD.

5.2.2. :e Diameter Error Metric. )e diameter of the
trajectory is a good evaluation metric with practical value
[18] and is critical to the user’s range of movement. )e
diameter of a trajectory is defined as the maximum distance
between any two points in the trajectory. We use the
histogram of the equiwidth interval to count the distri-
bution of diameters. In this paper, the diameter histogram
is set with 50 equal width intervals, and the range of each
interval is the extreme difference divided by 50. )en, we
use JSD to measure the distance between the real diameter
distribution and the synthetic diameter distribution as the
diameter error metric.

Input: input data X � x1, x2, . . . , xN, output data Y � y1, y2, . . . , yN, the loss function L(θ) � 1/NiL(θ, xi, yi), the data size N,
the learning rate η, the privacy parameters (ε, δ), the gradient norm bound C, total epochs T, and the current epoch t.

(1) εi � ε/T, δi � δ/T, σ �
�����������
2 ln(1.25/δi)


C/εi

(2) for t in T do
(3) for (xi, yi) ∈ (X, Y) do
(4) compute gradient g

(xi)
t ←∇θL(θi, xi, yi)

(5) clip gradient g
(xi)
t ←g

(xi)
t /max(1, ‖g

(xi)
t ‖2/C)

(6) add noise gj
′←

N
i g

(xi)
t +Ν(0, σ2)

(7) θt+1←θt − ηgt
′

(8) end for
(9) end for

ALGORITHM 1: Gradient descent with differential privacy for one epoch.
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5.2.3. :e Region Query Error Metric. Region query refers to
counting the number of trajectories in a query region.
Region query error (RQE) measures the relative error be-
tween the number of trajectories of the generated dataset
passing through a region and that of the real data. )e
definition of the region query error metric is shown in
equation (11). For the query area A, if the position of the
trajectory Tj

′ ∈ D′ exists within the area, the trajectory TJ
′ is

considered to pass through the area. )e function crad(·) is
used to count the number of the passed trajectories, and the
same statistical methods are used for the real dataset D. )is
section divides the geospatial region of the dataset into 625
(25× 25) query regions and takes the mean of the region
query error of all query regions as the region query error of
the generated dataset.

QRE(A) �
crad Tj

′ ∈ D′ if Tj
′passA  − crad Ti ∈ D( if TipassA( 





max crad Ti ∈ D( if TipassA( , ρ( 
. (11)

5.2.4. Frequent Pattern Error Metric. We take the frequent
pattern error metrics to measure the difference between
datasets [6] because most services such as urban traffic and
advertising require frequent patterns of users.)e evaluation
method is to select the trajectory segments of top-k in the
data set, count the percentage of each trajectory segment in
the whole data set, and then compare the differences be-
tween the distribution of real data sets and synthetic data
sets. We define the trajectory pattern as an ordered sequence
of cells; for example, C4⟶ C5⟶ C8. We count the
distributions of top − k frequent patterns in the trajectory
data sets and compare the differences between generated and
real data sets. In the following experiment, the sequence
lengths of the frequent pattern of the T-Drive, Portotaxi, and
Swedishtaxi datasets are 4, 19, and 6, respectively.

5.3. Comparison with Existing Generators. As shown in
Figure 7, we first compare the results of loss function and
accuracy of DTG in 50 epochs and 100 epochs when the
privacy budget is 10. When DTG does not use the dif-
ferential privacy mechanism, its accuracy reaches a stable
maximum after 50 epochs. Each epoch costs ε � 0.1, δ �

10− 7 in 100 epoch and ε � 0.2, δ � 2 × 10− 7 in 50 epochs.
With the increase of epochs, the number of noises added in
each round will also increase. )e values of loss function
about 50 epochs and 100 epochs are similar in the end.
Unilaterally, increasing the number of epochs cannot
improve the performance of the model. )erefore, in
subsequent experiments, the epochs of DTG and DPRNN
are set to 50.

Figure 8 shows the accuracy of different models in
predicting the next location. )e input of the model is the
trajectory sequence, and the output is the next location of the
sequence. )e length of the input sequence of the T-Drive
dataset is 4, the Portotaxi dataset is 19, and the Swedishtaxi is
6. Considering that the 1-order Markov model is better than
the high-order Markov model, we adopt the 1-order Markov
model in the experiment, and theMarkovmodel predicts the
next location based on the last location node of the sequence.
As can be seen from Figure 8, with different datasets of
T-Drive, Portotaxi, and Swedishtaxi, the increase of privacy
budgets has not significantly improved the accuracy of
DPMarkov, while the accuracy of DTG and DPRNN has

significantly improved. When the privacy budgets are 0.01
and 0.1, the accuracy of DTG and DPRNN is lower than
DPMarkov. DTG gradually surpasses DPMarkov when the
privacy budget is greater than (equal to) 0.5, and when it is
greater than (equal to) 0.1, the accuracy of DPRNN is
gradually higher than DPMarkov. In addition, the accuracy
of DTG is higher than that of DPRNN under different
privacy budgets. It can be concluded that the Markov model
has a weak ability to extract the features of trajectory data,
but its accuracy will not be significantly reduced when there
is more differential privacy noise; DTG and DPRNN have
strong modelling ability for trajectory data, but these two
models are sensitive to noise. Excessive noise will signifi-
cantly degrade the performance of the deep learning model,
even lower than that of theMarkovmodel.When the privacy
overhead is large, DTG performance is much higher than the
Markov model.

We compare the results of loss function and accuracy
with the number of epochs under different privacy to verify
the impact of different noise on the deep learning models. In
Figure 9, DTG and DPRNN cannot converge when
ε � 0.01, 0.1, 0.5, and the convergence speed is slow when
ε � 1. And the models can converge normally when
ε � 5, 10. In addition, under different privacy budgets, DTG
converges faster than DPRNN. In Figure 10, the models have
good accuracy in predicting the next location of the se-
quence when ε � 5, 10, and DTG is better than DPRNNwith
the same privacy budgets.

Figures 11–14 show the results of evaluating the simi-
larity between the generated trajectory data and the original
trajectory data using four metrics: point distribution error,
diameter error, region query error, and frequent pattern
error under different privacy budgets. )e similarity of data
generated by DPMarkov is inferior to that of DTG and
DPRNN in four metrics, and there is little difference in the
similarity of DPMarkov’s generated trajectories under dif-
ferent privacy budgets.

With the increase in privacy budgets, the results of the
four metrics of DTG and DPRNN gradually decrease, which
indicates that generated trajectory data becomes better.
When ε � 5, 10, the similarity of DTG generated data is
significantly improved compared with that when
ε � 0.01, 0.1, 0.5, 1. Combined with the model performance
in Figures 9 and 10, it shows that when ε is small, the error

Security and Communication Networks 9



0.4

0.3

0.2

0.1

0

Ac
cu

ra
cy

0.01 0.1 0.5 1 5
Privacy Budget

10

T-Drive

Markov
RNN
DTG

(a)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Ac
cu

ra
cy

0.01 0.1 0.5 1 5
Privacy Budget

10

Portotaxi

Markov
RNN
DTG

(b)

0.6

0.5

0.4

0.3

0.2

0.1

0

Ac
cu

ra
cy

0.01 0.1 0.5 1 5
Privacy Budget

10

Swedishtaxi

Markov
RNN
DTG

(c)

Figure 8: �e accuracy of models on dierent datasets and privacy budgets. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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Figure 9: �e value of loss function of DTG and DPRNN. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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Figure 7: �e results of DTG with dierent epochs (ε � 10). (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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Figure 10: �e accuracy of DTG and DPRNN. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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Figure 11: �e point distribution error of models. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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Figure 12: �e diameter error of models. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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between the generated data and the original trajectory is
large. In addition, except when ε � 5, 10 in the T-Drive
dataset, the data quality generated by DTG is better than that
of DPRNN.

In conclusion, by comparing with DPMarkov and
DPRNN, experiments show that DTG performs better under
the same privacy budgets in most cases. DTG has the ad-
vantage of extracting the temporal and spatial relationship of
trajectory data.

6. Conclusion

�is paper presents DTG. It is a trajectory generation
model with high privacy and high availability by combining
dierential privacy and deep learning. In DTG, we �rst
normalize the original trajectory dataset by sampling with
the same interval. Second, we transform the spatial coor-
dinates to grid identi�ers by partitioning the geospatial
space with the private hierarchical adaptive grid model.
�is model is density-aware and protects the privacy of the
dataset’s spatial correlation by the Laplace mechanism.
�ird, DTG adopts the dierentially private gradient

descent algorithm to protect the privacy of the dataset’s
temporal correlation by perturbing gradients. We experi-
mentally compare DTG with the state-of-the-art ap-
proaches in trajectory generation taking four metrics, and
DTG has a better performance in the process of generating
synthetic trajectories.

In the �eld of trajectory synthesis, we plan to expand in
the following aspects in the future: (i) more suitable deep
learning models for trajectory generation to better model
human mobility patterns, especially in terms of stopping
points, etc; (ii) more e�cient privacy allocation mechanisms
to improve generated data availability; (iii) enhanced grid
method to solve the problem of data sparseness.
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Figure 13: �e region query error of models. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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Figure 14: �e frequent pattern error of models. (a) T-Drive. (b) Portotaxi. (c) Swedishtaxi.
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