
Research Article
A Lightweight Blockchain-based Public-Key Authenticated
Encryption with Multi-Keyword Search for Cloud Computing

Haorui Du ,1 Jianhua Chen ,1 Fei Lin ,2 Cong Peng ,3 and Debiao He 3

1e School of Mathematics and Statistics, Wuhan University, Wuhan, China
2Wuhan Maritime Communication Research Institute, Wuhan, China
3e School of Cyber Science and Engineering, Wuhan University, Wuhan, China

Correspondence should be addressed to Jianhua Chen; chenjh_ecc@163.com

Received 21 June 2022; Revised 29 August 2022; Accepted 14 September 2022; Published 15 October 2022

Academic Editor: Youwen Zhu

Copyright © 2022 Haorui Du et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing can provide users with sufficient computing resources, storage, and bandwidth to meet their needs. Data
security and privacy protection are among the new threats faced by users. Searchable encryption is the combination of search
technology and encryption technology. Searchable encryption can upload the user’s data to the cloud server after special en-
cryption, and can realize the function of retrieving according to keywords. Comparatively to symmetric searchable encryption
(SSE), public key searchable encryption (PEKS) simplifies key management greatly. However, most existing public key au-
thenticated encryption with keyword search (PAEKS) schemes are based bilinear pairing, making them computationally ex-
pensive. Apart from this, complex retrieval requirements and the integrity of the results had not been considered. To address these
problems, we propose a blockchain-based PAEKS schemes supporting multi-keyword queries and integrity verification. In
addition, we provide security proofs for the PAEKS scheme under the decisional oracle Diffie-Hellman (DODH) assumption.-is
scheme a scheme that requires less storage and computational power than other schemes of the same kind.

1. Introduction

With the rapid development of mobile Internet, cloud
computing is also gradually changing people’s lifestyles. A
service provider aggregates a large amount of computing
and storage resources to the cloud. It provides services on-
demand to users with limited resources to facilitate a variety
of diverse and personalized applications. Based on the high
efficiency and low cost that cloud computing can provide,
cloud computing has attracted a great deal of attention from
academia as well as industry in the past decade. However,
third-party service providers are not completely trustworthy,
and storing data in plaintext will definitely pose a serious
threat to the privacy of data leakage.

-e data on an untrusted server must be encrypted
before it can be accessed. Data encryption ensures that
nobody can access information without a key. Moreover, the
data owner also loses the ability to retrieve the data. A
conventional approach is to download all the files locally,

decrypt them, and then search for them. It is not practical for
users to use this method. Another approach is to delegate
retrieval to the server, which finds the file and returns it to
the user. However, it is a challenge for the server to find what
it needs from the encrypted file. To query the encrypted file,
the server needs the user’s key to decrypt it.-us, encryption
is rendered ineffective. As a result, it is hoped the server side
has access to as much search functionality as possible
without having to decrypt the data. Researchers proposed a
technique called searchable encryption (SE), which could be
used for private encryption and search.

-ere are two types of searchable encryption: symmetric
searchable encryption (SSE) and public key encryption with
keyword search (PEKS). Song et al. [1] introduced the first
practical scheme for searchable encryption, allowing text
search without compromising confidentiality. In 2004,
Boneh et al. [2] published the first study studying the search
problem of data encrypted by the public key system, used as
the prototype of all PEKS. It mainly solved how to find the

Hindawi
Security and Communication Networks
Volume 2022, Article ID 2309834, 15 pages
https://doi.org/10.1155/2022/2309834

mailto:chenjh_ecc@163.com
https://orcid.org/0000-0002-6026-5145
https://orcid.org/0000-0001-6432-4926
https://orcid.org/0000-0002-1314-7410
https://orcid.org/0000-0002-9958-3255
https://orcid.org/0000-0002-2446-7436
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2309834

mail required by users from the massive mail system. We
must therefore understand the PEKS model clearly. As
depicted in Figure 1, a PEKS scheme works as follows:

(i) -e user Alice encrypts the file with a symmetric
key. -en the user encrypts the keyword w1, w2, w3
with Bob’s public key and sends them to the mail
server. Finally, the user sends the encrypted file and
keyword ciphertext to the mail server.

(ii) -e user Bob generates a search trapdoor of w1
using his secret key, and sends a query to the mail
server. Data users who wish to search for data on the
cloud server generate search trapdoor information
using their secret keys. Bob sends the search trap-
door to the cloud server.

(iii) By matching the ciphertext of the keywords, the
mail server delivers the search results to Bob.

SE is invalid, however, when you cannot securely share a
secret key over e-mail.-e PEKS can effectively solve the key
transfer and key management problems in symmetric
searchable encryption. Researchers strived to design efficient
and effective mechanisms to perform searches on encrypted
data. However, PEKS naturally has two major shortcomings.

(i) Having to deal with an ever-growing dataset size and
requiring many public key operations limits the
usefulness of PEKS.

(ii) Keyword guessing attacks (KGA) and inside key-
word guessing attacks (IKGA) can be applied when
the space of keywords is smaller than the space of
keys.

To resist keyword guessing attacks (KGA) from outside,
Rhee et al. [3] constructed a public key encryption scheme
for keyword searches of a specified searcher by introducing
random numbers in the trapdoor, making it possible to run
the test algorithm only on a specified server, thus preventing
KGA by external adversaries. Further, the researchers
considered the case where the adversary is a malicious
server. As a result, the methods are divided into two cate-
gories roughly. A potential solution is to expand the range of
keywords, which will make keyword guesses more difficult
[4]. -e other solution is to limit the adversary’s ability to
create ciphertexts and trapdoors, so that keyword guessing
attacks cannot be tested in large numbers by Huang and Li
[5]. -e methods are resistant to IKGA, but they ignore the
fact that trapdoors are algorithmically generated deter-
ministically, which can give away the user’s search habits. To
meet this goal, the first challenge is to design a searchable

encryption scheme that is resistant to IKGA and protects
user search patterns and access patterns.

As far as practicality and efficiency are concerned, Xu
et al. [6] presented a lightweight PEKS scheme that was quite
similar to some practical SSE schemes in terms of search
performance. Similarly, those schemes [7–9] also designed
the storage structure of ciphertext to improve the retrieval
efficiency.-eir approach was effective in terms of efficiency.
However, we take another perspective is to reduce the
consumption of public key operations, thus improving the
retrieval efficiency and enhancing the utility. In addition, the
current PAEKS schemes do not take into account multi-
keyword search, which can affect the user’s experience. -e
second challenging goal of this scheme is to design an ef-
fective searchable encryption scheme that can be searched by
multiple keywords.

-ird-party servers often benefit in practice from pro-
viding retrieval services with a risk that ciphertext data may
be tampered with by malicious parties or that the server may
fail. As a consequence, the integrity of search results is also a
concern that cannot be overlooked. Azraoui et al. [10]
combined polynomial-based accumulators and merkle trees
to implement conjunctive keyword verification. -e results
of multi-keyword searches used by Wan and Deng [11] were
verified using homomorphicMac. Verifying search results in
a flexible and feasible manner was possible by using a
blockchain, which proved the reliability and fairness of the
process by its non-repudiable property [12–15]. -erefore,
designing a PAEKS that supports integrity verification of the
retrieved results is the third challenge goal.

1.1. Motivation and Contributions. We analyzed the prob-
lems in existing schemes to establish the basis for achieving
the above goals. First, the cloud server can perform un-
limited trapdoor testing and cipher text matching. -e
server is too powerful for users to moniton, which can reveal
the user’s access patterns. -erefore, we prefer that the
recipient sends the file identifier to the server itself. In
addition, trapdoors for the same keyword are identical,
which may reveal the user’s search pattern. We introduce
random numbers in trapdoor generation to blind trapdoors,
and we can also use multiple keywords to reduce the risk of
leakage. Secondly, most existing PAEKS algorithm is based
on the bilinear map. -e generation of ciphertexts and the
high overhead of trapdoor computation can affect the ex-
perience of computationally constrained users. At the same
time, the cloud server has to perform matching test for each
ciphertext one by one in the trapdoor retrieval phase, which
leads to a large computational burden on the cloud server.
-is makes the overall utility of the solution low. Besides,
most existing PAEKS either do not consider the extension of
multi-keyword search or the cost of extending to multiple
keywords is costly. -erefore, we use a computationally
inexpensive public key cryptographic primitive with sup-
port for multi-keyword search. Finally, the integrity of the
search results is not considered. -erefore, we should use
some new tools to solve this problem efficiently. Following
the analysis above, we constructed a new PAEKS scheme

Mail Server

Enc (w1, PKBob)

Enc (w2, PKBob)

Enc (w3, PKBob)

Trapdoor (w1, SKBob)

Data Receiver
Bob

Data Sender
Alice

Figure 1: Models of PEKS.

2 Security and Communication Networks

based on our design goals.-e contributions of this research
are as follows:

(i) Firstly, we design a blockchain-based public key
authenticated encryption scheme. Data sender and
data receiver can naturally share a common initial
key based on Diffie-Hellman key agreement, which
can resist IKGA. -e search and access pattern are
not compromised.

(ii) Secondly, our scheme greatly reduces the compu-
tational cost and improves the practicability of the
scheme. Specifically, it can reduce the computa-
tional cost of ciphertext and trapdoor without using
bilinear pairs. In the testing phase, we use the inner
product relation of two vectors to determine the set
inclusion.

(iii) Finally, our scheme supports the integrity verifi-
cation of the results. It ensures the reliability of
search results by using the tamper proof charac-
teristics of blockchain. We demonstrate that the
scheme has adaptive security for CKA, and we
perform a series of experiments to evaluate its
performance.

1.2. Organization. We introduce a review of the related
works in Section 2. Preliminaries containing some crypto-
graphic notations and the system model of our proposed
system are introduced in Section 3. We introduce the basic
BB-PAKES scheme in Section 4. We give the security proof
of scheme in Section 5. We show the comparison of time
consumption with other schemes in Section 6. Finally, we
conclude this paper in Section 7.

2. Related Works

In the cloud environment, searchable encryption provides a
robust solution for retrieving ciphertexts under privacy
protection. In this case, the cloud server can search among
the ciphertext data uploaded by users and return ciphertext
data matching the search criteria when the plaintext in-
formation is unavailable. Boneh et al. [2] introduced the
public key encryption with keyword search, which is of great
significance. -e performance of SSE is generally better than
the performance of PEKS. Beak et al. [16] pointed out [2]
scheme utilized a secure channel between communication
parties. -e cost of building a secure channel made it not
suitable for certain applications. Meanwhile, the adversary
could intercept the trapdoor transmitted using a non-secure
channel, creating security problems. Reference [16] used the
server’s public key to encrypt the trapdoor to avoid these
drawbacks, and proposed an improved keyword search
public key encryption scheme to ensure the security of the
trapdoor in the transmission process. -ere is only one
server that can perform the search, and it was the first
searchable public key encryption with designated tester
(dPEKS) that improved the security of PEKS.

In contrast, Byun et al. [17] observed that the keyword
space was much smaller than the ciphertext space, and that

we could brute force keywords with low entropy content
more easily. Based on these facts, [17] pointed out that [2]
could not resist (outside) keyword guessing attacks (KGA).
Reference [17] provided specific methods of obtaining
keyword information from any captured query message. Yau
et al. [18] based on the attack by [17], and presented an attack
method against the scheme by [16]. -e above literature
analysis showed that it was not possible to simply combine
keywords and secret keys to generate a trapdoor that was
resistant to keyword guessing attacks. -is means that any
insider/outsider attacker can associate the combination with
the public key through pairing, which leads to an offline
keyword guessing attack.

To resist KGA, Rhee et al. [3] constructed a designated
searcher keyword search public key encryption scheme,
which restricted external adversaries from running the test
algorithm. Hu and Liu [19] pointed out that [3] could not
resist the outside keyword guessing attack of the server, and
described the specific attack method and two improvements.
-ey reserved the nature that the designated server can only
carry out the keyword search and extended the dPEKS
scheme to a bidirectional searchable proxy re-encryption
with a designated tester scheme (Re-dPEKS).

To achieve IKGA security against inside attacker, Huang
and Liu [5] introduced the concept of public key authen-
ticated encryption with keyword search (PAEKS). In
PAEKS, the data sender not only encrypts the keyword, but
also authenticates it, so that the verifier will believe that the
encrypted keyword can only be generated by the sender.
Specifically, Qin et al. [20, 21] concluded that [5] efficient
was not adequate to capture a realistic threat, called for
outside chosen multi-ciphertext attacks, and provided a new
PAEKS model, which captured both (outside) chosen multi-
ciphertext attacks and (inside) keyword guessing attacks.
However, -e trapdoor had been fixed, which would reveal
the user’s retrieval patterns. On the basis of the above re-
search, we considered several issues.

Additionally, some researchers had suggested some
encryption schemes that can support complex retrieval such
as conjunctive keyword search, subset search, range query,
and semantic keyword search [22–25], which improved
retrieval accuracy and provided more complex retrieval
expressions for the user. Abdelraheem et al. [26] presented a
query evaluation scheme that combined SSE with Bitmap
indexes. However, it required two rounds of interaction with
the cloud server. Katz et al. [27] constructed a scheme for
evaluating inner products based on predicates, which
evaluated disjunctions, polynomials, thresholds, and more.
It was possible to increase query efficiency by reducing the
bilinear pairing during the search process [28–30]. Zhang
et al. [31] proposed a public key encryption scheme based on
a tree-based index structure. However, there was a keyword
arrangement table between the data sender and the data
receiver by default. Otherwise, the probability of successful
retrieval was very low.

Integrity verification aspects, Cheng et al. [32] proposed
a symmetric searchable encryption scheme with verifiable
integrity, which applies indistinguishable obfuscation
techniques to counter server attacks. It achieved that a

Security and Communication Networks 3

malicious server cannot tamper with the search results ar-
bitrarily, but the indistinguishable obfuscation technique
was too ideal. -erefore, it was difficult to implement in
practical applications and did not have application value.
Wang and Fan [33] proposed a lightweight symmetric
searchable encryption scheme that implements support for
search result integrity detection and also enables dynamic
updating of ciphertexts corresponding to search keywords.
-ey mainly used a tree structure to improve the update
efficiency, but only single-user uploading and retrieval of
ciphertexts is possible.

3. Preliminaries

As part of this section, we describe notations, cryptography
materials, blockchains, the Bloom Filter, and system goals.

3.1. Notations. -ere is a description of the notations in
Table 1.

3.2. Blockchain. Decentralization, public verification,
transparency, open audit, and antitampering are charac-
teristics of blockchain, a technology that is gaining attention
from academia and industry alike. All nodes have access to
the data stored on the blockchain since blockchain runs
without a central server. Each node participates and gen-
erates calculations, which are stored on the blockchain.
Blockchains maintain the same data between all nodes
thanks to the consensus mechanism, meaning that no single
node can change the recorded data. Given these charac-
teristics, the blockchain can act as a trusted third party for
fair verification.

3.3. BloomFilter. -e bloom filter (BF) is a probabilistic data
structure. It is very useful for performing collection mem-
bership tests quickly and in a space-saving manner, but it has
the drawback that false positives do occur [34–36]. False
positives are rare enough that many applications outweigh
this disadvantage. Particularly, the BF in consists of three
polynomial-time algorithms BF � (BF.Gen, BF.Upd, BF.

Check):

(i) BF.Gen(L, J): It requires two integers as inputs
L, J ∈ N, and selects a collection of hash functions
H � hj(− , k)

j∈[J]
, where hj(− , k): 0, 1{ }∗ ⟶ [L]

is from 0, 1{ }∗ to a set [L], and k is key. Finally, it
outputs H and an initial L-bit array BF � 0L with
each bit BF[i] for i ∈ [L] set to 0.

(ii) BF.Upd(H, BF,Meg): It takes H � hj(Meg,

k)}j∈[J], BF ∈ 0, 1{ }L and an element Meg ∈ 0, 1{ }∗,
updates the current array BF by setting BF[hj

(Meg, k)]←1 for all j ∈ [J], and finally outputs the
updated BF.

(iii) BF.Check(H, BF,Meg): It takes H � hj(Meg,

k)}j∈[J], BF ∈ 0, 1{ }L and an element Meg ∈ 0, 1{ }∗,
and checks if BF[hj(Meg, k)] � 1 for all j ∈ [J]. If
ture, it outputs 1, otherwise returns 0.

3.4. Set Containment Search and Vector Scalar Product.
One solution to perform aggregate containment search on
outsourced data is to transform the aggregate records into a
set of binary vectors with fixed dimensions. Based on the
scalar product of the set containment problem, one can
transform it into a vector search problem [37].

3.5.PatternLeakage. Let Q be a q-query set whose element is
a pair (i, w), where i denotes the timestamp of a query, and w

denotes a keyword.-e leakage can be represented as follows
[38]:

(i) Access Pattern.An access pattern describes whether a
document contains a query keyword. For each query
keyword w, an access pattern is defined as
ap(w) � ID(w){ }, where ID(w) represents the
document’s ID number.

(ii) Search Pattern. It shows the query patterns for every
keyword w. -e search pattern for each keyword is
sp(w) � i|(i, w) ∈ Q{ }.

3.6. Inverted Index. Database indexes store maps between
content (such as words or numbers) and their location in a
table, or in a file or group of files.

(i) Create Inverted Index. First, all the raw data are
numbered to form a list of documents. -en the
document data is extracted to obtain a large number
of keywords, which are indexed by entry. -e
numbering information of the documents contain-
ing these entries is kept. It can also be referred to as
an index matrix. As depicted in Figure 2.

(ii) Search Process. -e user enters any keyword and
brings the keyword to an inverted index list for
matching. By looking up these terms, the numbers of
all documents containing them can be found.
Documents are then found in the document list
based on these numbers.

Table 1: Summary of notations.

Symbol Description
G1 -e cyclic group of prime order p

g -e generator of group G1
H1, H2, H3 Hash functions
PK, SK Participant’s public and private keys
W -e keywords set
Doc -e files set
[L] -e number of values in the range [0, L − 1]

J -e number of the hash functions
BF Bloom filter
BF
�→

L-dimensional vector
H -e hash function family with key
indw A set of file identifiers containing keyword w

EDB Keyword ciphertext set
Acc Hash check list of ciphertext
Rlt Search result set
〈− , − 〉 Vector inner product
| θ
→

| -e euclidean norm of an l-vector θ
→

4 Security and Communication Networks

3.7. e Computational Diffie-Hellman Assumption (CDH).
Let G be a cyclic group. -e order is p. -e generator is g.
Given two elements of G, ga and gb, it is required to
compute gab. CDH is intractable in the underlying group
G.

3.8.e Decisional Oracle Diffie-Hellman (DODH). -e G is
a group. -e order is p. -e g is a random generator of G.
-e H: 0, 1{ }∗ ⟶ 0, 1{ }hLen is hash function. -e DODH
assumption means that the advantage of A is negligible i
AdvDODHA (λ) � |Pr[A(g, ga, gb, R) � 1] − Pr[A(g, ga, gb,

H(gab)) � 1]| where a, b ∈ Zp, R ∈ 0, 1{ }hLen for any PPT
adversary A.

3.9. e Definition of BB-PAEKS. A BB − PAEKS scheme is
consisted of eight PPT algorithms, namely, Setup, KeyGen,
PAEKS, Trapdoor, Search, Verify, Dec, Update. -e formal
constructions are as follows:

-e formal constructions are as follows:

(i) pp← Setup(λ): -is algorithm generates global
parameters. Input a security parameter λ, and
outputsa global public parameter pp.

(ii) (PK, SK)←KeyGen(pp): It is responsible for
maintaining the public and private keys for
participants.

(a)(PKDS, SKDS)←KeyGen(pp): An algorithm
that produces public and private keys for a
sender. Input pp, and generates (PKDS, SKDS)

for the sender.
(b)(PKDR, SKDR)←KeyGen(pp): -is algorithm
generates the public/private key pair for the re-
ceiver using input pp and outputs (PKDR, SKDR).

(iii) Cw←PAKES(PKDR, SKDS, w): -e process is
carried out by a data sender. Input PKDR, SKDS, w ,
and returns corresponding keyword’s ciphertext
Cw.

(iv) Tw′←Trapdoor(PKDS, SKDR, w′): It is performed
by a data user. Input PKDS, SKDR, w′ , and returns
corresponding keyword’s trapdoor Tw′ .

(v) 0, 1{ }←Search(Cw, Tw): -e algorithm is run by a
SP.

(vi) proof←Verify(Rlt, Acc): -e algorithm is run by
Blockchain.

(vii) indw←Dec(Rlt, SKDR): -e algorithm is run by
DR.

(viii) (C1
w, C2

w)←Update(w, k): -e algorithm is run by
DR.

3.9.1. Correctness. For a PAEKS scheme, Given Cw and Tw′ ,
it can be converted into two vectors Cw

�→
, Tw′
��→

. We formulate
consistency as below:

If w � w′, then 〈Cw

�→
, Tw′
��→

〉 � |Cw

�→
| ; else w≠w′, then

〈Cw

�→
, Tw′
��→

〉≠ |Cw

�→
|.

3.10. e Security Models of BB-PAKES. For BB − PAEKS,
the semantic security model incorporates both the indis-
tinguishability of cipher-keywords and the indistinguish-
ability of trapdoors. Our ciphertext indistinguishable
security (CI-security) and Trapdoor indistinguishable se-
curity (TI-security) definition is identical to that of [5, 20, 21]
in settings.

3.10.1. CI-Security Model. Assume A is an adversary, while
λ is the security parameter.

(i) Initialization. A challenger generates the system
parameter pp by running the setup algorithm
Setup(λ) .-en, it runs KeyGen(pp) to generate the
target DS’s public/private key pairs (PKDS, SKDS),
DR’s public/private key pairs (PKDR, SKDR) re-
spectively. -e challenger provides pp and PKDS

and PKDR to A.
(ii) Phase 1. In this adaptive attack, the adversary asks

PPT questions to the cipher oracle (OC) and
trapdoor oracle (OT), and receives the cipher and
trapdoor for query keywords.

(iii) Challenge. After Phase 1, it outputs two challenge
keywords w∗0 and w∗1 . A coin b ∈ [0, 1] is flipped by
the challenger. It sends the cipher-keyword Cw∗

b
←

PAKES (PKDR, SKDS, w∗b) to A.
(iv) Phase 2. While the adversary may use the Phase 1

oracle to continue to query the oracles, they may not
access OC and OT with w∗0 and w∗1 .

(v) Guess. Finally,A returns a bit b′ ∈ [0, 1] as the guess
of b and wins the game if b′ � b.

-e adversary A wins in the above game if he guesses
b′ � b. -eA’s advantage in winning this game is defined as,

KeywordfileID

1 f1
f2
f3
f4
f5

2
3
4
5

w1, w2, w4, w5

w1, w2, w3, w4, w5
w3, w4

w1, w3
w1, w2, w4

(a)

0
1
1
0
0

1
1
1
1
1

0
0
0
1
1

0
0
1
0
1

1
1
0
1
1

f5f4f3f2f1

w5

w4

w3

w2

w1

(b)

Figure 2: Inverted index. (a) Extract keywords from files. (b) Index matrix.

Security and Communication Networks 5

AdvIND− CKA
A (λ) � Pr b′ � b −

1
2

. (1)

Definition 1. (CI-security) ABB − PAEKSscheme satisfies
cipher-keyword indistinguishable against chosen keywords
attacks if for any PPT adversaryA, the advantage-
AdvIND− CKA

A (λ)of succeeding in the above game is negligible.

3.10.2. TI-Security Model. -e adversaryA and the security
parameter λ.

(i) Initialization. Challenger C generates the system
parameter pp by running the setup algorithm
Setup(λ) . -en, it runs KeyGen(pp) to generate
the target DS’s public/private key pairs (PKDS,

SKDS), DR’s public/private key pairs (PKDR, SKDR)

respectively. -e C provides pp, PKDS and PKDR

to A.
(ii) Phase 1. -e adversary adaptively performs PPT

queries on password-keyword oracles PAEKS and
trapdoor oracles, and obtain cipher and trapdoors
for the query keywords.

(iii) Challenge. After the first phase, it outputs two
challenge keywords w∗0 and w∗1 with the constraints
w∗0 and w∗1 . In the first stage, w∗0 and w∗1 are never
queried by A for the cryptographic keyword oracle
and the trapdoor oracle. -e challenger then picks a
coin b ∈ [0, 1] and sends the trapdoorTw∗

b
. Sends the

trapdoor Tw∗
b
← Trapdoor (PKDS, SKDR, w∗b) to A.

(iv) Phase 2. As Phase 1, the adversary can continue to
query the oracles, but cannot queryOC andOT with
w∗0 and w∗1 .

(v) Guess. Finally,A returns a bit b′ ∈ [0, 1] as the guess
of b and wins the game if b′ � b.

-e adversary A wins in the above game if he guesses
b′ � b. -e advantage of A winning this game is defined as,

AdvIND− KGA
A (λ) � Pr b′ � b −

1
2

. (2)

Definition 2. (TI-security) ABB − PAEKSscheme satisfies
trapdoor indistinguishability against chosen keywords attacks
if for any PPT adversaryA, the advantageAdvIND− KGA

A (λ)of
succeeding in the above game is negligible.

3.11. System Model. -e system includes the following
parties: Storage Provider (SP), Data Sender (DS), Data
Receiver (DR) and Blockchain as depicted in Figure 3. -e
characteristic and function of each party are depicted as
follows.

(i) Storage Provider (SP): Service providers have strong
computing and storage capabilities. -e SP stores
encrypted data on behalf of the data sender, and SP
retrieves the corresponding ciphertext when DR
submits a retrieval request. -e final step involves
returning the retrieval result to the DR and
blockchain.

(ii) Data Sender (DS): -e DS collects fle documents
with identifiers ID � id1, id2, , . . . , idfle . Each
document idi contains a set of keywords Wi, which
is a subset of the collection of all keywords
W � w1, w2, . . . , wnum , i.e., Wi ⊂W. As a measure
of improving query efficiency, DS creates an
inverted index database DB for his keywords. For
different keywords Wi, there is a set of document
identifiers, denoted by indi. After that, DS encrypts
all files, keyword and ind. -e DS outsources the
keyword ciphertext TB and document ciphertext T

to the SP. At the same time, the DS performs a hash

2

3

7 7 5

4

6

1 2 8

5

9

Data Receiver
Block Chain

Data Sender

Storage Provider

Check List

w2

w1

w1
w4
w7 w8 w9

w5 w6

w2 w3

w4
w7 w8 w

w5 w6

w2 w3

w5 w7 w8
w9

w3 w4w1
w4
w7 w8 w

w5 w6

w2 w3

Job requirements

Figure 3: -e system model of BB-PAEKS.

6 Security and Communication Networks

operation on the encrypted file identifier set B and
sends it to the blockchain.

(iii) Data Receiver (DR): -e DR generates search token
according to the keywords and then sends the
trapdoor to SP and BlockChain, respectively.

(iv) Blockchain: -e blockchain is composed of various
nodes (such as recruitment companies, candidates,
and other identities). Its primary responsibility is to
maintain the blockchain network that supports
smart contracts, which can be utilized for storing
user data and inspecting documents.

-e detailed procedures of BB − PAEKS are as follows:
①-eDS extracts keyword set W from documents Doc and
builds a checklist B from files. At the same time, encrypt
keyword index Cw and documents CDoc. ② -e DS sends
encrypted keyword index Cw to the SP. Meanwhile, the DS
sends checklist Acc to the Blockchain.③-e SP registers Cw

and CDoc to the database.④-e DR computes trapdoor Tw

of queried keywords Wq. ⑤-e DR sends trapdoor Tw to
the SP and Blockchain. ⑥ -e SP searches keyword index
Cw in the database by using trapdoor Tw.⑦-e SP returns
the result to the DR and blockchain for verification. ⑧ As
soon as the SP returns the results, the blockchain calculates
the hash value of every result. From the identity information
of DS in the checklist Acc, the blockchain gets the corre-
sponding hash values of files. Finally, the blockchain
compares two hash value to generate the proof. ⑨ -e
blockchain sends the proof to DR.

3.12.reatModel. In this paper, it suppose that DS honestly
follow the PAEKS algorithm to produce searchable ci-
phertexts for DO and transmits these ciphertexts to the SP.
DR honestly follow the Trapdoor algorithm to produce
trapdoor and transmits these to the SP.-e SP is supposed to
be honest and curious, who will honestly perform Test al-
gorithm, and is interested in query results and frequency
information of ciphertext. Blockchain is trusted and executes
the protocols in the system honestly.

3.13. Design Goals. According to the most basic require-
ments of public key searchable encryption, our scheme must
meet the following characteristics:

(i) Correctness: If the DR provides the correct trapdoor
and the scheme is executed in the correct way, the
received search results must be correct.

(ii) Confidentiality: -e scheme needs to protect the
confidentiality of keywords, files, indexes and
trapdoors. In other words, the scheme can resist
KGA and IKGA.

(iii) Integrity: -e scheme supports multi-keyword re-
trieval and integrity verification of search results.

4. Construction

-is section presents a basic construction of PAEKS fol-
lowed by an extension of the base version. It supports multi-

keyword retrieval. Inverted index-based data structures, as
illustrated in Figure 2, are better suited to our construction.
Our discussion in this paper does not include the topic of
how to encrypt files, which is not the focus of our discussion.

4.1. Basic Construction. Our scheme is consisted of eight
PPT algorithms, namely, Setup, KeyGen, PAEKS, Trapdoor,
Search, Verify,DEC,Update. -e formal constructions are as
follows:

(i) pp←Setup(λ): Choose a G1 is cyclic groups with
prime order p. Select three hash functions
H1: G1 × 0, 1{ }∗ ⟶ Z∗p, H2: 0, 1{ }∗ ⟶ 0, 1{ }∗,
H3: Z∗p × 0, 1{ }∗ ⟶ Z∗p and a collection of hash
functions H � hj(k, −) with key k, where
j ∈ [J]. Choose a random generator g of G1.
Output the public parameters pp � G1, p, g, H1,

H2, H3,H}.
(ii) (PK, SK)←KeyGen(pp): It is responsible for the

public and private key pair of participants.

(a)-eDS chooses a random element y ∈ Z∗p, and
sets to PKDS � gymodp, SKDS � y.
(b)-e DR selects randomly x ∈ Z∗p, and sets to
PKDR � gxmodp, SKDR � x.

(iii) (C1
w, C2

w)←PAEKS(SKDS, PKDR, w):

(a)Data Sender.
Version serial number VerInfo ∈ Z∗p.
DS runs BF.Gen(L, J).
Compute u � gyx, and k � H1(u, w), which

the key is updated with the version information.
Input k and w, run BF.Upd(H, BFDR, w) al-

gorithm, and output the updated bloom filter
BFDS, where a collection of hash functions H �

hj(k, w) with key k and keyword w for j ∈ [J].
indw � idi|w ∈ idi .
Choose random r1 ∈ Z∗p, C1 � gr1 , C2 �

gxr1 · indw, C3 � H2(C2).
Send the C1

w � BFDS, C1, C2,VerInfo to SP,
and send the C2

w � C3,VerInfo to Blockchain.
(b)Storage Provider.

Store C1
w to EDB.

(c)Blockchain
Store C2

w to Acc.

(iv) Tw←Trapdoor(SKDR, PKDS, w): -e algorithm is
run by a DR.

(a)Data Recriver.
DR runs BF.Gen(L, J).
Compute u � gyx, and k � H1(u, w), which

the key is updated with the version information.
Input k and w, run BF.Upd(H, BFDR, w) al-

gorithm, and output the updated bloom filter
BFDR, where a collection of hash functions H �

hj(k, w) with key k and keyword w for j ∈ [J].
Randomly select J random numbers num1,

num2, . . . ,numJ ∈ 0, 1{ }∗, and the corresponding

Security and Communication Networks 7

position of the bloom filter BFDR is set to 1, where
J means the number of pseudo-random functions
in bloom filter.

Tw � BFDR.
Send Tw to SP and Blockchain.

(v) 0, 1{ }←Search(Cw, Tw): -e algorithm is run by a
SP.

(a)If 〈BFDS

�����→
, BFDR

�����→
〉 � |BFDS

�����→
|, the search algo-

rithm returns 1. Otherwise, it returns 0.
(b)Puts the matching ciphertext C1

w into the map
Rlt.
(c)Sends the result Rlt to the DR and Bolckchain.

(vi) proof←Verify(Rlt,Acc): -e algorithm is run by
Blockchain.

(a)Gets the search result Rlt, obtains the hash
value of each file in the result from B, and gets the
Acc.
(b)For all ciphertexts C1

w ∈ Rlt, blockchain
computes the hash value of C2, gets H2(C2).
(c)Blockchain compares H2(C2) and Acc, if they
are equal, the proof is true, otherwise false.
(d)-e search results Rlt and proof are sent to
DR.

(vii) indw←Dec(Rlt, SKDR): -e algorithm is run by
DR.

(a)Gets the search result Rlt.
(b)Compute indw � C2/Cx

1 .

(viii) (C1
w, C2

w)←Update(w, k): -e algorithm is run by
DR.

(a)Data Receiver. -e ciphertext update algo-
rithm here is the same as PAKES, except for the
key generation method
Version serial number VerInfo∗ ∈ Z∗p.
DS runs BF.Gen(L, J).
Compute u � gyx, and k1 � H1(u, w), k2 � H3

(k1, w).
Input k2 and w, run BF.Upd(H, BFDS, w)

algorithm, and output the updated bloom filter
BFDS.
indw � idi|w ∈ idi .
Choose random r1 ∈ Z∗p, C1 � gr1 , C2 � gxr1

·indw, C3 � H2(C2).
Send the C1

w � BFDS, C1, C2,VerInfo
∗

 to SP,
and send the C2

w � C3,VerInfo
∗

 to Blockchain.
(b)Storage Provider.
Store C1

w to EDB.
(c)Blockchain
Store C2

w to Acc.

4.2. Derived Constructions. On the basis of scheme
BB − PAEKS, it can be easily extended to public key au-
thenticated encryption with multi-keyword search. -e
Setup, KeyGen, PAEKS, Search, Verify, Update these

algorithms are the same as those of the basic scheme, except
that the Trapdoor and Dec algorithms are different. In order
to save space, please refer to the basic scheme settings for
details of specific schemes.

(i)Trapdoor(SKDR, PKDR, PKSP, w):

(a)Data Receiver.
DR runs BF.Gen(L, J).
For WQ � w1, w2, .., wq Compute u � gyx, For

each keyword wi in set WQ � w1, w2, .., wq , perform
the following steps, and finally add them to the bloom
filter.

ki � H1(u, wi).
Input ki and wi, run BF.Upd(H, BFDR, wi) algo-

rithm, and output the updated bloom filter BFDR.
Choose random J ∈ 0, 1{ }∗, and set BFDR to 1,

where J means the number of pseudo-random
functions in bloom filter.

Tw � BFDR.
Send Tw to SP and Blockchain.

(ii)Dec(Rlt, SKDR): -e algorithm is run by DR.

(a)Gets the search result Rlt.
(b)Run Dec(Rlt, SKDR), get indw1

, indw2
, . . . , indwq

}.
(c)It can get the results of different keyword combi-
nations locally(conjunction and disjunction).

4.2.1. Remark.
(1) It is not linear that the ciphertext and trapdoor size

grow with keywords in our scheme. -e trapdoor is
the same size as the single keyword trapdoor.

(2) Search Index can be executed with a linear search,
but a binary tree search is more efficient because we
do not have to test all indexes in a binary tree search.

(3) Several factors need to be considered prior to using
the bloom filter, including the length and number of
pseudo-random functions. We can determine these
parameters by using n and fp, where n means the
maximum number of characters and fp represents
the maximum likelihood of false-positive fp [35, 39].
We select 2000 keywords, the length of the mapping
bit array is 20000, the number of hash functions is 5,
and the error rate is 0.00943. According to the pa-
rameter standard provided by [40].

5. Security Proof

In this section, we show that our basic scheme is compatible
with the design goals, in other words, our construction is
reliable. It can resist IKGA and reduce the possibility of
access pattern and search pattern disclosure.

5.1. Correctness

5.1.1. Correctness. -e sender and receiver compute
u � gyx, α � H2(w)u, k � H1(α, w). -ey run BF.Gen(L, J)

8 Security and Communication Networks

and BF.Upd(H, BF, w) algorithm and get BFDS and BFDR

about keyword w. -en, it can be proved to be correct
according to bloom filter and set intersection property.

5.1.2. Remark. Our scheme does not consider malicious
man in the middle attack and malicious tampering by ex-
ternal enemies. It can be guaranteed by public key en-
cryption system and algorithms.

5.2. Confidentiality. -e following theorems illustrate how
our scheme satisfies IND-CKA and IND-KGA security.

Theorem 1. Our scheme BB − PAEKS implements IND-
CKA security if the DODH assumption holds.

Lemma 1. e advantage AdvCKA
A is negligible for any PPT

adversary A .

Proof. Suppose the adversary guesses the key words in the
game, and the correct event is recorded as (b′ � b). We
define games as follows:

Game0. It is the original IND-CKA game.

(i)Setup(λ): -e challenger C runs Setup(λ) and
KeyGen(pp) to generate the public parameter pp and
public/private key pair of participants (PKDS,

SKDS) � (gy mod p, y(of DS, (PKDR, SKDR) �

(gx mod p, x() of DR. -en, the challenger C sends
pp, PKDS, PKDR to the adversary A. Hash functions

H1, H2, H3 and H should be collision resistant and
secure.
(ii)Phase 1: In this adaptive attack, the adversary asks
PPT questions to the cipher-keyword oracle (OC) and
the trapdoor oracle (OT), and C is simulated as
follows:

(a)OC: Run BF.Gen(L, J). Compute u � gyx and
k � H1(u, w). Input k and w, run BF.Upd(H,

BFDS, w) algorithm, and output the updated bloom
filter BFDS. Send the BFDS to A.
(b)OT: Run BF.Gen(L, J). Compute u � gyx, and
k � H1(u, w). Input k and w, run BF.Upd(H,

BFDR, w) algorithm, and output the updated bloom
filter BFDR. Choose random J ∈ 0, 1{ }∗, and set BFDR

to 1, where J means the number of pseudo-random
functions in bloom filter. Send trapdoor BFDR to A.

(iii)Challenge: As the adversary A chooses keywords
(w∗0 , w∗1), and sends them toC. -e challengerC picks
a random bit b ∈ 0, 1{ }, and encrypts the keyword w∗b .
-e ciphertext of the challenge keyword w∗b as follows:

(a)Choose a random u � gyx, and k � H1(u, w∗b).
RunBF.Upd(H, BF∗DS, w∗b), output BF∗DS.
(b)Finally, the challenge C sends C∗w∗

b
to adversary.

(iv)Phase 2: -e adversaryA proceeds to query oracles
during Phase1. It cannot query the ciphertext and
trapdoor of (w0, w1).

(v)Guess: If b′ � b thenCwins the game.-e adversary
A has the advantage that is

AdvGame0
A (λ) � AdvCKAA (λ). (3)

Game1. Let Game1 be the same game as Game0, except
that the challenger chooses r1 ∈ G1 instead of computing
u � gyx. -e challenger sends the ciphertext C∗w∗

b
. We have

|AdvGame0
A − AdvGame1

A |<AdvDODHA (λ), where AdvDODHA (λ)

is negligible if the DODH assumption holds.
Game2. Let Game2 be the same game as Game1, except

that the challenger random chooses r1′ instead of
k � H1(α, w∗b). Due to r1 and r1′ are random. From
adversary’s view, the ciphertext Cw∗

b
of Game1 and Game2

are the identical distribution.
We have,

AdvGame2
A (λ) � AdvGame1

A (λ). (4)

We conclude that the adversary can only win with
probability in Game2 because Cw∗

b
is independent of b. -us,

the advantage,

AdvGame2
A (λ) �

1
2

−
1
2

� 0. (5)

Finally, according to the Game0, Game1,Game2 we have,

AdvGame2
A (λ) − AdvIN D− CKA

A (λ)

≤Adv
DODH
A (λ). (6)

where AdvDODHA (λ) are negligible. -erefore, the ad-
versaryA′ advantage in winning can be ignored in the IND-
KGA game. □

Theorem 2. Our scheme BB − PAEKS implements IND-
KGA security if the DODH assumption holds.

Lemma 2. e advantage AdvKGAA is negligible for any PPT
adversary A .

Proof. Suppose the adversary guesses the key words in the
game, and the correct event is recorded as (b′ � b). We
define games as follows:

Game0. IND-KGA is the original version of this game.

(i)Setup(λ): -e challenger C runs Setup(λ) and
KeyGen(pp) to generate the public parameter pp and
public/private key pair of participants (PKDS, SKDS) �

(gymodp, y) of DS, (PKDR, SKDR) � (gx modp, x) of
DR, of (PKSP, SKSP) � (gzmodp, z) of SP. -en, the
challenger C sends pp, PKDS, PKDR, PKSP} to the
adversaryA. Based on what we know so far about hash
functions, we assume H1, H2, H3 andH are secure and
collision-resistant.
(ii)Phase 1: In this adaptive attack, the adversary asks
PPTquestions to the cipher-keywordoracle(OC) and the
trapdoor oracle (OT), and C is simulated as follows:

(a)OC: Run BF.Gen(L, J). Compute u � gyx and
k � H1(u, w). Input k and w, run BF.Upd(H,

Security and Communication Networks 9

BFDS, w) algorithm, and output the updated bloom
filter BFDS. Send the BFDS to A.
(b)OT: Run BF.Gen(L, J). Compute u � gyx,
k � H1(u, w). Input k and w, run BF.Upd(H,

BFDR, w) algorithm, and output the updated bloom
filter BFDR. Choose random J ∈ 0, 1{ }∗, and set BFDR

to 1, where J means the number of pseudo-random
functions in bloom filter. Send trapdoor BFDR to A.

(iii)Challenge: -e adversary A selects two keywords
(w∗0 , w∗1) and sends them toC.-e challengerC picks a
random bit b ∈ 0, 1{ }, and encrypts the keyword w∗b .
-e trapdoor of the challenge keyword w∗b as follows:

(a)Choose a random u � gyx and k � H1(u, w∗b).
RunBF.Upd(H, BF∗DR, w∗b), output BF∗DR. Choose
random J ∈ 0, 1{ }∗, and set BFDR to 1, where J means
the number of pseudo-random functions in bloom
filter. Finally, the challenge C sends T∗w∗

b
to adversary.

(iv)Phase 2: Phase1 continues to be issued by the ad-
versary A as queries to Oracles. -ere is only one
restriction is that (w0, w1) cannot be chosen for the
ciphertext and trapdoor query.
(v)Guess: If b′ � b thenC wins the game. According to
the IND-KGA definition, adversary A has the ad-
vantage that is

AdvGame0
A (λ) � AdvKGAA (λ). (7)

Game1. Let Game1 be the same game as Game0, except
that the challenger chooses r1 ∈ G1 instead of computing
u � gyx. -e challenger sends the ciphertext C∗w∗

b
. We have

|AdvGame0
A − AdvGame1

A |<AdvDODHA (λ), where AdvDODHA (λ)

is negligible if the DODH assumption holds.
Game2. Let Game2 be the same game as Game1, except

that the challenger random chooses r1′ instead of
k � H1(u, w∗b). Due to r1 and r1′ are random, which the
ciphertext Cw∗

b
of Game1 and Game2 are the same distri-

bution from adversary’s view.
We have,

AdvGame2
A (λ) � AdvGame1

A (λ). (8)

As we know, the adversary can only win Game2 with
probability sinceCw∗

b
is independent of b.-us, the advantage,

AdvGame2
A (λ) �

1
2

−
1
2

� 0. (9)

Finally, according to the Game0, Game1,Game2 we have,

AdvGame2
A (λ) − AdvKGAA (λ)

≤Adv
DODH
A (λ), (10)

where AdvDODHA (λ) are negligible. -erefore, the advantage
of adversaryAwins in the IND-KGA game is negligible. □

5.3. Security. -is study, adversary a is mainly aimed at the
curious server. -at’s because resisting external adversary
can be easily solved by introducing the server public key. In
other words, IKGA is mainly considered. In addition,

PAKES and Trapdoor algorithms are most likely to disclose
keyword information, So we focused on the analysis PAKES

and Trapdoor algorithms.

(i)Resistance against IKGA. In PAEKS, only the DS can
generate the legal ciphertext of keyword. -e adversary
executes the PAEKS algorithm, it cannot generate k.
Similarly, the adversary cannot generate the trapdoor of
keyword. Finally, the adversary cannot obtain any
information by running the Test algorithm. -us, our
scheme can resist the IKGA.
(ii)Access pattern. We use DR’s public key to encrypt
the file identifier indw that meets the keyword w. -e SP
returns the result to DR, who decrypts the file identifier
information with his private key. Finally, the DR
submits file identifier to SP according to his actual
needs. By adding a round of communication, we ensure
the privacy of the matching relationship between
keywords and file identifiers.-us, our scheme protects
the access pattern of DS.
(iii)Search pattern. -e trapdoors of our scheme are
generated randomly, that is, the trapdoors of the same
keyword are different. -us, our scheme protects the
search pattern.

6. Comparison and Analysis

In this section, we compare our scheme with the authen-
tication based searchable schemes (HL17 [5], QC+ 20 [20],
QC+ 21 [21] and PL21 [41]), which are mainly focused on
security comparison.-en, we count the number of different
operations of other schemes and conduct an empirical
performance evaluation using the Relic and GMP library.

6.1. Comparative Analysis of Security. A comparison of the
security guarantees provided by these PAEKS schemes is
shown in Table 2. Reference [21] introduced the definition of
fully CI-security, fullyTI-security. -e mDLIN, DBDH and
BDHI stand for modified Decision Linear (mDLIN) as-
sumption, Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption and Bilinear Diffie-Hellman Inversion (BDHI)
assumption respectively. -e BDH and CODH stand for
Bilinear DiffieHellman and Computational Oracle Diffie-
Hellman. HL17 [5], QC+ 20 [20], QC+ 21 [21] and PL21
[41] have a common feature that they use the DR’s public key
in ciphertext generation and the DR’s private key in trapdoor
generation, which can naturally resist IKGA. A comparison
of Table 2 shows that only our scheme has fully CI-security
and fully TI-security in PAEKS. Specifically, in our scheme,
the ciphertext with the same keyword is encrypted with
different keys, and the trapdoor is blinded with random
numbers. In their CI-security model, HL17 and PL21 still
prohibited adversaries from querying cipher-keyword ora-
cles with challenge keywords. QC+ 21 and QC+ 20 are fully
CI-security. Trapdoors are generated by deterministic al-
gorithms, so they are not fully TI-security. In other words,
the trapdoor generation algorithm of their scheme will leak
the retrieval habit. We reduce the possibility of access

10 Security and Communication Networks

Table 2: Comparative security.

Schemes Fully CI-security Fully TI-security Integrity Assumption
HL 17 [5] X X X mDLLN and DBDH
QC+20 [20] √ X X BDH
QC+21 [21] √ X X BDH and CODH
PL21 [41] X X X BDHI
Ours √ √ √ DODH
√: Schemes supporting corresponding features are supported. X: -e scheme cannot support the corresponding feature.

Table 3: Operations comparison of PAEKS schemes.

Schemes PAEKS Trapdoor Test
HL 17 [5] 3E + H 3E + P + H 2P

QC+20 [20] 3E + P + 2H 2E + H H + P

QC+21 [21] 3E + P + H 2E + H P

PL21 [41] 3E + H 3E + P + H 2P

Ours 3E + 2H E + H 2D

H: denoting a hash-to-point operation. P : denoting a bilinear pairing operation. E: denoting a modular exponentiation. D: denoting a dot product.

Number of Keywords

Ci
ph

er
te

xt
 G

en
er

at
io

n
Ti

m
e (

s)

0

5

10

15

20

25

30

50 500100 150 200 250 300 350 400 450

27.254409

26.124778

22.684117

0.054298

21.01893

HL 17
QC+20
QC+21

PL 21
Ours

Figure 4: -e cost of ciphertext.

Security and Communication Networks 11

pattern leakage by adding a round of communication. Be-
cause the server does not know the specific index entries that
meet the keyword. In addition, only our scheme also meets
the result integrity verification.

6.2. Time Complexity. Table 3 shows the number of oper-
ations of each algorithm. E, P, H, F denotes the operation of
exponentiation, the pairing operation, hash function,
pseudo-random function respectively. In the table, we dis-
regard operations with low costs, such as normal hashing.
Considering that Setup and KeyGen of different schemes
have no significant difference in computational costs and the
common algorithm, we only consider Encrypt/PAEKS,
Trapdoor, and Test/Search algorithms. -e schemes of
HL17 and PL21 be slightly faster than that of QC+ 20 and
QC+ 21, as they only calculated the hash to point operation
in the keyword encryption algorithm. However, our solution
is much faster than theirs. Our scheme is the fastest com-
pared with the schemes of HL17, QC+ 20, QC+ 21 and PL21
in the Trapdoor algorithm, because it does not need pairing.

For Test generation algorithm, our scheme requires one
time inner product operation. -is is almost optimal among
these Test schemes.

6.3. Evaluation. By incorporating Relic and GMP, we are
able to evaluate the effectiveness of the various schemes
(HL17, QC+ 20, QC+ 21 and PL21). Platforms used in this
experiment include Ubuntu 18.04.5 LTS with Intel (R) Xeon
(R) CPU E5-2620 v4 @ 2.10GHz and 16.00GB of RAM.-e
pseudo random permutation was computed using the AES
algorithm (CBC model, 128 bit key). -e hash functions
were computed using the SHA-256 algorithm. We choosed
the real Encron e-mail Dataset (Version 20150307, about
423MB) to demonstrate the practical performance of our
proposed scheme, which contains the data from about 150
users. We choosed about 2000 keywords whose lengths are
not less than 5 characters and the total number of occur-
rences is higher than 20.We compared our proposed scheme
to HL17, QC+ 20, QC+ 21, PL21, with respect to ciphertext
generation, trapdoor generation, and test algorithm.

Number of Keywords

Tr
ap

do
or

 G
en

er
at

io
n

Ti
m

e (
s)

0

5

10

15

20

25

50050 100 150 200 250 300 350 400 450

23.48005

23.07834

18.43454

18.34613

0.06505

HL 17
QC+20
QC+21

PL 21
Ours

Figure 5: -e cost of trapdoor.

12 Security and Communication Networks

Furthermore, this experiment also used random keywords.
We have the smallest computation costs of the five schemes
based on Figures 4–6. -e main reason is that our scheme
does not need bilinear pairing operation, which can save a lot
of computing overhead. In the ciphertexts generation al-
gorithm, Pan and Li [41] computational overhead is about
420 times that of ours. Our trapdoor generation algorithm
has a computation overhead 282 times higher than Qin
et al.’s [20]. In the test algorithm, Qin et al.’s [21] compu-
tational overhead is about 25 times that of ours.

7. Conclusion

-is paper proposes a blockchain-based public key au-
thenticated encryption with keyword search for cloud
computing scheme.-e scheme can not only resist the IKGA
and minimize the leakage of retrieval information, but also
realize the functions of multi-keyword retrieval, result in-
tegrity verification and so on. At the same time, the security
analysis and theoretical analysis of BB-PAEKS are carried
out. -en, we evaluate its performance by simulation

experiments. -e disadvantage is that our scheme uses
bloom filter, which will lead to certain false positive events.
However, the error rate can be reduced as much as possible
by selecting appropriate parameters. Our future work will
focus on the design of lightweight multi-user public key
searchable encryption schemes.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare no conflicts of interest.

Acknowledgments

-e work was supported by the National Key Research and
Development Program of China (No. 2021YFA1000600) and

Number of Keywords

Te
st

Ti
m

e (
s)

9.716352

9.719285

0

2

4

6

8

10

12

500100 150 200 250 300 350 400 450

5.087386

4.772342

0.190541

HL 17
QC+20
QC+21

PL 21
Ours

Figure 6: -e cost of the test.

Security and Communication Networks 13

the National Natural Science Foundation of China (Nos.
U21A20466, 62172307, 61972294, 61932016).

References

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceedings of the 2000
IEEE Symposium on Security and Privacy. S&P 2000,
pp. 44–55, IEEE, Berkeley, CA, USA, May 2000.

[2] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Proceedings
of the International Conference on theeory and Applications
of Cryptographic Techniques, pp. 506–522, Springer, Heidel-
berg, Germany, June 2004.

[3] H. S. Rhee, W. Susilo, and H.-J. Kim, “Secure searchable
public key encryption scheme against keyword guessing at-
tacks,” IEICE Electronics Express, vol. 6, no. 5, pp. 237–243,
2009.

[4] P. Xu, H. Jin, Q. Wu, and W. Wang, “Public-key encryption
with fuzzy keyword search: Public-Key Encryption with Fuzzy
Keyword Search: A Provably Secure Scheme under Keyword
Guessing Attack provably secure scheme under keyword
guessing attack,” IEEE Transactions on Computers, vol. 62,
no. 11, pp. 2266–2277, 2013.

[5] Q. Huang and H. Li, “An efficient public-key searchable
encryption scheme secure against inside keyword guessing
attacks,” Information Sciences, vol. 403, pp. 1–14, 2017.

[6] P. Xu, S. He, W. Wang, W. Susilo, and H. Jin, “Lightweight
searchable public-key encryption for cloud-assisted wireless
sensor networks,” IEEE Transactions on Industrial Infor-
matics, vol. 14, no. 8, pp. 3712–3723, 2018.

[7] S. Lai, S. Patranabis, A. Sakzad et al., “Result pattern hiding
searchable encryption for conjunctive queries,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 745–762, New York, NY, USA,
October 2018.

[8] B. Chen, L.Wu, H.Wang, L. Zhou, and D. He, “A blockchain-
based searchable public-key encryption with forward and
backward privacy for cloud-assisted vehicular social net-
works,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 6, pp. 5813–5825, 2020.

[9] P. Xu, S. Tang, P. Xu, Q. Wu, H. Hu, andW. Susilo, “Practical
multi-keyword and boolean search over encrypted e-mail in
cloud server,” IEEE Transactions on Services Computing,
vol. 14, no. 6, pp. 1877–1889, 2021.

[10] M. Azraoui, K. Elkhiyaoui, M. Önen, and R. Molva, “Publicly
verifiable conjunctive keyword search in outsourced data-
bases,” in Proceedings of the 2015 IEEE Conference on Com-
munications and Network Security (CNS), pp. 619–627, IEEE,
Florence, Italy, September 2015.

[11] Z. Wan and R. H. Deng, “Vpsearch: achieving verifiability for
privacy-preserving multi-keyword search over encrypted
cloud data,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 6, pp. 1083–1095, 2018.

[12] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren,
“Searching an encrypted cloud meets blockchain: a decen-
tralized, reliable and fair realization,” in Proceedings of the
IEEE INFOCOM 2018-IEEE Conference on Computer Com-
munications, pp. 792–800, IEEE, Honolulu, HI, USA, April
2018.

[13] H. Li, H. Tian, F. Zhang, and J. He, “Blockchain-based
searchable symmetric encryption scheme,” Computers &
Electrical Engineering, vol. 73, pp. 32–45, 2019.

[14] Y. Guo, C. Zhang, and X. Jia, “Verifiable and forward-secure
encrypted search using blockchain techniques,” in Proceedings
of the ICC 2020-2020 IEEE International Conference on
Communications (ICC), pp. 1–7, IEEE, Dublin, Ireland, June
2020.

[15] W. Xu, J. Zhang, Y. Yuan, X. Wang, Y. Liu, and M. I. Khalid,
“Towards efficient verifiable multi-keyword search over
encrypted data based on blockchain,” PeerJ Computer Science,
vol. 8, p. e930, 2022.

[16] J. Baek, R. Safavi-Naini, andW. Susilo, “Public key encryption
with keyword search revisited,” in Proceedings of the Inter-
national Conference on Computational Science and its Ap-
plications, pp. 1249–1259, Springer, Heidelberg, Germany,
June 2008.

[17] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, “Off-line
keyword guessing attacks on recent keyword search schemes
over encrypted data,” in Proceedings of the Workshop on
Secure Data Management, pp. 75–83, Springer, Heidelberg,
Germany, October 2006.

[18] W. C. Yau, S. H. Heng, and B. M. Goi, “Off-line keyword
guessing attacks on recent public key encryption with key-
word search schemes,” in Proceedings of the International
Conference on Autonomic and Trusted Computing, pp. 100–
105, Springer, Heidelberg, Germany, July 2008.

[19] C. Hu and P. Liu, “An enhanced searchable public key en-
cryption scheme with a designated tester and its extensions,”
Journal of Computers, vol. 7, no. 3, pp. 716–723, 2012.

[20] B. Qin, Y. Chen, Q. Huang, X. Liu, and D. Zheng, “Public-key
authenticated encryption with keyword search revisited: Se-
curity model and constructions,” Information Sciences,
vol. 516, pp. 515–528, 2020.

[21] B. Qin, H. Cui, X. Zheng, and D. Zheng, “Improved security
model for public-key authenticated encryption with keyword
search,” in Proceedings of the International Conference on
Provable Security, pp. 19–38, Springer, New York, NY, USA,
May 2021.

[22] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive
keyword search over encrypted data,” in Proceedings of the
International Conference on Applied Cryptography and Net-
work Security, pp. 31–45, Springer, Heidelberg, Germany, July
2004.

[23] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proceedings of the eory of
Cryptography Conference, pp. 535–554, Springer, Heidelberg,
Germany, February 2007.

[24] Y. H. Hwang and P. J. Lee, “Public key encryption with
conjunctive keyword search and its extension to a multi-user
system,” in Proceedings of the International Conference on
Pairing-Based Cryptography, pp. 2–22, Springer, Heidelberg,
Germany, June 2007.

[25] M. Wen, R. Lu, X. Liang, J. Lei, and X. S. Shen, “Range query
over encrypted metering data for financial audit,” in Pro-
ceedings of the Querying over Encrypted Data in Smart Grids,
pp. 51–75, Springer, New York, NY, USA, April 2014.

[26] M. A. Abdelraheem, C. Gehrmann, M. Lindström, and
C. Nordahl, “Executing boolean queries on an encrypted
bitmap index,” in Proceedings of the 2016 ACM on Cloud
Computing Security Workshop, pp. 11–22, New York, NY,
USA, October 2016.

[27] J. Katz, A. Sahai, and B. Waters, “Predicate encryption sup-
porting disjunctions, polynomial equations, and inner
products,” Journal of Cryptology, vol. 26, no. 2, pp. 191–224,
2013.

14 Security and Communication Networks

[28] B. Zhang and F. Zhang, “An efficient public key encryption
with conjunctive-subset keywords search,” Journal of Network
and Computer Applications, vol. 34, no. 1, pp. 262–267, 2011.

[29] C. Song, X. Liu, and Y. Yan, “Efficient public key encryption
with field-free conjunctive keywords search,” in Proceedings of
the International Conference on Trusted Systems, pp. 394–406,
Springer, Heidelberg, Germany, December 2014.

[30] Y. Zhang, Y. Li, and Y.Wang, “Efficient conjunctive keywords
search over encrypted e-mail data in public key setting,”
Applied Sciences, vol. 9, no. 18, p. 3655, 2019.

[31] Y. Zhang, L. You, and Y. Li, “Tree-based public key encryption
with conjunctive keyword search,” Security and Communi-
cation Networks, vol. 2021, pp. 1–16, 2021.

[32] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren, “Verifiable
searchable symmetric encryption from indistinguishability
obfuscation,” in Proceedings of the 10th ACM Symposium on
Information, computer and communications security,
pp. 621–626, New York, NY, USA, April 2015.

[33] B. Wang and X. Fan, “Lightweight verification for searchable
encryption,” in Proceedings of the 2018 17th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing
and Communications/12th IEEE International Conference on
Big Data Science and Engineering (TrustCom/BigDataSE),
pp. 932–937, IEEE, New York, NY, USA, August 2018.

[34] S.-F. Sun, R. Steinfeld, S. Lai et al., “Practical non-interactive
searchable encryption with forward and backward privacy,” in
Proceedings of the 2021 Network and Distributed System Se-
curity Symposium. Internet Society, June 2021.

[35] T. Suga, T. Nishide, and K. Sakurai, “Secure keyword search
using bloom filter with specified character positions,” in
Proceedings of the International Conference on Provable Se-
curity, pp. 235–252, Springer, Heidelberg, Germany, July
2012.

[36] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[37] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Achieving
Efficient and Privacy-Preserving Set Containment Search over
Encrypted Data,” IEEE Transactions on Services Computing,
vol. 2021, Article ID 3065240, 9 pages, 2021.

[38] Q. Song, Z. Liu, J. Cao, K. Sun, Q. Li, and C. Wang, “Sap-sse:
SAP-SSE: Protecting Search Patterns and Access Patterns in
Searchable Symmetric Encryptionrotecting search patterns
and access patterns in searchable symmetric encryption,”
IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1795–1809, 2021.

[39] E. J. Goh, Secure Indexes, Cryptology ePrint Archive, 2003.
[40] https://pages.cs.wisc.edu/%20cao/papers/summary-cache/

node8.html.
[41] X. Pan and F. Li, “Public-key authenticated encryption with

keyword search achieving both multi-ciphertext and multi-
trapdoor indistinguishability,” Journal of Systems Architec-
ture, vol. 115, Article ID 102075, 2021.

Security and Communication Networks 15

https://pages.cs.wisc.edu/%20cao/papers/summary-cache/node8.html
https://pages.cs.wisc.edu/%20cao/papers/summary-cache/node8.html

