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Ethereum, a typical application of blockchain technology, has attracted extensive attention from all walks of life since its release.
Owing to imperfections in existing supervision technology, illegal and criminal activities on blockchain platforms are becoming
increasingly frequent. &e most typical Ethereum fraud is the Ponzi scheme, which causes blockchain investors to lose millions of
assets and severely impacts social development. Currently, Ponzi scheme detection primarily focuses on machine learning and
data mining. However, existing detectionmethods still have two problems in data imbalance processing and feature extraction: (1)
data enhancement using an oversampling algorithm produces noise and (2) feature redundancy existing in extracted feature data.
&e SMOTEENN algorithm is introduced to solve data imbalance. &e PD-SECR method, the Convolutional Neural Network
(CNN) feature extraction, and random forest (RF) classification models are used for detection, but the two models are inde-
pendently trained. &e results show that the detection method proposed in this study is more suitable for the Ethereum
Ponzi scheme.

1. Introduction

Blockchain is a list of connected blocks in chronological
order. In 2008, Satoshi Nakamoto proposed a new type of
distributed ledger [1]. Blockchain, the underlying technol-
ogy of Bitcoin, is decentralized, immutable, and traceable.
Since its rise, blockchain technology has attracted the at-
tention of all walks of life due to its unique characteristics
[2]. A smart contract is a communication protocol that
allows participants who do not trust each other to interact
[3]. However, the lack of a secure and enforceable envi-
ronment has hindered the development of smart contracts.
&e blockchain platform provides a trusted execution en-
vironment for smart contracts. Because of the program-
mability of intelligent contracts, various business functions
can be realized by writing smart contracts.

Ethereum is a typical blockchain platform with smart
contracts. Once the contract is successfully deployed on
Ethereum, it is executed automatically without human in-
tervention [4–6]. Although it avoids tampering with the
contract code to a certain extent, it can also be used by

criminals. Every new technology has various security issues,
and blockchain technology is no exception. Studies have
found that transaction fraud (e.g., Ponzi schemes and
phishing accounts) is a typical security problem on block-
chain platforms. Researchers investigated fraud from 2013 to
2014 and found that the financial loss caused by fraud was as
high as $7 million in a year [7]. With the continuous im-
provement of blockchain technology, the complexity of
related technologies is also increasing, resulting in high
technical barriers between blockchain and investors.

By exaggerating the advantages of blockchain, criminals
take advantage of the high technical barriers between
blockchain and investors to induce investors to invest [8, 9].
&e Ponzi scheme is an old form of investment fraud.
Figure 1 shows the return mechanism of a Ponzi scheme
masquerading as a high-yield cryptocurrency. Ponzi
schemes are now reappearing in society as blockchain-based
schemes [7, 10–15]. Ethereum, the preferred platform for
blockchain fraud, still lacks an adequate regulatory mech-
anism. &erefore, Ponzi scheme detection in Ethereum has
become a hot topic in current research.
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Early studies focused on the Bitcoin platform [10–12],
and Ponzi scheme detection on Ethereum is still lacking.
Since 2018, the Ponzi scheme detection research on
Ethereum has gradually increased. Existing Ethereum Ponzi
scheme detection methods mostly rely on machine learning
and data mining technology [14, 15, 15–18]. Although re-
ducing the burden of manual analysis and detection, existing
detection methods still have the following problems and
challenges: (1) data enhancement processing using an
oversampling algorithm produces noise, (2) the complexity
of feature extraction methods and redundancy of feature
data, and (3) the detection performance of the detection
model can still be improved.

Given these challenges, this study proposes a PD-SECR
detection method that introduces the SMOTEENN-mixed
sampling algorithm to improve the combination model of
CNNs and RFs. To test the model’s credibility, we select
several indicators, precision, recall, and F1-score, commonly
used in anomaly detection for evaluation. &e main con-
tributions of this study are as follows:

(i) &e SMOTEENN algorithm is introduced for data
enhancement to avoid data repetition after data
enhancement.

(ii) &e automatic extraction of key features using CNN
to avoid feature redundancy.

(iii) CNN and RF are fused for classification detection,
which improves the detection accuracy of the
model.

&e remainder of this paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we introduce
the preliminaries. &e fourth section describes the proposed
detection method in detail. Section 5 presents specific ex-
perimental steps and performance evaluation comparisons.
We summarize this study and our next research plan in the
last quarter.

2. Related Work

With the rapid development of blockchain, the technical
difficulty has also risen. Technical barriers between invest-
ment users and blockchain make it harder for investors to
spot frauds like Ponzi schemes. In 2012, Moore et al. [19]
provided a macro-definition of the high-yield investment
program (HYIP), an online Ponzi scheme, and elaborated on

the method of fraud in the Ponzi scheme. &e advent of
blockchain has had a significant impact on various fields.
Meanwhile, Blockchain platforms provide a possible avenue
for the diffusion of trading fraud proliferation. &e trading
fraud, based on blockchain, instantly swept the entire In-
ternet. Especially, a Ponzi scheme fraud detection boom was
set off. Ponzi schemes focus on Bitcoin and Ethereum, the
two most widely used trading platforms. &erefore, in this
subsection, we describe our related research from the fol-
lowing three aspects: Bitcoin and Ethereum Ponzi scheme
detection and CNN_RF feasibility analysis.

2.1. Bitcoin Ponzi Scheme Detection. In 2015, Vasek and
Moore [7], for the first time, conducted an empirical analysis
of fraud based on Bitcoin: Operations with fraudulent intent
established. By amalgamating reports gathered by voluntary
vigilantes and tracked in online forums, 192 scams were
identified and grouped into four categories: Ponzi schemes,
mining scams, scam wallets, and fraudulent exchanges. &e
significant finding of this work showed that bitcoin trading
scams were diverse. Besides, this study provided a labeled
dataset of bitcoin fraud for later researchers to study fraud
detectionmethods. At the same time, intended to analyze the
factors behind the success of Ponzi schemes in Bitcoin
transactions, Vasek and Moore [10] identified 1,780 scams
by searching 11,424 threads on https://bitcointalk.org.
&rough survival analysis, they identified factors that in-
fluence the persistence of fraud. Due to the low timeliness of
manual examination and detection, researchers gradually
introduced machine learning technology into bitcoin
transaction fraud detection. In 2016, Monaco et al. [11]
investigated using trimmed k-means, capable of simulta-
neous clustering fraud detection objects in multi-variable
settings, to detect fraudulent activities in bitcoin transac-
tions. Unsupervised learning, while reducing the need for
labeled data, also reduces detection accuracy. In 2018,
Bartoletti et al. [12] used data mining technology to mine
features from real-world Ponzi scheme data and construct
feature datasets, using classical machine learning algorithms
for anomaly detection. In 2021, Nerurkar et al. [13] proposed
a decision tree integration algorithm to solve the problem of
limited categories in identifying and detecting illegal users in
Bitcoin transactions.

2.2. Ethereum Ponzi Scheme Detection. In 2018, Chen et al.
[14] used the XGBoost algorithm to realize the automatic
detection of an intelligent Ponzi scheme. However, they
ignored the problem of unbalanced sample data, resulting in
the low generalization ability of the trained model. In 2021,
Bartoletti et al. [15] comprehensively investigated Ponzi
schemes on Ethereum, analyzing their behavior and impact
from various viewpoints. It can be divided into four cate-
gories (i.e., tree-shape schemes, chain-shape schemes, wa-
terfall schemes, and handover schemes) according to
different payment methods. &ey provided a comprehensive
information reference for follow-up research. In 2021,
Zhang et al. [16] considered the imbalance of positive and
negative sample proportions and introduced the
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Figure 1: Cryptocurrency Ponzi scheme return mechanism.
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SMOTE+Tomek algorithm to improve the LightGBM
model’s detection accuracy. However, these two detection
methods [14, 16] have problems with target leakage and
prediction deviation. In the same year, Fan et al. [17]
proposed a detection method, AI-SPSD, similar to the
CaBoost algorithm, to solve the problems of target leakage
and prediction offset ignored in previous studies. For data
imbalance processing, they introduced the Border-
line_SMOTE2 algorithm [18] for processing. Although the
influence of boundary nodes on the detection results is
considered, the problem of processing data duplication is
still not considered. Although Zhang et al. considered the
issue of data duplication, the data cleaning operation of the
SMOTE+Tomke algorithm only finds the cleaning of
multiple samples, which quickly leads to a significant de-
viation from the actual data and is unconvincing. Due to the
unique effect of deep learning in security detection, re-
searchers gradually introduced deep learning technology to
detect Ethereum Ponzi schemes. In 2021, Luo et al. [20]
converted the contract bytecode into a grayscale image. Due
to the varying length of the bytecode, they introduced a
spatial pooling algorithm to improve the convolutional
neural network to handle grayscale images with inconsistent
sizes better. Although the detection methods are novel, they
ignore the problem of model overfitting caused by data
imbalance. Wang et al. [21] introduced the SMOTE data
enhancement algorithm to improve the LSTM model,
eliminate the restriction of the machine learning model, and
enter the detection stage of deep learning. Although they
have paid attention to the data imbalance problem, SMOTE
data augmentation is prone to data duplication, which is not
conducive to detecting actual data by the detection model.

2.3.CNN_RFFusionFeasibilityAnalysis. &e effective fusion
of convolutional neural networks and random forest models
is also a significant challenge for this study. As we all know,
CNN is the most widely used image classification, and more
and more researchers migrate it to text classification because
of its robust feature extraction function. In 2018, Wang et al.
[22] proposed a densely connected CNN with multi-scale
feature attention for text classification. &is research solves
the problem of combining larger-scale features with smaller-
scale features, demonstrating the power of CNN’s feature
extraction capabilities. In 2019, Guo et al. [23] proposed a
novel term weighting scheme combined with word em-
beddings to improve the classification performance of
CNNs. Today, convolutional neural networks are widely
used in image processing and text classification. &erefore,
researchers started to consider the feasibility of using neural
networks in conjunction with machine learning algorithms.
So far, many methods of using neural networks in combi-
nation with machine learning algorithms have appeared. In
the paper, we focus on the research and discussion of the
advantage of combining convolutional neural networks and
random forests. In 2020, Yang et al. [24] proposed a novel
crop classification method based on optimal feature selec-
tion (OFSM) and a hybrid convolutional neural network
random forest (CNN-RF) combined. To solve the problem of

extracting useful information from massive data to balance
classification accuracy and processing time. In 2021, Kwak
et al. [25] proposed a CNN-RF joint detection method that
combines the automatic feature extraction ability of CNN
with the excellent discrimination ability of the RF classifier,
aiming at the problem of limited input data for crop
classification.

Inspired by the research discussion above, this paper
proposes the PD-SECR approach, a Ponzi scheme detection
method based on mixed sampling-based CNN-RF. Account
features and opcode features are extracted from the con-
tract’s internal and external transaction information and the
decompiled opcode of the running bytecode after the
contract is deployed. Combining account features and
opcode features is used to detect Ethereum Ponzi schemes.
At the same time, we consider the data duplication after the
training data is processed by data augmentation and solve it
through mixed sampling. &e processed dataset is used for
crucial feature extraction using a CNN model, and then a
random forest classifier is used for classification detection.

3. Preliminaries

&is section introduces some of the relevant knowledge
covered by the research, such as Ethereum, smart contracts,
and Ponzi schemes.

3.1. Ethereum and Contracts. Ethereum is an innovation that
applies the underlying technology of Bitcoin to computing.
Like Bitcoin, it uses blockchain technology and peer-to-peer
(P2P) networks to maintain a shared computing platform. A
smart contract, first proposed by [26], is defined as a set of
computer programs that implement the terms of the contract.
Smart contracts allow trusted and traceable transactions
without a trusted third party. However, the development of
smart contracts has been severely hampered by a lack of a
reliable enforcement environment. In 2013, Buterin [27]
published a white paper on Ethereum.&e Ethereum platform
provides a reliable execution environment for smart contracts
and promotes the further development of smart contracts.

Since the introduction of smart contracts into the
blockchain, the application of blockchain technology has
extended from the financial field to other fields [28–31].
Blockchain offers decentralized solutions for all domains. Since
then, society has stepped into the blockchain 3.0 era of Smart
IoT. In addition, yellow paper of Ethereum gives a complete
list of opcodes corresponding to the bytecode. When a smart
contract is deployed to the Ethereum platform and compiled
into the corresponding bytecode, an available decompiler tool
can decompile the corresponding opcodes from bytecodes. It
significantly facilitates our subsequent research.

3.2. Ponzi Scheme. &e Ponzi scheme is a typical investment
fraud in the financial field, known as “robbing Peter to pay
Paul” in China. In short, a Ponzi scheme uses money from
new investors to pay interest or provide short-term returns
to earlier investors. It is fraudulent means, and scammers
make money from it.
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Due to the sizeable technical barrier between blockchain
technology and investors, many investors believe that a
smart contract project with continuous operation and in-
come does not have fraud risk. However, any emerging
technology is vulnerable to fraud, and the anonymity of its
sponsors makes smart contracts particularly difficult to fi-
nancially regulate.

Today, malicious speculators exaggerate blockchain’s
unique features to attract investors to invest, and embed
Ponzi scheme structures in the contract code to amass
money. In this regard, we summarize several characteristics
of the Ponzi scheme.

(i) &ere are bombastic descriptions of blockchain’s
features on the project website (if any). Exploit high-
reward risk-free false advertising to attract investors
without providing important information, such as
the project operator.

(ii) Investors’ returns are mainly supported by the
capital invested in by new investors, without real
technical support for the project.

(iii) Ethereum contract code contains a hierarchy, a
return mechanism in which new investors pay fees
to early investors.

4. PD-SECR Detection Method

In this section, we introduce the proposed PD-SECR de-
tection method. It includes the overall process, feature ex-
traction, data preparation based on the SMOTEENN
algorithm, and model training.

4.1. Overview of the Entire Work Flow. As illustrated in
Figure 2, we give the overall framework of the PD-SECR
approach and get transaction information and contract
compiled bytecode from Ethereum.io. Corresponding ac-
count features are extracted from transaction information
through related calculations. Using a decompiler disas-
sembles bytecode into operation code and builds code
features by calculating opcode call frequency. Our original
dataset consists of account features and code features.
Owing to the severe imbalance of the sample data, in order
to solve, we introduce the SMTOEENN data-imbalance
processing algorithm.&e SMOTEENN not only deals with
data imbalance problems but also can avoid data dupli-
cation.&e processed data were then divided into a training
set and test set at a ratio of 4 : 1. First, we constructed a CNN
feature extraction model consisting of three convolution
layers and two fully connected layers to extract key data
features from the datasets. &e CNN extracts data features
input into the RF model for training the classification
model. Test sets evaluate the model’s performance when
training is complete. To facilitate comparisons with other
detection method models, three performance indicators,
precision, recall rate, and F1-score, are selected to evaluate
the model.

4.2. Feature Selection. &is study selects 16 features, in-
cluding nine opcode features and seven account features,
which benefit contract identification in Ponzi schemes. &e
following describes the opcode and account features in
detail.

4.2.1. Opcode Feature. An Ethereum intelligent contract can
be forced to execute if the default execution conditions are
met. &erefore, a fraudulent mechanism is often included in
the code structure of a Ponzi scheme contract. &e opcodes
also characterize the underlying problems of the contracts.
To effectively distinguish Ponzi scheme contracts and
normal contracts in the real world, this paper analyzes the
types and frequencies of contract opcodes and extracts
features from contract codes. &is paper counts the fre-
quency of the appearance of different opcodes in the smart
contract as the opcode features. As shown in Figure 3, we
selected the normal contract with ID 0xd07ce4329-
b27eb8896c51458468d98a0e4c0394c and Ponzi scheme
contract with ID 0xa9fa83d31ff1cfd14b7f9d17-
f02e48dcfd9cb0cb and extracted the relevant opcode fea-
tures from the source code of the contract for visual analysis.

As shown in Figure 3, there is a significant difference
between the Ponzi scheme smart contract and the normal
contract opcodes without considering opcodes that occur
most frequently, such as PUSH, DUP, and SWAP. &e most
crucial difference is that the Ponzi scheme contract contains
more threatening function codes (e.g., CALLER, EXP, etc.)
than the normal contract. &e analysis above shows that
opcode features may be viable for detecting Ponzi scheme
contracts.

4.2.2. Account Features. Ponzi scheme contracts on
Ethereum have some differences in account trading char-
acteristics compared to normal contracts. In particular, there
are apparent differences in the circulation process of the
Ether in contract transactions. &rough manual verification,
the account characteristics can be summarized as follows:

Only a few early contract participants received a high
percentage of returns, with almost all the returns
concentrated in the first two contract participants.
Specifically, the creators of smart contracts receive the
highest returns.
Keeping low balance in many Ponzi scheme intelligent
contracts compared to the normal smart contract,
generally taking the operation of the rapid distribution
of the investment obtained.

Ethereum accounts are divided into external and internal
accounts (addresses); for example, when a user creates an
address, it is called an external address because it is used to
access the blockchain from outside. When we deploy a smart
contract to Ethereum, we generate an internal address that
acts as a pointer to the running blockchain program
(deployed smart contract). We can locate it externally as a
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function to be invoked, or internally such that another
deployed contract can invoke the function on the deployed
contract. &erefore, we extract seven representative char-
acteristics from external and internal account transactions as
another manner of identifying a Ponzi scheme contract [7].

Investments_num: &e number of investments is re-
ceived per contract. Assuming that each contract has n
transactions, each trade has a transaction account
address that initiates the transaction. As shown in
Figure 4(a), “from” is the sending account address of
the transaction, and then the calculation formula is as
follows:

Investments_num � 
n

i

1i
, 1≤ i≤ n. (1)

Payments_num: &e number of transaction payouts
per contract. Assuming each contract has p spending,
each spending transaction has an account address that
receives transaction funds. As shown in Figure 4(b),
“to” is the account address that accepts transactions.
&en, the calculation formula is as follows:

Payments_num � 

p

j

1j
, 1≤ j≤p. (2)

Maxpay: It is the maximum number of transactions that
a contract account can pay to the same recipient account.
Assuming that there are Texpenditures in each contract,
and the funds of which I expenditures flow to account S,
the Maxpay calculation formula is as follows:

Maxpay �

I, if I≥ othermax,

othermax, if I< othermax,

0, if T � 0,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where othermax means that in addition to spending I
transaction to account S, the maximum number of
transactions paid to the same account.
Rr: Percentage of recipients who have invested before
payment. For example, the account address of “to” in
Figure 4(b) also exists in “from” in Figure 4(a) and to.
timestamp>from. timestamp, and then add 1 to the
counter count. &erefore, Rr is the ratio of count to
contract expenditure, and the formula is as follows:

Rr �

count
Payments_num

, if Payments_num≠ 0,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where Payments num means the number of transac-
tion payouts per contract.
Pr: Percentage of investors who received at least one
payment. &e calculation method is the same as Rr, but
the accumulation conditions of the counter are different.
When the “from” address in Figure 4(a) appears once or
more in Figure 4(b), the counter will increase by 1.
&erefore, the calculation formula of Pr is also formula (4).
A_bal: &e balance of the contract account. As shown
in Figure 5, the account balance after the contract is
traded is obtained from the “Balance” of the contract
account information.
D_ind: It is the quantitative difference between pay-
ments and investments made by all participants in the
contract. Assuming that the smart contract has q

participants, V is the vector representation of the length
of q, and mi, ni represent the investment and payment
transaction times of the ith participant, respectively. To
calculate the deviation index, we first calculated Vi �

(ni − mi) to obtain the difference between the number

Etherscan.io
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Is-Ponzi scheme
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Figure 2: Detection method architecture diagram.
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of investment and payment transactions of the par-
ticipant. &en,

D ind � f(x) �
0, if Vi � 0 or q≤ 2,

s, q> 2,
 (5)

where s is the skewness of the vector Vi. Typically, the
D ind of Ponzi scheme contracts is negative, and most
participants’ investments exceed their returns.

Table 1 shows the mean, median, and standard de-
viation of the account trading characteristics extracted
from external and internal trading data. We compare the
difference in account characteristics between the Ponzi
scheme and normal contracts according to the following
table.

As can be seen from Table 1, there are apparent dif-
ferences between the Ponzi scheme and normal contracts
in these seven account characteristics. For example, the
balance A_bal of a Ponzi scheme contract is significantly
different from that of a normal contract. Because part of
the contract balance of the Ponzi scheme is returned to the
participants as a reward, the contract balance of the Ponzi
scheme is always low. From Investment_num, it can be
seen that the mean value of Ponzi scheme contracts is
much lower than that of normal contracts. &is is because
Ponzi scheme contracts rely on the investment of new
investors to pay the return fees of previous investors.
&us, the number of subsequent and former investors in
Ponzi scheme contracts gradually decreases. In conclu-
sion, these seven characteristics clearly reflect the
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Figure 3: Opcode type ratio of normal contract (a) and Ponzi scheme contract (b).
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difference between the Ponzi scheme and a normal
contract, which can be used as an effective basis for
detection.

4.3. Data Preparation Based on SMOTEENN. &e dataset Q

used in this study consists of account features and opcode
features. Assuming that the dataset contains account and
code characteristic data of M contracts, then denote the
dataset as Q � (xi, yi)|i � 1, 2, 3 · · · , M , where xi repre-
sents the combined feature vector of the account and opcode
feature of the ith contract and yi represents the class label of

the ith contract. When yi � 0, the contract category of the
combined feature is a normal contract; on the contrary,
when yi � 1, the contract category of the combined feature is
a Ponzi scheme contract. Here, our normal dataset is rep-
resented as Qn, and the abnormal dataset is represented as
Qf. &e “data-description” in Section 5.1 shows that the
samples of the two categories differ significantly, which is
Qn≫Qf.

&e SMOTEENN-mixed sampling algorithm is intro-
duced to solve the above data imbalance problem. Previ-
ously, oversampling algorithms are used to handle data
imbalance, but the oversampling algorithms suffer from data
overlap problems. &erefore, we use a combination of
oversampling and data cleaning for data processing, which
can solve data imbalance overlap after oversampling.

Specifically, first, we use the SMOTE algorithm to
generate a new minority class Qf sample to obtain the
expanded dataset W. &e formula for the sample generation
is as follows:

xnew � xi + xl − xi(  × ε, (6)

where xi means a sample point in the minority class, xl

means a sample point randomly selected from the K-nearest
neighbors, and ε ∈ [0, 1] is a random number.

Figure 5: Account information of contract 0x0f26c26318872e8fa85dee5d30cba45ed53b3d3e.

Figure 4: External (a) and internal (b) transaction information for 0x0f26c26318872e8fa85dee5d30cba45ed53b3d3e.

Table 1: Statistics of account characteristics of Ponzi scheme
contracts (left) and normal contracts (right).

Ponzi scheme
contracts Normal contracts

Mean Medium Std Mean Medium Std
Rr 0.21 0.60 0.51 0.10 0.00 0.38
A_bal 3.06 0.01 1.6e 55.86 0.00 1.9e
Investments_num 44.85 7.00 1.1e 589.94 5.00 2.1e
Payments_num 263.61 1.00 1.4e 136.98 16.00 4e.00
Pr 0.32 0.80 0.51 0.11 0.00 0.41
Maxpay 68.25 6.00 1.3e 149.71 1.00 8.9e
D_ind 0.14 0.00 0.76 -0.04 0.00 0.67
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Second, we utilize the Edited Nearest Neighbor (ENN)
algorithm to clean the dataset W to get a new dataset. &e
core idea of ENN is to employ the K-nearest neighbor al-
gorithm to calculate the categories of features. &e sample is
eliminated if the predicted result is inconsistent with the
actual category label. For example, W � (sj, tj)|j �

1, 2, · · · , N} serves as the input dataset for ENN, where
sj ∈ S⊆Rn is an eigenvector of instances and tj ∈ T � 0, 1{ } is
the category label. According to the distance measure, the k
points nearest to s are denoted by Nk(s). According to the
classification decision rule in Nk(s), the category t that
determines s is computed by the following formula:

t � argmaxcg


sj∈Nk(s)

I tj � cg , j � 1, 2, · · · , N,
(7)

where I is the indicator function, that is, when tj � cg, I � 1;
and cg means the category label 0 or 1. If t is equal to the
actual class label tj of sj, the data will be retained; otherwise,
the data is excluded from dataset W.

Finally, the detection model is trained with the cleaned
dataset W as input. Data preparation is based on SMO-
TEENN, as Algorithm 1 shows.

4.4. CNN-RF. &e effective fusion of convolutional neural
networks and random forest models is also a significant
challenge for this study. As we all know, CNN is the most
widely used image classification, and more and more re-
searchers migrate it to text classification because of its robust
feature extraction function. In this study, we are also in-
spired by this and try to fuse CNN with a classic machine
learning model—random forest. When studying model
fusion, we found that neural network and machine learning
algorithm models cannot be embedded and fused in the
model structure like other deep learning models. &erefore,
in this study, we train CNN and RF separately and embed the
trained CNN feature extraction model into the training and
testing of the RF model. &e embedding of the CNN feature
extraction model improves the training and detection speed
of the RF model.

In this study, the CNN-RF is used to model the iden-
tification of Ponzi scheme contracts, as shown in Algorithm
2. In essence, identifying and detecting Ponzi scheme
contracts is a dichotomy problem. &e optimal scheme is
selected based on previous experience and existing datasets.
Finally, CNN is chosen as the feature extractor and RF as the
classifier to train the joint model CNN-RF. As a feature
extraction model, the CNN can effectively avoid redundancy
and automatically select the most critical and decisive fea-
tures from the 16 selected feature species. In addition, be-
cause the sample size of the dataset we used is small, the
CNN classification algorithm can easily lead to model
overfitting and reduce the generalization ability.

&erefore, we only use CNN to extract critical features,
and the features extracted by CNN are used as input data to
train the RF classification model. &e RFmodel has the best

effect on binary classification detection. &erefore, the
proposed joint CNN and RF detection method improves
the model’s generalization ability and makes it more
suitable for the identification and detection of the Ether-
eum Ponzi scheme. Figure 6 illustrates the model
construction.

Figure 6 illustrates the principle of the model in detail:

(1) CNN feature extraction: &e feature extraction
process is shown in Figure 7.&e central role of CNN
in this study is feature extraction, so our CNNmodel
structure consists only of convolutional and fully
connected layers.
First, input the pre-processed feature sequence
matrix with n× 1 as En:1 and then pad the feature
sequence to perform the convolution operation
better. Second, the input feature sequence of this
study can be regarded as an n× 1 single-channel
feature map. In the single-channel convolution
calculation, each filter has a k× 1 convolution kernel.
&e filter at this time is the convolution kernel, and
they have the same dimension size. In the convo-
lution layer, to extract vital local features, J filters of
the same size are convolved on matrix En:1. &e
width of each filter window is the same as En:1; only
the height is different. &is way, the filter can obtain
the relationship of other elements in the same feature
sequence. &e convolutional neural networks learn
parameters in the convolutional kernel, and each
filter has its focus so that multiple filters can learn
various pieces of information. &e convolution
calculation formula for feature extraction is as
follows:

Cout � f 
k�n

k�0
En− k:1 × W + b⎛⎝ ⎞⎠, (8)

where W ∈ Rk×1 denotes the weight of the filter in the
convolution operation, Cout is the new feature
resulting from the convolution operation, b ∈ R is a
bias, and f is a non-linear function. Finally, the
convolutionally extracted key features are stitched
into feature map outputs using fully connected
layers.

(2) CNN model training: In the training process of the
CNN feature extraction model, the training model
with the best detection performance is saved as
best.pt, which uses key features to train the classi-
fication models more conveniently.
To further optimize the feature extraction model, we
selected the loss function (cross_entropy loss func-
tion) with the fastest weight updating speed to up-
date the weight of the model parameters. Cross-
entropy was used to evaluate the difference between
the probability distribution currently trained and
real distribution. &e smaller the loss value, the
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better the performance of the training model. &e
cross-entropy loss function formula adopted in this
study is as follows [32]:

L �

− logy, if y � 1,

− [y logy +(1 − y)log(1 − y)], if y≠ 1 and y≠ 0,

− log(1 − y), if y � 0,

⎧⎪⎪⎨

⎪⎪⎩

(9)

where y is the actual true value and y is an estimate.
For example, when y � 1, the closer y is to 1, the
smaller the loss value, and the better the feature
extraction model performance. Otherwise, the

performance of the feature extraction model
deteriorates.
In addition, we used the Adam optimizer. &e
network parameters are input into the optimizer
before model training, and the Adam algorithm are
used to calculate the gradient of the backpropagation
function. &e parameters are updated once in each
training batch and updated dynamically during
model training. Simultaneously, to improve the
learning rate of the feature extraction model, a
scheduler is also set to attenuate the learning rate.

(3) RF classification detection model training: &e
best.pt saved in the CNNmodel training and training

.

.

.
.
.
.

CNN feature
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sequence
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Figure 7: Feature extraction process of CNN.
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Figure 6: CNN-RF recognition model construction.
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dataset after partitioning was loaded into the RF
model, and the RF model was trained independently.
When RF classification model training completed,
the loaded test dataset is used to evaluate the per-
formance of the classification model.

5. Experiment

In this section, we evaluate the performance of the PD-
SECR method using a series of experiments. First, we
established evaluation indicators and verified the feasi-
bility of the proposed model using test datasets. &e results
show that the proposed method is superior to previous
methods.

5.1. Data Description. &is paper selects a validated sample
dataset from previous studies [10], which provides some
contract addresses and their categories. It crawls data from
Ethereum.io according to the contract address. Calculate
and process the acquired data, and filter the account and
opcode features we need. Note that the cleaned data has a
severe data sample imbalance problem, as shown in Figure 8.
&e positive and negative sample ratio is approximately 12 :
1. If a dataset with unbalanced samples trains the model, it
will lead to a significant detection bias. &erefore, data
enhancement processing is performed on the dataset to
improve detection accuracy. &e processing process is de-
scribed in detail in Section 4.3.

5.2. Parameter Settings. In the summary of feature selec-
tion, in Section 4.2, it can be concluded that our input
feature sequence has a length of 16 (that is, the 16 kinds of
combined features selected) and a width of 1 (that is, a
feature sequence), so our input feature sequence is a 16 ×1
matrix. &en, from the description of the feature extraction
process in Section 4.4, our input feature sequence is a
single-channel sequence. &at is, the filter is the convo-
lution kernel. Due to the limitation of the feature sequence
dimension, the most suitable convolution kernel size is
selected as 3×1 in this experiment. &erefore, in the fol-
lowing parameter adjustment experiments, the structure of
our feature extraction model and the output dimensions
and trainable parameters of each layer of features can be
observed in Figure 9.

5.2.1. Impact of Parameter Epochs. In this round of ex-
periments, we pre-set the parameters as follows: combina-
tion number� 3, test_size� 0.2, and batch_size� 25. We
continuously changed the number of training rounds,
starting from epochs� 25 and increasing it by 40 each time.
Six experiments were performed, and each experiment of the
same dataset was repeated 10 times. &e mean value was
obtained after removing the lowest and highest values.
Figure 10 shows the comparison results.

From Figure 10, the precision of the model fluctuated
with an increase in training rounds. When the epochs are 50
and 140, the accuracy of the model reaches the peak of this

experiment round. However, because too few rounds lead to
inaccurate model training, we set the epochs of the model to
140 to avoid contingency in the experiment.

5.2.2. Impact of Parameter Batch_size. Batch_size is es-
sentially a gradient descent algorithm. Batch_size deter-
mines the time required to complete each epoch and degree
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Figure 8: Sample category distribution.

Layer (type) Output Shape Param #

Conv1d-1 [–1, 1, 16] 4
ReLU-2 [–1, 1, 16] 0

Conv1d-3 [–1, 1, 16] 4
ReLU-4 [–1, 1, 16] 0

Linear-5 [–1, 8] 136
Linear-6 [–1, 2] 18

Figure 9: Output feature dimension and trainable parameters at
each layer.
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Figure 10: Impact of epochs on accuracy.
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of gradient smoothing between each iteration during deep
learning training. In this module experiment, we changed
the default parameters to epochs� 140, combination
number� 3, and test_size� 0.2. &e batch size was con-
stantly changed for each training round. Starting with a
batch_size of 10, the batch size was increased by 5 in each
round of experiments. Six experiments were conducted, and
each experiment of the same data parameter group was
repeated 10 times. One maximum and one minimum value
were removed, and their average values were obtained.
Figure 11 shows the comparison results.

From Figure 11, the precision of the model increases
with an increase in batch_size before batch_size is less than
20. However, when batch_size is greater than 20, the pre-
cision gradually decreased with an increase in batch_size; in
particular, when batch_size was greater than 30, the pre-
cision dropped sharply. When batch_size is 20, the model
has the highest accuracy. &erefore, the single-round batch
size of the model was set to 20.

5.2.3. Impact of Test Set Partition Ratio. During the training
process, the division of the test sets affects the performance
index of the model. &erefore, we tested the increase in the
accuracy by constantly changing the division ratio of the test
set. First, we fixed the epochs, batch_size, and combination
number to 140, 20, and 3, respectively. Second, we repeatedly
changed the division ratio of the test set. In this experiment,
the division ratio range of the test set was {0.1, 0.2, 0.3, 0.4,
0.5}. &e experiment of the same parameter group was
repeated 10 times each time, and the mean value was taken
after removing the lowest and highest values. Figure 12
shows the comparison results.

As shown in Figure 12, the accuracy of the training
model fluctuated when different proportions of the test sets
were divided. When the proportion of the test sets exceeded
0.2, the accuracy of the model showed a decreasing trend.
&e accuracy was the lowest when the test set ratio was 0.3.
Evidently, the accuracy rate decreases continuously with an
increase in the proportion of test_size. &erefore, the model
is the most accurate when test_size is 0.2. &erefore, we set
the scale of the test set of the model to 0.2 here.

5.2.4. Impact of Convolution Layer and Combination
Number of ReLu Function in Sequential Module. During
model construction, the performance of the model can be
debugged by changing its building blocks. &erefore, we
searched for appropriate model construction parameters by
changing the convolution layer and combination number of
ReLu functions in the sequential module. In this experiment
round, we fixed the default parameters to epochs� 140,
batch_size� 20, and test_size� 0.2. We set the value range of
the combination number of the convolution layer and ReLu
function in the sequential module to be between 1 and 6 and
conducted six experiments. &e experiment was repeated 10
times for each experiment with the same parameters; one
minimum and one maximum value were removed, and their
mean values were obtained. Figure 13 presents the com-
parison results.

Figure 13 shows that the convolution layer and com-
bination number of ReLu functions in the sequential module
also significantly influence the training index of the model.
When the number of combinations exceeds 2, the accuracy
of the model decreases entirely. Because the training dataset
is small, too many model structures lead to over-fitting.
&erefore, the combination number of the convolution layer
and ReLu function in the sequential module is set to 2, and
the detection of prediction classification is performed under
the condition that the training model is over-fitting.

In summary, after several adjustments to the experi-
mental data, the final training parameters of our model were
set as epochs� 140, batch_size� 20, test_set� 0.2, and
combination number� 2.

5.3. Performance Metric. To facilitate the performance
comparison with the Ponzi scheme contract detection and
recognition model adopted by other methods, in this ex-
periment, in addition to more intuitive training accuracy,
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verification accuracy, and test accuracy output, 3 indexes,
precision, recall, and F1-score, were used to measure the
performance of the model. &e definitions of these three
indicators are as follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1-score � 2 ×
Precision × Recall
Precision + Recall

,

(10)

whereTP represents the number of positive samples de-
tected, and the actual samples are positive samples; FP

refers to the number of samples that are actually negative
but are detected as positive; and FN represents the number
of samples that are actually positive but detected as
negative.

5.4. Approaches Performance Comparison

5.4.1. Compare with Other approaches. &is study uses the
proposed PD-SECS method to detect Ponzi scheme con-
tracts and replicates traditional machine learning classifi-
cation algorithms. For example, extreme gradient
enhancement (XGBoost), random forest (RF), lightweight
gradient enhancement decision tree (LightGBM), linear
support vector machine (LinearSVC), and decision tree
(DT) were used to compare and measure the applicability of
our proposed PD-SECS method to Ponzi scheme detection.
Precision, recall, and F1-score were used to measure the
accuracy of the above method in identifying the Ponzi
scheme contract, and Table 2 lists the results.

As shown in Table 2, compared with several traditional
machine learning models, the proposed PD-SECR method
has an obvious improvement in the three performance
evaluation indicators. In particular, recall and F1-score both
reached over 96%, which indicates that our model has ex-
cellent performance in Ethereum intelligent Ponzi scheme
detection. Second, the improvement in recall indicates that
the quotient of the number of correct samples detected by
our model method divided by the number of all correct
samples is high, that is, the number of correct samples
detected by us is higher. In summary, our proposed method
is more suitable for detecting Ponzi scheme contracts on
Ethereum than the previous typical machine learning
models.

5.4.2. Comparison of Different Data Augmentation
Algorithms. &e imbalanced dataset is pre-processed in this
experiment using the SMOTEENN-mixed sampling algo-
rithm. &erefore, we need to observe whether the algorithm
can significantly improve the detection effect of the model.
&en, in Figure 14, we draw the confusion matrix diagrams
of the models using the SMOTEENN and SMOTE algo-
rithms, respectively, and compare the performance

input: Q � (xi, yi) 
m
i�1, δ is a random, k points nearest to s are denoted as Nk(s), epochs is the number of training wheels, y is the

actual true value and y is an estimate value
output: &e new dataset W after SMOTEENN processing

(1) Generate new sample xnew and perform k_nearer neighbor calculation on xi;
(2) Generate dataset W from a minority class samples of the input dataset Q;
(3) fori←1 to range(m) do
(4) Find the k minority class samples closer to xi;
(5) W� [];
(6) xnew � xi + (xl − xi) × δ;
(7) W.append (xnew);
(8) return W;
(9) Clean the newly generated dataset W � (si, ti) 

n

j�1;
(10) Calculate the category t of s, according to the classification decision rules in Nk(s);
(11) forj←1 to range(n) do
(12) t � argmaxcg

sj∈Nk(s)I(tj � cg), j � 1, 2, . . . , n;

(13) ift≠ 1 or t≠ 0then delete it;
(14) else do nothing;
(15) return W processed by us;

ALGORITHM 1: Data preparation based on SMOTEENN.
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input:
epochs number of training rounds feature, label features and labels of the input data set.
W processed data set by SMOTEENN
output:
&e detection result, output the category 0 or 1 of the predicted feature

(1) W is divided into Train set Wtrain and Test set Wtest and save as PKl file;
(2) if is_balance� true then load_balance.pkl;
(3) else load imbalance.pkl;
(4) setup loss func � − y log2y + (1 − y)log2(1 − y);

(5) for epoch in range(epochs) do
(6) for feature, label in Wtraindo
(7) Training feature extraction model CNN;
(8) loss � loss func(feature, label);

(9) setup optimizer;
(10) Evaluate the feature extraction model CNN;
(11) save best feature extraction model as best.pt and return it;
(12) setup scheduler
(13) Training classification detection model RF;
(14) if is_balance� true then load_balance.pkl;
(15) else load imbalance.pkl;
(16) load(best.pt);
(17) clf � fit(classifier)←Wtrain − feature, Wtrain − lable;

(18) Classification model for classification detection;
(19) pred � clf.predict(Wtest);

(20) ifpred> 0.6then return 1;
(21) else otherwise return 0;

ALGORITHM 2: CNN-RF detection method.

Table 2: Comparison of the detection performance of various methods.

Method Precision (%) Recall (%) F1-score (%)
XGBoost 83 69 75
RF 89 62 73
LightGBM 83 70 73
LinearSVC 64 58 60
DT 64 67 65
PD-SECR 98 99 98

Table 3: Comparison of different data augmentation algorithms.

Method Precision (%) Recall (%) F1-score (%) Test time
SMOTEENN+CNN_RF 98 98 98 0.56
SMOTE+CNN_RF 96.7 97 98 0.63
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indicators of SMOTEENN+CNN_RF and SMO-
TE+CNN_RF, for example, Table 3. First, as shown in
Figure 14, the data processed by SMOTEENN is less than
that processed by SMOTE because the ENN data cleaning
operation in the SMOTEENN algorithm removes the du-
plicate data generated by SMOTE. Second, Table 3 shows
that SMOTEENN+CNN_RF is slightly higher than SMO-
TE+CNN_RF in terms of precision and recall. In addition,
SMOTEENN+CNN_RF is also better than SMO-
TE+CNN_RF in the test time of the model. &erefore, the
model combined with the SMOTEENN algorithm is more
suitable for Ponzi scheme contract detection in Ethereum.

5.4.3. Comparison with and without CNN Feature Extractor.
In addition to the above experimental comparisons, to verify
the rationality and superiority of the process of introducing
CNN feature extraction, we conducted a comparative ex-
periment between SMOTEENN+CNN_RF and SMO-
TEENN+RF.&e experimental results are shown in Table 4.
&e experimental results show that the model without a
CNN feature extractor is faster in the model’s test time.
However, it is still slightly lower in precision and recall
detection indicators. On the whole, SMO-
TEENN+CNN_RF is more suitable for Ponzi scheme
detection.

6. Conclusions and Future Work

&e decompiled bytecode and account features constitute
this study’s dataset for Ethereum-style scam detection. &e
diversity of mixed features and the degree of influence of
mixed features on Ponzi scheme detection performance is
different. Hence, feature extraction is redundant and im-
precise from the acquired source data. &erefore, we use a
CNN model that combines features to automatically extract
the key and powerful features and identify a Ponzi scheme.
&en, the features extracted by the CNN were input into an
RF classifier as new input data for classification and pre-
diction. In addition, because of the severe imbalance of
sample data in the dataset we obtained, the SMOTEENN-
mixed sampling algorithm was used to pre-process the data.
&e results show that our proposed PD-SECR (CNN-RF
joint detection method: integrating unbalanced data and
pre-processing algorithm) is more suitable for Ponzi scheme
detection on Ethereum.

In future research, we plan to use generative adversarial
networks (GANs) to detect contracts. GANs can effectively
solve the problem of the high-dimensional feature distri-
bution of data, which means that they can be used for
anomaly detection in line with the application scenario of
the identification and detection of Ponzi scheme contracts.
Because GANs are a type of unsupervised learning, they can

realize the clustering of normal contracts, which effectively
solves the sample imbalance problem in the process of
identifying contracts in the Ponzi scheme.
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