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(is paper provides an in-depth study and analysis of a distributed allocation algorithm for collaborative resources for cloud-edge-
vehicle-based Telematics. (e approach starts from the emerging application of urban environmental monitoring based on
vehicular networking, with an integrated design of data sensing detection and transmission, and collaborative monitoring of
vehicle swarm intelligence based on urban air quality collection to avoid redundancy of information and communication
overload. A hybrid routing method with minimal delay for reliable data transmission is proposed. (e power adjustment al-
gorithm divides the channel into 3 states.When the CBR is less than 0.5, the channel is in an idle state, and when the CBR is greater
than 0.5 and less than 0.8, the channel is in an active state. (e algorithm designs redundancy strategies based on coding
mechanisms to improve the reliability of data transmission, combines coding mechanisms with routing design, incorporates
routing switching ideas, and performs probability-based routing decisions to minimize the delay. In straight-line road sections, a
fuzzy logic prediction-based vehicle adaptive connectivity clustering routing algorithm is proposed to reduce the communication
overhead during vehicle collaboration and ensure high network connectivity; at intersections, a probability-based minimum delay
routing decision algorithm is proposed to reduce the information transmission delay. Experiments show that the proposed
method effectively improves the efficiency of data-aware collection and transmission, and increases the reliability of transmission.
With the explosive growth of video services, the problem of intelligent transmission of DASH-based video streams has become
another research hotspot in mobile edge networks. Based on the edge container cloud architecture of vehicular networking, the
resource constraints of microservices when deployed in the edge cloud platformwere analyzed, and amulti-objective optimization
model for microservice resource scheduling was established with the comprehensive performance objectives of shortest
microservice invocation distance, highest resource utilization of physical machine clusters, and ensuring load balancing as much
as possible.

1. Introduction

Before the emergence of container technology, micro-
services were mainly deployed on virtual machines directly
on bare metal, which was difficult to operate and maintain.
Container technology, on the other hand, is a lightweight
virtualization technology that provides resource scheduling
and isolation for microservices at the container engine layer,
reducing concerns about inconsistencies across platforms
between development, testing, and production environ-
ments [1]. When deploying specific functional modules in

different locations, how to utilize limited resources in a more
balanced and efficient manner and further improve appli-
cation service quality and user experience is a challenge in
the initialization process of mobile IoT slices. And because
containers reduce the hardware system virtualization layer,
they can use the hardware resources of the actual physical
host directly and therefore make fuller use of hardware
resources. In summary, lightweight, and fast start/stop
containers are well suited for edge workloads and are a good
vehicle for Telematics microservices. However, as the
granularity of containers is smaller, the number of
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containers that can be started by one physical machine is also
larger, and the resource management for containers is more
complex [2]. Common container scheduling tools such as
Kubernetes and Docker Swarm Kit only provide some
simple resource scheduling policies, which cannot fully
utilize the performance of physical machines, so it is crucial
to design a reasonable resource scheduling policy for
microservice containers [3]. Vehicle networking refers to a
system network that carries out wireless communication and
information exchange among vehicles, roads, pedestrians,
and the Internet on the basis of in-vehicle network, inter-
vehicle network, and in-vehicle mobile Internet according to
agreed communication protocols and data exchange stan-
dards. Traditional vehicle networking refers to the electronic
label loaded on the vehicle through the wireless radio fre-
quency and other recognition technology, effectively realized
in the information network platform to the vehicle attributes
and static, dynamic information extraction, and utilization,
according to the different function demands to the vehicle
operation status to provide effective supervision and com-
prehensive service system. With the rapid development of
the Telematics industry and technology, the traditional
definition can no longer cover all its contents.

(e rapid development and widespread use of the In-
ternet of Everything have led to a shift in the role of edge
devices, from the role of a single consumer of data to the role
of a consumer and producer of data, with edge devices
becoming more intelligent and capable of autonomous deep
learning, predictive analysis, and intelligent data processing
of data at the edge of the network. Big data processing is
slowly entering the era of edge computing with the Internet
of Everything at its core from the cloud computing era [4].
Cloud computing relies on powerful resource provisioning
in data centers to centrally process big data, compared to
edge computing which relies on numerous edge devices at
the edge of the network to process massive amounts of data,
reduce the occupation of network resources, enhance real-
time communication capabilities, and complete data pro-
cessing and execution services with extremely low latency
[5]. With the growth of the Internet of Everything, latency-
sensitive and compute-intensive application services are
increasing, and cloud computing solutions cannot meet the
latency requirements of these application services. For ex-
ample, autonomous driving, self-driving cars generate 4 TB
of data per day, which is demanding in terms of compu-
tational latency. (e accuracy of multiedge collaborative
mobile IoT slicing can reach 85%, while the other two
comparison models are 72% and 65%, respectively. WAN
transmission brings latency uncertainty, and autonomous
driving data needs to be processed at the edge of the network
to ensure low latency, but the computational resources on
the edge side of the network are far inferior to cloud
computing, and the data are processed through deep neural
networks under resource-constrained conditions [6].

With the continuous improvement of relevant standards
and the increasing number of smart vehicles, it is foreseeable
that more vehicles will be connected to the network through
relevant protocols in the future. Along with the increasing
number of vehicles, road hazards have become an issue that

is faced in the development of Telematics. (is makes it
increasingly important to study the transmission strategy of
vehicle safety services. In the process of vehicle communi-
cation based on IEEE 802.11P and LTE-V protocols, channel
congestion, channel interference, shadow fading, and in-
telligent computational processing are the main factors af-
fecting the performance of vehicle communication. It is
important to study how to schedule the computational and
communication resources in vehicular networking to im-
prove the communication performance of vehicle safety
services.

To sum up, the continuous development of the Internet
of Vehicles business and the continuous increase in the
number of connected vehicles have brought great chal-
lenges to the existing Internet of Vehicles solutions. In
order to improve driving safety and travel efficiency, the
problem of limited computing power of a single vehicle can
be solved by offloading tasks to the MEC server for exe-
cution. On the one hand, different IoV services have dif-
ferent requirements for latency, bandwidth, and computing
power. How to manage and allocate communication and
computing resources to meet the needs of various services
is a key issue in-vehicle edge computing networks. On the
other hand, due to the distributed deployment of MEC
servers, the communication and computing resources on
edge nodes are relatively limited. However, the unloading
requests of vehicles are usually random and sudden, and an
unreasonable resource allocation scheme will cause
problems such as increased delay, unstable network ser-
vices, and poor service quality. (erefore, it is of great
significance to study communication and computing re-
source allocation methods for task offloading in-vehicle
edge computing networks.

(is paper proposes a distributed end-edge collaboration
algorithm for the edge network of intelligent networked
vehicles. According to the characteristics of high reliability
and low delay content transmission of the Internet of Ve-
hicles, a limited block length mechanism is introduced. At
the same time, the compression coding power consumption
of the vehicle video information source is introduced, and
the vehicle energy consumption model is established.
According to the video quality requirements of the vehicle
video information source, by adjusting the video coding rate,
the information source transmission rate, and the selection
of vehicle multipath routing, a fully distributed optimization
algorithm is proposed to improve the utilization of network
resources and ensure a single Equity in energy consumption
of vehicles. (is paper proposes a distributed edge-end
collaborative algorithm based on the subgradient algorithm,
which realizes the resource allocation strategy by adjusting
the video coding rate, the information source transmission
rate, and the vehicle multipath routing decision. (e farther
the terminal is from the communication node, the greater
the data transmission delay. (erefore, this paper uses dy-
namic communication nodes to solve the delay and energy
consumption problems faced by mobile terminals. (e al-
gorithm can be deployed and executed in each ICV and only
needs to exchange a small amount of information with its
neighbouring nodes.
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2. Related Works

As transferring large amounts of data to the cloud not only
takes up limited backhaul bandwidth resources, it also gen-
erates large transmission latency and poses security risks of
data leakage. In response to these problems, edge computing
was born [7]. Edge computing is a service that deploys data
processing and storage capabilities from the cloud as close to
the endpoint as possible, storing, and analyzing data at the
edge of the network, solving many of the challenges that exist
when transferring data to the cloud center. As smart chips
continue to develop, the processing power of terminals is
gradually increasing, so that some simple data processing can
be done locally at the terminal [8]. Of course, edge intelligence
and terminal intelligence also have problems that need to be
solved, such as the uneven distribution of edge devices and the
uneven data storage and processing capabilities; not only is
the energy consumption of terminal devices relatively high
during processing, the terminal itself has limited endurance,
and the life span of the terminal is also a problem that cannot
be ignored when processing large amounts of data [9].

A heuristic algorithm based on three scenarios is pro-
posed for the task scheduling problem of edge servers in
multiserver multiuser mobile edge computing systems.
Experimental results show that the algorithm can signifi-
cantly reduce the average task execution delay. An efficient
lightweight offloading scheme is proposed for the multi-user
edge system [10]. (e results show that this offloading
scheme can effectively reduce the execution time of end-to-
end tasks and improve the resource utilization of the edge
server [11]. (e battery size of end devices is typically very
limited due to device size, etc. [12].

Abreha et al. proposed an analytical framework that
models downlink traffic in a drive-through vehicle net-
working scenario via a multidimensional Markov process. It
can be speculated that the computing load brought by the
number of tasks at this time is not high for the edge servers in
the network. So, the effect is not obvious. As the number of
tasks increases, the task completion rate varies greatly. When
the number of tasks is 60, the lowest task completion rate is
79.1% and the highest is 94.8%. (ere is a 15.7% gap between
the lowest and highest. (e arrival of packets in the RSU
buffer is constructed as a Poisson process, and the transit time
is exponentially distributed [13]. Considering the state space
explosion problem associated with multidimensional Markov
processes, this paper uses an iterative per-duration technique
to compute the stationary distribution of Markov chains [14].
Sar-dianos et al. studied the hybrid data dissemination
problem, i.e., optimally determining the time and destination
of data transmission vehicles, and whether the vehicles obtain
the required data directly from the edge of nearby vehicles
[15].(e authors proposed a new data propagation algorithm,
called the hybrid data propagation offline algorithm, which
prioritizes finding the most beneficial vehicle-to-vehicle
broadcast, and then selected the feasible vehicle-to-base
station propagation method [16]. Shakir et al. studied how to
deploy drop box optimally by considering the trade-off be-
tween delivery delay and drop box deployment cost [17]. To
address this issue, first, provide a theoretical framework to

accurately estimate delivery delay; then, based on the di-
mension based on the idea of enlargement and dynamic
programming [18]. In terms of content uploading, Guan et al.
proposed to deploy dedicated access points (APs) at bus stops
to facilitate video uploading to study the video uploading
problem of mobile buses and proposed a water injection
placement algorithm that aims to balance the distribution
[19]. (e aggregate bandwidth of each bus is analyzed by
establishing a queuing model to analyze the upload delay of
video content, and a machine learning model is further used
to incorporate the impact of bus routes into the queuing
model. Based on the different application conditions, it is a
great challenge to meet the requirements of low delay, huge
amount of calculation, high efficiency, high reliability, and
meticulous precision. For example, each car has different
requirements for communication; there are self-driving cars
and ordinary vehicles, which need to be treated differently.

In an edge computing environment, there are two aspects
of energy consumption by the end device when performing
task offloading [20]. One is the computational energy con-
sumed when the task is computed locally, and the other is the
transmission energy consumed when the task is uploaded to
the edge server and the results are received back from the edge
server. (erefore, offloading strategies can be designed to
reduce energy consumption by means such as adjusting CPU
frequency and offloading intensive tasks to the server [21].

(e joint proposes a layered, modular edge computing
architecture that runs on the cloud, fog, and edge devices and
provides containerized services and microservices. (e pro-
posed architecture has three main layers: the sensing layer, the
intermediary layer, and the enterprise layer. (e perception
layer is the underlying layer that performs sensing and op-
erations (edge computing); the intermediary layer represents
intermediate devices and operations (gateways, fog com-
puting); and the upper layer, called the enterprise layer,
represents the cloud and operations such as long-term global
storage. (e proposed architecture ensures that the data are
collected and analyzed in the most efficient and logical place
between the source and the cloud, balancing the load and
pushing the computation and intelligence to the appropriate
layer. It is also necessary to allocate the microservice con-
tainers with call dependencies to the same physical host, so
that the cross-server calls of the microservice container are as
few as possible, to reduce the response time of the service. For
the container scheduling problem under the microservice
architecture, a container scheduling strategy based on an
improved particle swarm algorithm that effectively reduces
network calls to fast physical hosts in container-based
microservice clusters is proposed, considering the invocation
relationship conditions between microservices.

3. Analysis of the Distributed Allocation
Algorithm for Collaborative Resource
Allocation in the Cloud-Edge-Vehicle
Side of Telematics

3.1. Collaborative Resource Design for Cloud-Edge-Vehicle
Telematics. (e user terminal in Telematics is a vehicle, and
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because vehicles travel fast on the road with many vehicles
and complex road conditions, smart driving vehicles under
Telematics have high quality of service (QoS) requirements
for various applications [22]. For this reason, when per-
forming microservice deployment under Telematics, various
aspects are considered including the dynamic characteristics
of the vehicle (e.g., whether it is moving or not), the type of
big data problems (e.g., speed, accuracy), and commuta-
tionally complex data analysis. (e deployment architecture
of microservices in the Telematics system is derived from the
previous section on Telematics system architecture: cloud-
side-end microservice layered deployment architecture, as
shown in Figure 1.

(is architecture consists of three parts: the vehicle and
road test terminal, the edge cloud platform, and the central
cloud. Unlike traditional cloud computing centers, the edge
cloud layer deploys the cloud infrastructure near the service
road section, which is not as powerful as traditional large
cloud data centers but is closer to the specific service area
and can effectively improve the quality of service (QoS) of
Telematics applications. Vehicle and road information
sensing through sensing technology, the On-Board Unit
(OBU) enables vehicle-to-vehicle (V2V), vehicle-to-road,
and vehicle-to-cloud communications. Microservices with
functions such as onboard data fusion calculations, location
positioning, road condition sensing, periodic or event data
sending and receiving, and supporting autonomous driving
fusion decisions are therefore deployed to the onboard and
roadside terminals. (e number of users accessing the In-
ternet of Vehicles service will suddenly increase, resulting in
the overload of some specific microservice resources. When
the QoS of the application is reduced, the specific micro-
service container instance will be dynamically added.

(e edge cloud platform of Telematics is a data pro-
cessing center, through its strong computing capacity, it can
realize the processing of massive real-time data of Tele-
matics; it is an application software deployment platform,
providing traffic-based cloud services to multiple users, to
realize the interoperability of resources of different traffic
systems; it is a resource management platform, through
virtualization technology, realizing the unified management
and elastic expansion of computing resources, thus in-
creasing system stability, reducing costs, and saving energy
consumption.

At the vehicle end, the vehicle unit and sensors are
mainly used to collect the vehicle and environmental in-
formation; at the tube end, the wireless communication
network is mainly responsible for the return transmission
of information collected by the vehicle unit and roadside
units, and the distribution of control information; at the
edge of the vehicle network, the cloud end, using its strong
computing and data processing capabilities, will process
the collected data and information and calculate the in-
tegrated output for the application services required by the
user. Accordingly, it is important to consider having
enough CPU processing power available, memory, disk
space available, and bandwidth resources to meet the
hardware requirements when deploying microservices [16].
In the Telematics Edge Cloud, container-based

microservice resource scheduling means that according to
the resource requirements of the microservice, the cloud
computing center allocates the corresponding container
resources to it, and then the scheduling system deploys it to
the physical machine to run. (e operation logic of
microservice scheduling is divided into four steps: (1) Grab
the task in the task executor by annotation and report it to
the task registration center. (2) (e task orchestration
center obtains data from the task registration center to
schedule and save it into persistent storage. (3) (e task
scheduling center obtains scheduling information from
persistent storage. (4) (e task scheduling center accesses
the task executor according to the scheduling logic. It has
high precision and robustness, and is more suitable for
solving problems such as missing data. (e essence is that
the scheduling system schedules the set of containers for
deploying microservices to run on the set of physical
machines according to the scheduling policy. (e con-
tainers can be configured together with the resources re-
quired by the microservice programs, making full use of the
hardware resources of the Telematics Edge Cloud platform,
and making the physical machine clusters in the Edge
Cloud as load balanced as possible while meeting the re-
source requirements of the microservices.

In addition, microservices are generally responsible for a
single service function. When providing services to Tele-
matics users, multiple microservices are often required to
work together to meet user requirements, so there is a
dependency relationship between microservices to invoke
and be invoked. Each microservice is deployed into a
container, and there is a one-to-one correspondence be-
tween themicroservice and the container, thus creating a call
dependency between each container. (erefore, in the
scheduling and resource dispatching of containers, it is not
only necessary to consider maximizing server resource
utilization and load balancing between servers but also to
allocate microservice containers with invocation depen-
dencies to the same physical host as far as possible, so that
the cross-server invocations of microservice containers are
as few as possible to reduce the response time of the service,
as shown in Figure 2.

(e initial deployment of microservices means that the
application estimates the number of resources it needs based
on the actual number of users it serves daily while ensuring
that there is a certain number of resources left over; then it
applies for resources to the edge cloud based on its estimated
resource characteristics; finally, the Telematics Edge Cloud
platform schedules and deploys it to a designated physical
host to run according to the microservice resource sched-
uling policy.

(e initial deployment of microservices means that the
application estimates the number of resources it needs based
on the actual number of users it serves daily while ensuring
that there is a certain number of resources left over; then it
applies for resources to the edge cloud based on its estimated
resource characteristics; finally, the Telematics Edge Cloud
platform schedules and deploys it to a designated physical
host to run according to the microservice resource sched-
uling policy. (e transmission time of each batch is
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minimized and the cost function is minimized. At the same
time, the above algorithm also considers the upper limit of
the bandwidth of each task, which can maximize the use of
bandwidth resources. (e initial deployment of micro-
services can ensure the number of resources required for
their daily operation and meet their QoS requirements. (e
dynamic scaling of microservices refers to the dynamic
addition of specific microservice container instances when
unexpected conditions are encountered, such as a sudden
increase in the number of vehicles in the service area of the
Telematics Edge Cloud Platform, which results in the
overloading of some specific microservice resources and a
reduction in the QoS of the application, and then the Edge
Cloud Platform deploys the added microservice instances to
the specified physical hosts to run following the microservice
resource scheduling policy to meet their resource
requirements.

Whether it is the initial deployment of microservices or
dynamic expansion, the edge cloud microservice resource
scheduling policy is required to reasonably schedule
microservice containers to deploy and run on the specified
physical hosts. In the following, the microservice resource

scheduling problem on the Telematics edge cloud platform is
modeled according to its characteristics [23]. In the
microservice resource scheduling problem on the edge
cloud, it is crucial to make the most efficient use of resources
in the resource scheduling process due to the limited
computing resources compared to traditional cloud com-
puting centers and the high user requirements for latency. In
addition, as there are dependencies between microservices,
the dependency between containers is also an important
factor in the resource scheduling process, thus ensuring the
responsiveness of the edge cloud to tasks, improving the
utilization of cloud resources, and reducing the energy
consumption of the edge cloud center.

3.2. Distributed Allocation Algorithm Design. In the system
proposed in this paper, each buyer has a computationally
intensive service to perform, but due to its computing re-
sources and capacity constraints needs to migrate part of the
service to a suitable service vehicle in the vicinity, and pay
the final chosen service vehicle a certain amount of money.
Each buyer is represented by a 7-tuple as follows:
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Vehicles 
travel fast 

Quality of 
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Platform MEC
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Figure 1: (e layered deployment architecture of Telematics microservices.
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SR � Γ(t), f
T
, v, θ, λ2, R , (1)

where Γ(t) � x, y  denotes the geographic coordinates of
the buyer at the time t, fT is the buyer’s local computing
power (CPU cycle/s), v and θ are the buyer’s speed (km/h)
and direction of travel, respectively. d and λ ∈ [0, 1] denote
the data volume (bits) of the buyer’s computationally in-
tensive business, i.e., and the business migration rate, re-
spectively. (e data volume size (bit) of the migrated part of
the business; R is the communication radius of the vehicle.
(erefore, when scheduling resources for microservice
containers, one of the optimization goals is to occupy the
least number of physical hosts on the premise of meeting
their needs, so that the resources of physical hosts can be
effectively utilized.

(e vehicle cloud consists of a set of computing services
providing vehicles within the buyer’s one-hop V2V com-
munication range, where each member has more computing
power and free resources compared to the buyer, repre-
sented by the following 7-tuple:

SP � Γ(t), f
S
, v, θ, λ2, R

2
 , (2)

Ptot � 
K

k�1


M

m�1


L

l�1
ξP

2
k,m,l − Pc . (3)

(e interference limit in this section considers the in-
terference between the RSU sender pair and the receiver side
of the vehicle node V, and the interference between the
sender side of the K -relay forwarding and the receiver side

of the vehicle node V. (3) is the interference between the K

sender and the receiver V in different regions, where k, m,
andG denote the channel gain between the k-th relay and the
m-th node on the l-th subcarrier.

ISBS � 
M

m�1


L

l�1
Pk,m,l
′ V|l−m|G

2
k,m,l. (4)

In the actual process of vehicular network traffic flow
data acquisition, it is often accompanied by loss com-
munication such as sensor failure or transmission dis-
tortion, which inevitably results in the occurrence of
missing, lost, or abnormal data, and may even lead to a
high percentage of data loss, resulting in unreliable
transmitted data [18]. Previous studies have shown that the
higher-order tensor can tap higher-level data correlation,
make full use of data dimensional information, improve
the accuracy of data recovery, have higher accuracy and
robustness, and is more suitable for solving problems such
as missing data.

An analytical model of mobile IoTslices was established,
abstracting different slices as different layers in a multilayer
graph. (e RSU can timely broadcast the vehicle density
information and the priority information of the road con-
dition warning message to the roadside cluster head vehicles
in a timely manner. (e aim is to solve the problems of how
to deploy slices efficiently and flexibly, dynamically, and
controllably allocate resources and optimize performance
within and between slices according to the needs of different
applications, and how to achieve highly reliable and low
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Figure 2: Schematic of cloud microservice resource scheduling in the telematics edge.
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latency edge computing slices in the application scenario
where IoT terminals are constantly on the move, to maxi-
mize resource utilization and optimize the performance of
mobile IoT slicing services, as shown in Figure 3.

In the subsequent study, we found that using only the
trained neural network to predict the test set could not
achieve better results, probably because the network decision
space was too large and the training set could not cover all
the decided cases. To solve the above problem, a genetic
algorithm was used to perform a range search after the
neural network decision to obtain a better decision result.

To solve (5), the task bandwidth allocation algorithm is
designed because the core objective is to minimize the
transmission completion time of each batch, i.e., to minimize
the transmission time consumed by the last task to finish
transmission within each batch, so with a certain bandwidth
of the base station, the bandwidth is first allocated in equal
proportion to the data size of the task, and if the bandwidth
allocated to user i exceeds its bandwidth limit Bi, then if the
bandwidth allocated to user i exceeds its bandwidth limit Bi,
then the user’s upper bandwidth limit is allocated, and then
the remaining tasks are reallocated proportionally according
to the above process [19]. In this way, the tasks within a batch
can be transferred as simultaneously as possible, minimizing
the transfer time of each batch and thus the cost function,
while the algorithm also considers the bandwidth limit of each
task, allowing for maximum utilization of bandwidth re-
sources. Once the task transfer is complete, computational
processing can begin, using a simple single-core processor to
process incoming tasks serially, following the first-come, first-
served principle, until all tasks are finally processed.

Wij � WR
2
ijRV

2
ij. (5)

Since the adjacency matrix of each node of the graph
random wandering model is a Markov matrix, the wan-
dering probability of each node is a specific value in the
adjacency matrix. Assuming that there areM components to
be deployed, thematrix will reach a new state afterM steps of
wandering. (e idea of routing switching is integrated, and
the probability-based routing decision is made with the goal
of minimizing the delay. (en, according to the final state of
the matrix, the specific deployment probability of each node
can be obtained, and the system needs to allocate more
available resources to the node with the highest probability.

In the process of slicing resource management, this
paper proposes to achieve this through a multimodel col-
laborative learning scheme, i.e., using Generative Adver-
sarial Networks (GAN) and Deep Reinforcement Learning
(DRL) to address resource demand prediction within slices
and dynamic resource allocation between multiple slices,
respectively, i.e., through multimodel collaboration to
perform dynamic resource allocation for different slices to
achieve efficient use of limited resources while providing
slicing services for more applications.

maxminV(d, G) � Ex∼Pdata(x)
logD(x)

−EZ∼PZ(Z)[1 + logD(g)].
(6)

When a user sends a service request, a chain of invo-
cations will be formed in the server to handle the user’s
demand. All microservices in the chain of invocations
collaborate tomeet the user’s needs.(erefore, it is necessary
to invoke the containers deployed in each physical host. (e
invocation of containers in the same physical host consumes
significantly less time than the invocation across physical
hosts. (erefore, in the process of container deployment and
resource scheduling, the number of container calls across
physical hosts should be minimized, so that the time for
container calls across physical hosts can be reduced and the
network resources wasted.

(erefore, when scheduling resources for microservice
containers, one of the optimization goals is to minimize the
number of physical hosts occupied while satisfying their
requirements so that the resources of the physical hosts can
be used effectively. In this paper, we use the defined pa-
rameter Z to denote the total number of physical hosts
occupied by the deployment of microservices-equipped
containers, while the combined resource utilization of the
physical host population activated for the deployment of
microservices in the entire edge cloud is expressed by the
parameter U, as shown in the defined formula in (7).

Z � 
n

i�1
Pi, (7)

U �


n
i�1 

m
j�1 

s
l�1 p

2
ij × k

2
ij × rj,l


M
m�1 

L
l�1 Pk,m,l
′ V|l−m|G

2
k,m,l

⎛⎝ ⎞⎠. (8)

(e value of takes the range (0, 1), and the fewer physical
hosts occupied by the same number of microservices, the
higher the resource utilization of the physical machine cluster.
(e RSU, a network node located in themiddle of a roadside or
intersection, can communicate with the traffic management
center and roadside vehicles to obtain timely information on
the global traffic situation [24]. (e centralized control
mechanism allows the RSU to play an important regulatory
role in congestion control and wireless channel control of in-
vehicle communication. In the proposed algorithm, the RSU
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Figure 3: Network environment.
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can broadcast accurate information on the density of vehicles
and the priority of roadside alert messages to the roadside
cluster headers on time by reusing the same communication
resources. By combining the vehicle density information and
the priority of the alert message, the vehicle node can calculate
the information interference factor.

According to the CBR value of the cluster head vehicle,
the power adjustment algorithm classifies the channel into
three states, when the CBR is less than 0.5, the channel is in
an idle state when the CBR is greater than 0.5 and less than
0.8, the channel is an inactive state, and when the CBR is
greater than 0.8, the channel is in a congested state. (e
channel state transfer diagram is shown in Figure 4.

Resource management for containers is even more
complicated. Commonly used container orchestration
tools such as Kubernetes and Docker SwarmKit only
provide some simple resource scheduling strategies and
cannot fully utilize the performance of physical machines.
(erefore, it is very important to design a reasonable re-
source scheduling strategy for microservice containers.
When the channel is congested, by appropriately reducing
the vehicle signal power, the conflict of vehicles competing
for channel resources can be reduced, thus improving the
efficiency of message delivery. When the channel is idle, the
vehicle signal power is increased to improve the delivery
success rate and the coverage of the alert message. When
the channel state is active, the power of the vehicles in the
cluster is not adjusted.

4. Analysis of Results

4.1. Performance Results of the Cloud-Edge-Vehicle-Side IoT
Collaborative Resource Platform. When an IoT application
starts running, the slicing system will perform business

identification and related resource requirement analysis and
use this as the basis for scalable deployment of functional
modules. During the deployment process, depending on the
type of service and demand, certain functional modulesmay be
deployed at the core, at the edge, or even at the bearer network
between the terminal and the core or other locations, enabling
the flexible and scalable deployment of each functionalmodule.
(ese virtualized platforms for deploying different functional
modules have different available resources, and the links
connecting them have different transmission performances.
(erefore, it is a challenge for the initialization process of
mobile IoT slices to make more balanced and efficient use of
limited resources when deploying specific functional modules
at various locations and to further improve the quality of
service and user experience of applications.

(e latency in this experiment refers to the entire time
that the data are sent from the terminal to the distributed
computing platform until the calculation results are
returned to the terminal. (e goal of the multiedge col-
laborative mobile IoT slicing is to reduce the latency while
maximizing recognition accuracy, and the experimental
results confirm that the architecture achieves this goal. In
contrast, edge computing relies on numerous edge devices at
the edge of the network to process massive data, reduce the
occupation of network resources, enhance real-time com-
munication capabilities, and complete data processing and
service execution with extremely low latency.(ere are three
main reasons for this: firstly, the constant switching of
communication nodes as the terminal moves; secondly, the
multiedge collaborative slicing model that uses distributed
deep learning from multiple edge nodes; and thirdly, the
efficient task allocation and optimal transmission path se-
lection method implemented through graph neural net-
works, as shown in Figure 5.
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Figure 4: Channel state division diagram.
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In Figure 5, the comparison between latency and average
correctness for the three architectures mentioned above is
depicted. As can be seen from the figure, if higher accuracy is
required, a larger latency is used. In the case of object
recognition experiments, higher accuracy is used when the
latency requirement is first guaranteed. For example, the
requirement that the time delay must be less than 1.5 sec-
onds enables the multiedge collaborative mobile IoT slice to
achieve 85% accuracy, compared to 72% and 65% for the
other two comparison models, respectively, thus showing
that the multiedge collaborative mobile IoT slice has higher
accuracy for the same time delay requirement, and similarly,
the multiedge collaborative mobile IoT slice has lower la-
tency for the same accuracy requirement.

As shown in Figure 6, both the delay and energy con-
sumption in dynamic communication node mode is es-
sentially constant, but both the delay and energy
consumption in fixed communication node mode gradually
increase as the terminal moves away from the communi-
cation node. (is is because when the terminal is further
away from the communication node, the terminal needs to
increase its transmitting power to transmit data to a greater
distance so that the communication node can receive it
properly, which inevitably results in higher energy con-
sumption. Similarly, the further away the terminal is from
the communication node, the greater the data transmission
delay. (erefore, this paper uses dynamic communication
nodes to solve the problems of latency and energy con-
sumption faced by mobile terminals. In some application
scenarios of the Internet of Vehicles, such as autonomous
driving, the latency requirement even needs to be lower than
10ms. (is makes the research on the transmission strategy
of IoV security services more important.

In this network environment, using the CB-SIC solution
(combined CB and SIC technology), all task nodes gain a
total of 232-time slices to transmit data to the base station if

they transmit with incremental CB power. When trans-
mitting with fixed CB transmission power, a total of 219-
time slices of data are transmitted to the base station. With
the CB-only scheme (using only CB technology), only one
task node in a time slice can transmit data to the base station.
(e interference avoidance scheme is like the CB-only
scheme in this respect.(e SIC-only scheme (using only SIC
technology) has better data throughput than the CB-only
and interference avoidance schemes but is still not com-
parable to the CB-SIC scheme.

By adjusting the number of tasks and idle nodes, 24
different network environments were obtained. In these
network environments, the experimental results of the CB-
SIC scheme, the CB-only scheme, the SIC-only scheme, and
the interference avoidance scheme are compared. On-Board
Units (OBUs) enable vehicle-to-vehicle (V2V), vehicle-to-
road, and vehicle-to-cloud communications. (e amount of
data transmitted by each node in all-time slices is then
calculated based on the transmission rate of the nodes, and
the average data throughput in each network environment
are shown in Figure 7.

As can be seen from the figure, the throughput obtained
by the CB-SIC scheme is significantly improved compared to
the other three schemes. Regardless of the number of task
nodes and idle nodes, the CB-SIC solution consistently
achieves more than twice the data throughput of the CB-only
solution. (e throughput can be further increased by in-
creasing the CB transmission power, and the CB and SIC
technologies increase the data throughput of the entire
wireless network.

(e task nodes need to transmit data directly to the base
station by using CB technology. (e base station, in turn,
uses SIC technology to receive multiple signals simulta-
neously. (erefore, the container-based microservice ar-
chitecture is adopted, and the application software functions
are disassembled into microservices with smaller granularity
for deployment, to achieve high reliability, flexibility, and
high performance under limited resource conditions. In
addition, the application scenarios of the edge cloud of the
Internet of Vehicles are fixed. In this chapter, the structure of
the network system is first given and a mathematical model
is developed by analyzing it.(e CB technique also generates
a power gain, which further increases the number of signals
that can be received and decoded at the same time by the
base station using the SIC technique. In these ways, the
amount of data transmitted to the base station in a fixed
period is maximized. Simulation results show that the CB-
SIC scheme, which combines CB and SIC technology, can
significantly increase throughput compared to the CB-only
scheme, the SIC-only scheme, and the interference avoid-
ance scheme.

4.2. Performance of the Cooperative Resource Distributed
Allocation Algorithm. In both the CB-SIC PRO and CB-SIC
FIFO schemes, a suitability threshold is used to select an
edge server for each task. (erefore, changes in the exper-
imental results were observed by increasing the fitness
thresholds in both schemes. To further demonstrate the
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effect of threshold α on task completion rate and task
completion latency in different network environments, the
number of randomly generated tasks in the network was set
to 40, 50, 60, and 70.

From the function in the optimization objective, it can be
analyzed that the closer the user is to the base station, the
lower the bandwidth cost to achieve the same code rate.
(erefore, the algorithm adopts the shortest distance access
principle, which can greatly reduce the bandwidth con-
sumption of the base station.(e step-by-step training of the
DNN network relies on its self-learning ability to finally
obtain a better training model, and then make decisions on
the incoming tasks, and output the best access strategy
selected, as shown in Table 1.

It can be seen from Table 1 that the MBRA algorithm has
nearly 50% of the data errors within 20%, followed by nearly
98% of the data errors within 40%, which is significantly
higher than the other three heuristic algorithms, and the
overall effect is better. It can also be seen from Table 1 that
the average accuracy of the MBRA algorithm in the entire
training process is 84.13%, the total time consumption for
processing 20,000 pieces of data is 1471 s, and the time
consumption for a single task decision is only 74ms. (e
decision-making time of the heuristic algorithm is short, but
the overall error is relatively large, so it cannot achieve a
good decision-making effect.

(e main purpose of the cooperative network is to make
use of the high mobility and processing ability of the in-
telligent terminals carried by users, to make the intelligent
terminals act as relays randomly, and to establish the
communication between the sensor nodes and the infra-
structure in a cooperative way, so that the data can be
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Figure 7: Schematic comparison of data throughput in different
network environments.
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efficiently aggregated to the core network. (erefore, in the
vehicle networking scenario, these ICVs need to consume
more energy to relay the data sent by other sensor nodes.(e
algorithm in this paper considers the edge-end collaboration
mechanism, and the ICVs closer to the base station assist the
ICVs farther away from the base station to transmit data by
means of data relay, thus resulting in more energy
consumption.

Under the edge-end coordination mechanism of the
algorithm in this paper, some ICVs that are far away from
the base station do not communicate directly with the base
station but use other ICVs to transmit data through mul-
tipath and multihop routing. (erefore, this algorithm can
also reduce the number of links for vehicle-to-base station
direct communication, thereby saving communication
bandwidth resources.

Figure 8 illustrates the effect of progressively increasing
suitability thresholds on the task completion rates. When the
number of tasks is 40, the task completion rate increases
slowly at first, and then gradually starts to decrease once it

reaches 100%, and finally remains constant. When α � 0, the
task completion rate is 98.2%. When α � 14, the task
completion rate reaches 100%. At α � 22, this starts to
decrease and eventually stays at 98.2%. (e task completion
rate of the CB-SIC PRO solution remains at a high level for a
task count of 40, and it can be assumed that the compu-
tational load from the task count at this point is not high for
the edge servers in the network. (erefore, the impact is not
significant. As the number of tasks increases, the task
completion rate varies considerably. At a task count of 60,
the task completion rate ranged from a low of 79.1% to a high
of 94.8%. (ere is a 15.7% difference between the minimum
and maximum.

(e experimental results in Figure 9 show that the degree
of load imbalance in the data center increases as the size of
the microservice containers to be deployed increases. (en,
the scheduling system deploys it to the physical machine to
run. Its essence is that the scheduling system schedules the
container set for deploying microservices to run on the
physical machine set according to the scheduling policy, and

Table 1: Time complexity and solution average error rate of MBRA and comparison algorithms.

Algorithm Solving time (s/data) Average error rate (%)
Base station access decision algorithm MBRA 0.074 15.87
Random access RAS 0.00452 54.19
Access to NDAS at the closest distance 0.0029 29.4
Equal distribution of access to EDS 0.00481 53.97
Brute-force algorithm VA 5.262 0
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Figure 8: Diagram showing the effect of threshold α on the task completion rate of the CB-SIC PRO solution.
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the container can be configured with the resources required
by the microservice program. For the same experimental
conditions, the standard deviation of the data center load
imbalance of the MFGA algorithm is better than the other
three algorithms and stays in the lower range, achieving
good load balancing.

From the experimental results in the previous section,
communication time consumption has a more obvious
impact on the overall time consumption, and the amount of
data determines the communication time consumption.
Here, we investigate the impact of the size of the input
feature map of the deep network model on the computation
time and acceleration ratio of the edge clusters, with five VM
VMs-1 used as edge devices, one as the edge gateway and the
remaining four as edge nodes, the number of data frames is
1, and the network bandwidth is set to 1000Mbps.

Under the mechanism that the ICV communicates di-
rectly with the base station, the total energy consumption of
video compression and communication varies greatly for
each ICV, that is, the total energy consumption of video
compression and communication of ICVs closer to the base
station is higher than that of the ICV. (is is because the
ICVs that are closer to the base station have better signal-to-
noise ratios of transmission channels and can support higher
data transmission rates with less communication energy
consumption.

One limitation of the value iteration method is that it
requires a finite and minimal number of states, which makes

solving the system of equations almost impossible when, as
in this paper, the state space is growing exponentially. (e
policy iteration algorithm includes a process of policy es-
timation, which requires scanning all states several times, a
complexity that seriously affects the efficiency of the policy
iteration algorithm. Both value iteration and policy iteration
require a known state transfer probability to compute the
optimal policy, which is difficult to implement in real-world
usage scenarios.

5. Conclusion

(e Internet of Vehicles, as an application of the Internet of
(ings in the field of intelligent transportation, is an im-
portant development direction for future driving technol-
ogy. In an IoT environment, it is impossible to realize
autonomous driving without the collaborative cooperation
of cloud, edge, and end. As a data processing center and
application software deployment platform close to the end
service terminal in the Telematics system, the edge cloud
platform will carry most Telematics applications. As it is
deployed at the edge of the network, it can greatly shorten
the response time of Telematics applications, reduce
bandwidth costs, and improve service quality. (e edge
cloud platform has relatively limited resources compared to
traditional cloud data centers, and its resource scheduling
algorithm directly affects the performance of Telematics
applications that are not on it. (erefore, it is important how
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to make limited use of edge cloud hardware resources in the
Telematics edge cloud platform and ensure the reliability and
high performance of Telematics applications. In this strat-
egy, firstly, the clustering algorithm is used to cluster the
vehicles on the road, secondly, it is introduced how to
evaluate the channel busy status of the clustered vehicles
using the RSU of the roadside node, then the vehicles are
classified into different channels states according to different
channel busy degrees, and the corresponding power ad-
justment strategies are carried out by the vehicles in different
channel states to improve the communication performance
of the alarm messages transmitted on the road. Finally, the
performance of the proposed algorithm is effectively verified
in simulation experiments.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.

Consent

Informed consent was obtained from all individual partic-
ipants included in the study references.

Consent

(e funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing
of the manuscript, or in the decision to publish the results.

Conflicts of Interest

(e authors declare no conflict of interest.

Acknowledgments

(is work was supported by 2019 Cross Science Research
Project of Nanyang Institute of Technology, Grant No.
201913502, Research on Intelligent Mining and Recom-
mendation of Zhang Zhongjing Prescription Based on Deep
Neural Network, and Henan Science and Technology Plan
Project, Grant No. 222102210134, Research on Key Tech-
nologies of Cloud Security Desktop Based on Kunpeng
Architecture.

References

[1] Y. Ding, M. Jin, S. Li, and D. Feng, “Smart logistics based on
the internet of things technology: an overview,” International
Journal of Logistics Research and Applications, vol. 24, no. 4,
pp. 323–345, 2021.

[2] K. Kardaras, G. I. Lambrou, and D. Koutsouris, “Telematics
healthcare through digital terrestrial television networks:
applications and perspectives,” International Journal of Sen-
sors, Wireless Communications & Control, vol. 11, no. 5,
pp. 560–576, 2021.

[3] H. Tavolinejad, M. R. Malekpour, N. Rezaei et al., “Evaluation
of the effect of fixed speed cameras on speeding behavior
among Iranian taxi drivers through telematics monitoring,”
Traffic Injury Prevention, vol. 22, no. 7, pp. 559–563, 2021.

[4] D. Ivanov, C. S. Tang, A. Dolgui, D. Battini, and A. Das,
“Researchers’ perspectives on Industry 4.0: multi-disciplinary
analysis and opportunities for operations management,” In-
ternational Journal of Production Research, vol. 59, no. 7,
pp. 2055–2078, 2021.

[5] O. R. Sánchez, C. A. Collazos Ordonez, M. A. Redondo, and
I. Ibert Bittencourt Santana Pinto, “Homogeneous group
formation in collaborative learning scenarios: an approach
based on personality traits and genetic algorithms,” IEEE
Transactions on Learning Technologies, vol. 14, no. 4,
pp. 486–499, 2021.

[6] S. Jung, J. Kim, M. Levorato, C. Cordeiro, and J. H. Kim,
“Infrastructure-assisted on-driving experience sharing for
millimeter-wave connected vehicles,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 8, pp. 7307–7321, 2021.

[7] K. Yue, Y. Zhang, Y. Chen et al., “A survey of decentralizing
applications via blockchain: the 5g and beyond perspective,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 4,
pp. 2191–2217, 2021.

[8] C. H. Lai and J. S. Fu, “Exploring the linkage between offline
collaboration networks and online representational network
diversity on social media,” Communication Monographs,
vol. 88, no. 1, pp. 88–110, 2021.

[9] Q. Yu, M. Wang, H. Zhou, J. Ni, J. Chen, and S. Cespedes,
“Guest editorial special issue on cybertwin-driven 6G: ar-
chitectures, methods, and applications,” IEEE Internet of
<ings Journal, vol. 8, no. 22, pp. 16191–16194, 2021.

[10] G. Fodor, J. Vinogradova, P. Hammarberg et al., “5G new
radio for automotive, rail, and air transport,” IEEE Com-
munications Magazine, vol. 59, no. 7, pp. 22–28, 2021.

[11] Z. H. Ali and H. A. Ali, “Towards sustainable smart IoT
applications architectural elements and design: opportunities,
challenges, and open directions,” <e Journal of Super-
computing, vol. 77, no. 6, pp. 5668–5725, 2021.

[12] C. Na, D. Lee, J. Hwang, and C. Lee, “Strategic groups
emerged by selecting R&D collaboration partners and firms’
efficiency,” Asian Journal of Technology Innovation, vol. 29,
no. 1, pp. 109–133, 2021.

[13] H. G. Abreha, C. J. Bernardos, A. D. L. Oliva, L. Cominardi,
and A. Azcorra, “Monitoring in fog computing: state-of-the-
art and research challenges,” International Journal of Ad Hoc
and Ubiquitous Computing, vol. 36, no. 2, pp. 114–130, 2021.

[14] K. Yang, C. Hu, Y. Qin, Y. Huang, and X. Tang, “Potential and
challenges to improve vehicle energy efficiency via V2X: lit-
erature review,” International Journal of Vehicle Performance,
vol. 7, no. 3/4, pp. 244–265, 2021.

[15] C. Sardianos, I. Varlamis, C. Chronis et al., “(e emergence of
explainability of intelligent systems: delivering explainable
and personalized recommendations for energy efficiency,”
International Journal of Intelligent Systems, vol. 36, no. 2,
pp. 656–680, 2021.

[16] C. Englund, E. E. Aksoy, F. Alonso-Fernandez, M. D. Cooney,
S. Pashami, and B. Astrand, “AI perspectives in Smart Cities
and Communities to enable road vehicle automation and
smart traffic control,” Smart Cities, vol. 4, no. 2, pp. 783–802,
2021.

[17] A. Rajesh and S. Shaffath Hussain Shakir, “Investigations on
scheduling algorithms in LTE-advanced networks with carrier
aggregation,” International Journal of Advanced Intelligence
Paradigms, vol. 18, no. 2, pp. 1–62, 2021.

[18] B. Bhushan, C. Sahoo, P. Sinha, and A. Khamparia, “Unifi-
cation of Blockchain and Internet of (ings (BIoT): re-
quirements, working model, challenges and future
directions,”Wireless Networks, vol. 27, no. 1, pp. 55–90, 2021.

Security and Communication Networks 13



[19] S. Guan, J. Wang, C. Jiang, R. Duan, Y. Ren, and T. Q. S. Quek,
“MagicNet: the maritime giant cellular network,” IEEE
Communications Magazine, vol. 59, no. 3, pp. 117–123, 2021.

[20] Y. Zhang, K. C. S. Lee, and D. Adams, “Visualizing research in
educational technology leadership using CiteSpace,” Int.
Online J. Educ. Leadership, vol. 5, pp. 61–77, 2021.

[21] J. Moeyersons, S. Kerkhove, T. Wauters, F. De Turck, and
B. Volckaert, “Towards cloud-based unobtrusive monitoring
in remote multi-vendor environments. Software: practice and
Experience,” Software: Practice and Experience, vol. 52, no. 2,
pp. 427–442, 2022.

[22] B. Chan, “Sidecar learning vs LibWizard: a comparison of two
split-screen tutorial platforms,” Journal of Web Librarianship,
vol. 15, no. 2, pp. 90–103, 2021.

[23] C. Simon, M. Maliosz, M. Máté, D. Balla, and K. Torma,
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