
Research Article
UIV-TSP: A Blockchain-Enabled Antileakage Sharing Protection
Scheme for Undisclosed IIoT Vulnerabilities

Wenbo Zhang , Jing Zhang, Yifei Shi, and Jingyu Feng

National Engineering Laboratory for Wireless Security, Xi’an University of Posts & Telecommunications, Xi’an 710121, China

Correspondence should be addressed to Jingyu Feng; fengjy@xupt.edu.cn

Received 14 May 2022; Accepted 14 September 2022; Published 10 October 2022

Academic Editor: Andrea Michienzi

Copyright © 2022Wenbo Zhang et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the large-scale deployment of industrial Internet of things (IIoT) devices in 5/6G environments, the number of vulner-
abilities threatening IIoTsecurity is growing dramatically, including a mass of undisclosed IIoTvulnerabilities that lack mitigation
measures. Coordination vulnerability disclosure (CVD) is one of the most popular vulnerabilities sharing solutions, in which
security workers (SWs) can develop undisclosed vulnerability patches together. However, CVD assumes that SWs are all honest
and thus offering chances for dishonest SWs to internally leak undisclosed IIoTvulnerabilities. To combat such internal threats, we
propose an undisclosed IIoT vulnerabilities sharing protection (UIV-TSP) scheme against internal leakage. In this paper, a
dynamic token is an implicit access credential for an SW to acquire an undisclosed vulnerability message, which is only held by the
system and constantly updated with the SW access. +e latest updated token can be stealthily sneaked into the acquired in-
formation as the traceability token to prevent internal leakage. To quickly distinguish dishonest SWs, the feedforward neural
network (FNN) is adopted to evaluate the trust value of SWs. Meanwhile, we design a blockchain-assisted continuous logs storage
method to achieve the tamper-proofing of dynamic token and the transparency of undisclosed IIoT vulnerabilities sharing. +e
simulation results indicate that our proposed scheme is resilient to suppress dishonest SWs and protect the IIoT undisclosed
vulnerabilities effectively.

1. Introduction

With the gradual deployments and applications of 5/6G, the
Internet of things (IoT) technology is being applied to every
part of our lives [1–4]. As a subset of IoT, industrial Internet
of things (IIoT) has recently attracted attention [5]. By
leveraging sensors, actuators, GPS devices, and mobile de-
vices, the IIoT technology is being applied to advance the
development of many industrial systems [6]. +e industrial
systems where this IIoT technology is integrated include
energy [7], manufacturing [8], logistics [9], and trans-
portation [10].

Currently, IIoT devices have been widely deployed
with weak security features or a lack of security [11]. +ese
features have made IIoT devices as a good target for at-
tackers with malicious intentions, and in many cases,
exploits using IIoT devices have been occurring [12].
+ere is an urgent need for a solution that provides a

lightweight and low-cost mechanism for collaborative
security response of IIoT devices against emerging vul-
nerabilities [13].

However, the IIoT vendors generally have weak security
emergency response capabilities. It is better to invite some
security workers (such as organizations, institutions, or
white hats) to help them mitigate the new vulnerabilities of
IIoT devices. In order to standardize the process of vul-
nerabilities patching and accelerate the development of
mitigation measures, the vulnerability disclosure policy has
been presented in [14], including vulnerabilities reporting,
sharing, coordinating, and patching. An IIoT vulnerability
can be officially disclosed after the patch is made; otherwise,
it is called an undisclosed IIoTvulnerability (uiv). According
to the vulnerability disclosure policy, the IIoT vendors can
report a new uiv and share it with some security workers
(SWs) who develop their patches together by means of the
coordination vulnerability disclosure (CVD).

Hindawi
Security and Communication Networks
Volume 2022, Article ID 2500213, 17 pages
https://doi.org/10.1155/2022/2500213

mailto:fengjy@xupt.edu.cn
https://orcid.org/0000-0002-3304-3221
https://orcid.org/0000-0002-5353-3295
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2500213

Unfortunately, CVD is a set of guidelines without
mandatory measures [14, 15]. CVD assumes that SWs are all
honest and thus offering chances for dishonest SWs to in-
ternally leak undisclosed IIoT vulnerabilities. Due to the
widespread use of IIoTdevices, the leakage of an uiv message
could cause a large-scale damage.+erefore, it is necessary to
prevent the internal leakage of the uiv. Although a lot of
works have been done in the field of threat intelligence
sharing [16, 17], they focus on the sharing protection of
disclosed vulnerability information. Little attention has been
paid to the sharing protection of undisclosed vulnerability
information.

In this paper, we propose an undisclosed IIoT vulner-
abilities trusted sharing protection (UIV-TSP) scheme
against internal leakage. To enable endogenously secure
IIoT, our final objective is to prevent the leakage of uiv until
their patches are released. +e main contributions of this
paper are as follows:

(1) Introduce dynamic token as the implicit access
credential and traceability clue for an SW. When
uploading a new uiv, each internal SW is assigned a
corresponding token called tokenaccess, which is only
held by the system and cannot be seen by anyone.
Even if an SW is granted access through identify
authentication, an uiv message cannot be acquired
without tokenaccess. To avoid malicious inference,
tokenaccess should be updated dynamically. At the
end of SW access, the current tokenaccess is revoked.
A new random number is integrated into the hash
generation of token to get a new tokenaccess as the
next access credential. Meanwhile, the current
tokenaccess and the MAC address of SWs are hashed
to create the traceability token called tokentracing,
which is embedded in the undisclosed IIoT acquired
by an SW.

(2) Design a blockchain-assisted method to store the
continuous logs of all SWs for the UIV-TSP scheme.
To ensure the tamper-proofing of dynamic token, the
original token and its all-subsequent updates should
be stored on the blockchain. To achieve the trans-
parency of uiv sharing, their metadata and the re-
lated SW access records are also stored on the
blockchain.

(3) Present an internal leakage prevention method with
one-step traceability. A benign logic bomb called
codepreleak is embedded into an uiv message, which
checks that whether the current MAC address is the
same as the preset destination address in tokentracing.
Due to the confidentiality, an uiv message can only
be reached by one step to the SW host that is licensed
by the system. Once the uiv information leaves the
SW host, codepreleak will automatically trigger the
self-destruct program to prevent leaks.

(4) Adopt the trust mechanism based on deep learning
to evaluate the trust value of SWs according to their
historical behaviors in an automatic and dynamic
manner. With high trust value, honest SWs would be

accepted to acquire uiv. With low trust value, dis-
honest SWs would be rejected. With medium trust
value, it is difficult to determine the access author-
ities of semihonest SWs who may be suspiciously
dishonest SWs. In this case, we can release a false uiv
with tokentracing to trap their external conspirators.

+e architecture of this paper is as follows. In Section 2,
we introduce the related works. Our UIV-TSP scheme is
proposed in Section 3. In Section 4, we analyze the per-
formance of UIV-TSP from the perspective of security and
cost. We also discuss the application of UIV-TSP solution
and future work in Section 5. Finally, we conclude the paper
in Section 6.

2. Related Work

2.1. Vulnerability Disclosure Policy. ISO/IEC 29147 defines
vulnerability disclosure as a process through which vendors
and vulnerability finders may work cooperatively in finding
solutions that reduce the risks associated with a vulnerability
[14]. Currently, CVD [15] is a good choice to develop un-
disclosed vulnerability patches together among security
workers. As shown in Figure 1, the CVD process is consisted
of gathering, coordinating, disclosing, and patching, and
more details are given in [15]. Furthermore, there are two
extreme cases for vulnerability disclosure: (1) public dis-
closure: disclosure as soon as the vulnerability information is
received. (2) private disclosure: keep the vulnerability in-
formation security. Both of them are regarded as irre-
sponsible sharing.

+ese vulnerability disclosure schemes all rely on
guidelines, but in practice, guidelines are not mandatory.
Once a participant breaks the guidelines, the entire vul-
nerability disclosure process will be paralyzed, thus in-
creasing the threat risks from the attackers.

2.2.)reat Intelligence Sharing. To prevent the leak of
sensitive data in threat intelligence containing uiv, many
studies have integrated cryptography primitives into their
threat intelligence sharing scheme. Vakilinia et al. [16]
designed a mechanism enables the organizations to share
their cybersecurity information anonymously. Meanwhile,
they proposed a new blind signature based on BBS+ to
reward contributions anonymously. Badsha et al. [17]
proposed a privacy preserving protocol where organizations
can share their private information as an encrypted form
with others and they can learn the information for future
prediction without disclosing any private information. de
Fuentes et al. [18] introduced PRACIS, a scheme for
cybersecurity information sharing that guarantees private
data forwarding and aggregation by combining STIX and
homomorphic encryption primitives. Homan et al. [19]
leveraged the security properties of blockchain and designed
a more effective and efficient framework for cybersecurity
information sharing network. Preuveneers et al. [20]
employed blockchain and CP-ABE to offer fine-grained

2 Security and Communication Networks

protection and trustworthy threat intelligence sharing with
the ability to audit the provenance of threat intelligence.

However, these schemes are helpful to protect the uiv
information sharing, while the sharing protection of uiv
information has not been involved. Without mitigation
measures, the leakage of an undisclosed IIoT vulnerability
could cause a large-scale damage [21–23]. +erefore, while
protecting the sharing of uiv information, the responsibility
of SWs should be traced back.

2.3. Data Leakage Prevention. Currently, some researchers
focus on leveraging cryptography algorithms to implement
an accountable and efficient data sharing in research of
tracing data leakage. Mangipudi et al. [24] presented a
committed receiver oblivious transfer (CROT) primitive to
fairly track the traitor of leaked data by oblivious transfer
(OT) protocol and zero knowledge (ZkPok). Huang et al.
[25] designed an accountable and efficient data sharing
scheme for industrial IoT (IIoT), named ADS/R-ADS/E-
ADS, in which data receiver’s private key (i.e., evidence) is
embedded in sharing data, and data owner can pursue the
responsibility of a public for profits while without permis-
sion. Zhang et al. [26] proposed a fair traitor tracing scheme
to secure media sharing in the encrypted cloud media center
by proxy re-encryption and fair watermarking. Ning et al.
[27] presented a traitor tracing with CP-ABE scheme by two
kinds of noninteractive commitments. Based on signatures,
Imine et al. [28] proposed a novel accountable privacy-
preserving solution for public information sharing allows to
trace malicious users.

+e above schemes all contribute to the sharing of threat
intelligence. Nevertheless, these schemes cannot deal well
with the trade-off between traceability time and robustness.
A lightweight traceability scheme is required to uiv sharing.

3. Our Proposed UIV-TSP Scheme

With dynamic token, we propose an undisclosed IIoT
vulnerabilities sharing protection scheme called UIV-TSP to
prevent uiv leakage until their patches are released. Con-
cretely, the UIV-TSP scheme consists of four collaborative

modules: dynamic token management, blockchain-assisted
continuous logs storage, internal leakage prevention with
one-step traceability, and trust-based SWs distinction.

3.1. System Architecture. To prevent uiv leakage, we first
present the system architecture of the UIV-TSP scheme.
Figure 2 illustrates the overall system architecture of our
scheme, which consists of the following entities:

(1) Trusted authority (TA): trusted authority is re-
sponsible for processing SW’s access requests, gen-
erating and updating dynamic token, and evaluating
trust value of SWi.

(2) Security workers (SWs): there exist some workers
who access uiv information in the sharing envi-
ronment to develop their mitigation measures. We
describe three types of workers: (1) honest SWs who
do not engage in unauthorized access; (2) semi-
honest SWs who have a chance of committing
malicious behavior; (3) dishonest SWs who often
leak uiv information. In this paper, SWs are defined
as SW1, SW2 . . . SWm􏼈 􏼉.

3.2. Dynamic Token Management. We introduce dynamic
token as the implicit access credential and traceability clue
for an SW. As shown in Figure 3, the lifecycle of dynamic
token is consisted of generation and update.

3.2.1. Token Generation. When an SW submits a new un-
disclosed vulnerability vulj, each internal SW is assigned a
corresponding token called tokenaccess, which is only held by
the system and cannot be seen by anyone. TA generates the
initial tokenaccess through a hash function. Meanwhile, we
define vulmeta as the meta information of an uiv. +e initial
tokenaccess can be calculated as follows:

tokenaccess � H SWi

����vulmeta‖tp‖nonce􏼐 􏼑. (1)

Even if an SW is granted access through identify au-
thentication, the uiv cannot be acquired without tokenaccess.
Algorithm 1 is performed to generate and update tokenaccess.

�e same
organization/person

Finder

Reporter

Share

Upstream
Vendor

Report

Coordinator

Coordinate

Coordinate

Report

Deployer

Share

Share

Share

Share

Responsible
Vulnerability

Disclosure

Coordination
Vulnerability

Disclosure

Downstream
Vendor

Patch

User

Feedback

Patch

Public Disclosure

Patch

Figure 1: Flowchart of vulnerability disclosure policy [15].

Security and Communication Networks 3

TA

TA

Leakage Prevention with One-
step

Undisclosed Vulnerabilities

Dishonest SW

Trust -based SWs
Distinction

Continuous Logs
Storage

Blockchain

Dynamic Token
Managment

Implement
Trust Value Evaluation

Vulnerability Info
Upload/Download

Access credential

Support

Implement

Support

TA

Assist

Association

Honest SW Semi-honest SW

SWi

SWi

Codepreleak

SWi

FeedbackTrap conspirators

Figure 2: System architecture of the UIV-SP scheme.

TA

Upload
vulnerability

SWs Pool

...

s

Storage

TA

Request
vulnerability

Token
update

Storage Revoke

Embed

Feedback

Blockchain

Original token generation

SWi

SWi

tokenaccess
generation

tokentracing
generation

Vulnerability
tokentracing

Vulnerability
tokentracing

SWi

SW1

SW2

Original token update

<SWi, tp, nonce, vulmeta> <SWi, tp, nonce', vulmeta> <tokenaccess, maccurrent>

Figure 3: Lifecycle of dynamic tokens.

4 Security and Communication Networks

3.2.2. Token Update. To avoid malicious inference, we in-
tegrate a one-time random number into the hash generation
of token to update token dynamically. At the end of SW
access, tokenaccess will be update as follows:

tokenaccess⟵H SWi

����vulmeta‖tp‖nonce′􏼐 􏼑. (2)

Meanwhile, the current tokenaccess and the MAC address
of the SW are hashed to create the traceability token called
tokentracing. Tokentracing can be defined as follows:

tokentracing⟵H tokenaccess‖maccurrent(􏼁. (3)

In our scheme, tokentracing can be stealthily sneaked into
the acquired vulj information as the traceability credential.
+e execution strategies of dynamic token management can
be executed with four steps, the more details are given in
[29].

3.3. Blockchain-AssistedContinuous Logs Storage. Due to the
advantages including transparency, traceability, and tamper-
proofing, many studies have integrated blockchain into the
prior works to implement a reliable and efficient data storage
[30]. In general, there are three types of blockchain data
storage patterns [31]:

(1) Public blockchain: a public blockchain is the
blockchain that can read by anyone in the world,
anyone can send transactions to and expect to see
them included, if they are valid, and anyone can
participate in the consensus process, which deter-
mines what blocks get added to the chain and what
the current state is.

(2) Private blockchain: a private blockchain is the
blockchain where can write by only one
organization.

(3) Consortium blockchain: a consortium blockchain is
the blockchain where the consensus process is
controlled by a preselected set of miners.

Since token can only be held by the system, the public
blockchain does not meet the requirements. Hence, a
private blockchain-assisted storage method is designed
to centralized storage logs. To prevent attackers from
tampering with data, the logs of SWs’ activities in the
shared process should also be continuously recorded on
the blockchain. +ese continuous logs, including dy-
namic token, trust value of SW (Tri), and behaviors
record (R[i]), are also only held by the system. It can be
found that the private blockchain is suitable for our
scheme.

In the blockchain, the block structure of continuous logs
storage is shown in Figure 4.

3.3.1. Block Head. +e block head is slightly different from
the traditional structure. Except for previous hash, time-
stamp, Merkle root, and block ID, several new elements are
integrated into the block head:

(i) SWi: the ID of the i-th SW who requests the un-
disclosed vulnerability in the sharing environment.

(ii) Tri: the trust value of SWi. In the block head,Tri can
be quickly retrieved by TA.

(iii) vulmeta: the meta information of an undisclosed
IIoT vulnerability.

3.3.2. Block Body. In the block body, the log data of an SW
(such as SWi) are hashed to build the Merkle tree. Except for
tokenaccess and tokentracing, the log data of SWi contain the
following elements:

(i) Input: SWi

(ii) Output: tokenaccess
(1) If SWi in SWpoolthen
(2) tokenaccess � H(SWi‖vulmeta‖tp‖nonce).
(3) If tokenaccess in blockchain then
(4) Update tokenaccess, tokenaccess↔ SWi

(5) else
(6) Store tokenaccess, tokenaccess↔ SWi

(7) If end of request access, then
(8) Revoke tokenaccess
(9) tokentracing⟵H(tokenaccess‖maccurrent)
(10) tokenaccess⟵H(SWi‖vulmeta‖tp‖nonce′)
(11) Store tokenaccess, SWi↔ tokentracing
(12) Embed tokentracing to vulj
(13) End If
(14) End If
(15) End If

ALGORITHM 1: Pseudocode of token generation and update.

Security and Communication Networks 5

(i) (seci(old), leki(old)): the historical trust data of SWi,
which can be used to evaluate the trust value of SWi

before the access.
(ii) (seci(new), leki(new)): the current trust data of SWi,

which can be used to update the trust value of SWi

after the access.
(iii) R[i]: the access request record of SWi to an uiv

information.
(iv) Ffalse: the flag whether a false uiv information has

been released.

3.4. Internal Leakage Prevention with One-Step Traceability.
To prevent SWs leaking the acquired vulj information, vulj
should be self-destruct when they leave the host of SWs one-
step. +us, we design a benign self-triggering logic bomb
codepreleak. A logic bomb is a piece of code consisting of a
trigger condition and a payload; when the trigger condition
is met, the bomb is triggered (or activated) and the payload
code gets executed [32].

codepreleak is composed of trigger condition and response
payloads. +e trigger condition is designed to detect the
access environment difference between honest SWs and
dishonest SWs, so that the protection payload will be ac-
tivated to destroy vulj on the leakage side.

As shown in Figure 5, the functional structure of
codepreleak is consisted of self-checking and self-destruct.

3.4.1. Self-Check. Once the uiv information enters the SW
host, codepreleak will extract the current SW hostMac address
and the revoked token to compute the verification value.
+en, codepreleak will match the verification value to
tokentracing. If the result Vc is inconsistent, it will trigger self-
destruct. Vc can be calculated as follows:

Vc⟵ tokentracing �� H tokenaccess,maccurrent(􏼁?. (4)

Algorithm 2 is performed to match verification value.

3.4.2. Self-Destruct. If Vc � 0, the leakage has not happened.
+at is, the uiv information has not left the SW host. +e
protection payload continues to lurk.

If Vc � 1, it may leak vulj. +at is, the uiv information
has left the SW host. In this case, the protection payload will
be activated immediately to destroy vulj.

At the same time as the self-destruct event, codepreleak can
automatically send encrypted feedback ef � tokentracing,􏽮

vulj, SWi,maccurrent, tfeedback} to TA.

(i) vulj: the ID of undisclosed IIoT vulnerability.
(ii) tfeedback: the time to codepreleak send the feedback

message.

Algorithm 2 is performed to activate the protection
payload.

3.5. Trust-Based SWs Distinction. Trust mechanism can be
adopted to evaluate the trust value of SWs according to
their historical behaviors. With trust value, we can quickly
distinguish honest SWs and dishonest SWs. For semi-
honest SWs, we can further validate their credibility by
tracing whether they have external conspirators. Different
SWs will gain different access authorities to acquire uiv
information.

3.5.1. Trust Value Evaluation. In the process of vulnera-
bilities information sharing, the behaviors of an SW are
generally dualistic: secret-keeping and leakage. With trust

Block ID

Previous Hash

Timestamp

Hash12345678

Hash1234 Hash5678

Hash 12

Hash 1 Hash 2

Hash 34

Hash 3 Hash 4

Hash 56

Hash 5 Hash 6

Hash 78

Hash 7 Hash 8

Merkle Root

R[i]

Blocks Index

Search from

Block Head

Block Body

tokenaccess tokentracing

Vulmeta

Tri

SWi

seci(old) leki(old) seci(new) leki(new) Ffalse

Figure 4: Block structure of continuous logs storage.

6 Security and Communication Networks

mechanism, if an SW often leaks information, he will get a
low trust value.

To quantify these duality behaviors, the beta function is
one of the most popular trust value evaluation methods. It
first counts the number of secret-keeping and leakage by an
SW and then calculates the trust value with beta function
denoted by Beta(α, β) [33].

Beta(α, β) �
Γ(α, β)

Γ(α)Γ(β)
θα−1

(1 − θ)
β−1

, (5)

where θ is the probability of duality behaviors, 0≤ θ≤ 1,
α> 0, β> 0.

Take SWi as an example, seci and leki denote the number
of secret-keeping and leakage in the sharing environment,
respectively. +e expectation value of the beta function can
be calculated as follows: E[Beta(α, β)] � α/(α + β). Con-
sidering that the trust value BTi is limited in the interval [0,
1], BTi can be described as follows:

BTi �
1 + seci

1 + seci + leki

. (6)

When seci ≥ 1 and leki � 0, BTi is always calculated as 1.
+e SWi is completely trusted under this condition.

Obviously, the base trust value BTi that decays too slowly
will give dishonest SWs more opportunities to leak. So, it is
very essential to introduce a penalty factor, which can be
calculated as follows:

Pi � e
− seci+leki()/seci . (7)

With the punishment of Pi to BTi, the trust value Tri of
SW can be further evaluated as follows:

Tri �

1 + seci

1 + seci + leki

· e
− seci+leki()/seci, leki < seci,

0, leki ≥ seci.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Self-Check

Self-Destruct

Request access

Automatically execute

Calculate

Acquire

Verification Value

Compare

Extract

YesNo

Destroy Feedback

TA
Feedback

Access

Revoke access

tokenaccess

tokentracing

Maccurrent

SWi

Vulj

Vulj

SWi

Vulj

Vulj tokentracing || Maccurrent

Figure 5: Functional structure of codepreleak.

Security and Communication Networks 7

In the (8), the Tri means the comprehensive trust value of
SWs, which introduces a penalty factor to cause Tri to
decrease faster when leakage occurs. Unfortunately, the trust
mechanism utilizing the beta reputation engine is suitable
for scenarios with a small amount of trust data. When the
trustworthiness of SWi is not represented by duality be-
haviors, as in the case of the collusion clique construction, it
is possible for some malicious SWs to exhibit rational be-
haviors to avoid the detection. +at is, they can keep high
trust value in an alternant process by truly sharing their uiv
information or leaking uiv information to their conspirators.

To suppress such behaviors, the special reputation en-
gine is adopted to prevent the SW trust value growth of some
rational conspirators at the uiv information sharing. Once
the TA receives messages from an SW regarding some uiv
information requests, the trust value of the SW will calculate
by applying the feedforward neural network (FNN) algo-
rithm [34], which is depicted in Figure 6.

+e input layer of FNN consists of 11 input nodes, such as
the collaborators of the target SW, the average trust value of
SW collaborators, and the number of SW’s conspirators. +e
complete input feature description is shown in Table 1. +ere
are two hidden layers with totally 16 hidden neurons. +e
output layer produces the trust value of SW, so the result of
SW trust evaluation depends on a set of individual trust
parameters rather than duality parameters. Likewise, the
output of the FNN algorithmwill be stored on the blockchain.

As we know, it is essential to learn which appropriate
weights and biases that make FNN have good performance.
+e feedforward neural network based on BP (back-
propagation) algorithm constructs the identification of plant
and inverse controller. Formula (9) describes how the cost in
a neural network is computed.

cost � 􏽘
nL−1

j�0
αL

j − yj􏼐 􏼑
2
, (9)

where αL
j represents the j-th activation of the last neuron,

and L represents the current layer. +en, the j-th activation
of the previous layer is α(L−1)

j . Assuming there are L hidden
layers in total, then nL− 1 represents the neuron in the last
hidden layer before the output layer. In actual calculations,
costs are always finding the differences of each neuron from
the expected target output minus the current output.

By introducing the feedforward neural network algo-
rithm, the trust value of SWs can be calculated accurately
and learn the potential behavior patterns among the mali-
cious SWs. In this case, we further design the distinction
rules can successfully identify which SWs are malicious.

3.5.2. Distinction Rules. SWs can be split into honest, dis-
honest, and semihonest based on their trust value.
(δh, δl, δm) are, respectively, set as the threshold of high, low,
and medium trust value. +e specific distinction rules are as
follows:

R1: for Tri > δh, the SWi’s access request for an uiv
message will be accepted. In this situation, SWi is
classified as honest.

R2: for Tri < δl, the SWi’s access request for an uiv
message will be rejected. In this situation, SWi is
classified as dishonest.
R3: for δl <Tri < δm, it is difficult to determine the
access authorities of SWi. In this situation, SWi is
classified as semihonest who may be suspiciously
dishonest SWs.

To validate the credibility of semihonest SWs, we can
trace whether they have conspirators. Let μi(·) denote
number of conspirators of SWi.

If μi � 0, there are no conspirators. Hence, SWi is
temporarily considered as honest.

If μi ≥ 1, SWi may have several external conspirators.+e
trust value of SWi will be set to 0. As a result, SWi will be
removed from the CVD and barred from rejoining.

3.5.3. Trap External Conspirators. If SWi is a semihonest
SW, a false uiv message can be released to trap his external
conspirators. +is false uiv information is set to a valid time.

Within the valid time, codepreleak will not trigger the
protection payload and provide the feedback messages,
which can be employed to build a set of leak path. Once an
external conspirator is trapped, SWi can be regarded as
dishonest.

After the valid time, the protection payload is activated
to destroy the false uiv message, so as not to spread too
widely. Algorithm 3 is performed to trap external
conspirators.

4. Performance Analysis

In this section, we conduct performance analysis on the
UIV-TSP scheme. We analyze the security of the proposed
scheme and then perform computer simulation to further
analyze the cost of the proposed scheme.

4.1. Security Analysis. In this section, we analyze how UIV-
TSP can achieve the following security requirements: uiv
sharing against leakage, blockchain storage against contin-
uous logs tampering. To analyze the security better, we also
compare UIV-TSP with some typical data leakage preven-
tion (DLP) schemes in Table 2.

4.1.1. UIV Sharing against Internal Leakage. Challenge 1:
Dishonest SW may disclose uiv to cause a large-scale
damage.

Lemma 1. UIV-TSP is resistant internal leakage for uiv.

Proof. In the UIV-TSP scheme, a benign logic bomb called
codepreleak is embedded into the uiv message, which checks
that whether the current MAC address is the same as the
present destination address in tokentracing. +eMAC address
of the device is always fixed, it is impossible to be modified.
Furthermore, the tokentracing is calculated by the hash
operation h(·), and tokenaccess that is dynamically updated at
the end of each uiv access. +e dual dynamics ensures that

8 Security and Communication Networks

tokentracing cannot be inferred. According to
Vc⟵ tokentracing �� H(tokenaccess,maccurrent)?, Vc � 1
makes the protection payload be activated immediately to
destroy vulj, so it is believed that our UIV-TSP scheme can
resist uiv leakage.

4.1.2. Blockchain Storage against Continuous Logs
Tampering. Challenge 2: the trusted sharing environment
with leakage-resilience construction relies on the trust value
evaluation. Trust mechanisms evaluate the trust value of

SWs according to their historical behaviors. Attackers can
tamper with their historical logs to disturb trust mechanism
and promote their trust quickly.+erefore, it is impossible to
distinguish honest SWs.

Lemma 2. UIV-TSP is resistant to continuous logs
tampering.

Proof. In our UIV-TSP scheme, a blockchain-assisted
method to store the continuous logs of all SWs for the

Input Layer (11) Hidden Layer (8) Hidden Layer (8) Output Layer (1)

Trsw

x1
Ci

μi

mean(Tri)

pari(new)

reji(new)

leki(new)

seci(new)

pari(old)

reji(old)

leki(old)

seci(old)

x2

x3

x4

x5

x6

x7

x8

h1

h2

h3

h4

h5

h6

h7

h8

h1

h2

h3

h4
y1

h5

h6

h7

h8

x9

x10

x11

Figure 6: Structure of the feedforward neural network.

(i) Input: uiv
(ii) Output: access/deny
(1) tokentracing � extract(vulj)

(2) If tokentracingnot invulj
(3) Go to step 15.
(4) Else
(5) Acquire MACcurrent
(6) Vc⟵ tokentracing �� H(tokenaccess,maccurrent)?
(7) IfVc � 1then
(8) Assign access authorities
(9) IfExtract(vulj) �� Ffalsethen
(10) Go to step 8.
(11) Else
(12) Send an encrypted feedback message ef to TA.
(13) Destroy the target vulj
(14) End if
(15) End if

ALGORITHM 2: Pseudocode implementation of Match verification value and self-destruct.

Security and Communication Networks 9

trusted sharing environment with leakage-resilience con-
struction. +e original token and its all-subsequent updates
should be stored on the blockchain, which is a sequence of
blocks, which holds a complete list of transaction records
like conventional public ledger. Each block points to the
immediately previous block via a reference that is essentially
a hash value of the previous block called parent block [35].
Just like a linked list, each block depends on its previous
block. +erefore, if the continuous logs maintained in a
block are tampered, its latter blocks chained on the
blockchain must be modified. Obviously, the longer the
blockchain created, the higher cost it takes to tamper with a
block. Assuming the number of latter blocks related on
Block p is lp under the condition that there are a number of

sharing regions, the number of blocks that need to be
tampered (tp) is calculated as follows:

tp � pm + pm(􏼁
2

+ . . . + pm(􏼁
lp �

pm(􏼁
lp+1

− pm

pm − 1
. (10)

For instance, tp � 1, 398, 100 when nr � 4 and lp � 10.
+erefore, it is nearly impossible to tamper with the

continuous logs maintained in Block p due to the huge
resource consumption.

4.2. Experimental Analysis. We perform simulations to
validate the performance of the UIV-TSP scheme in Python
3.7.6, combined with NumPy, pandas, matplotlib, keras,

Table 1: +e input features of the FNN algorithm.

Input features Description of the input features
Number of the target SW
collaborators

A collection of collaborators for the target SW, including collaborator identities. An integer
representing the number of SW’s collaborators ci ∈ [0, 2000)

Average trust value of SW
collaborators

A real number between 0 and 1, where 0 and 1 represent the honest collaborator and dishonest
collaborator, respectively.

Number of SW’s conspirators An integer representing the number of SW’s conspirators μi ∈ [0, 2000).
Current number of SW participating
behaviors

+e latest uiv shared and statistical behavior characteristics, represented as a real number
parinew ∈ [0, 100)

Current number of SW rejected
behaviors

+e latest uiv shared and statistical behavior characteristics, represented as a real number
reji(new) ∈ [0, 100)

Current number of SW leak behaviors +e latest uiv shared and statistical behavior characteristics, represented as a real number
leki(new) ∈ [0, 50)

Current number of SW keep-secret
behaviors

+e latest uiv shared and statistical behavior characteristics, represented as a real number
seci(new) ∈ [0, 50)

Number of SW historical
participating behaviors

Previous uiv shared and statistical behavior characteristics, represented as a real number
pari(old) ∈ [0, 100)

Number of SW historical rejected
behaviors

Previous uiv shared and statistical behavior characteristics, represented as a real number
reji(old) ∈ [0, 100)

Number of SW historical leak
behaviors

Previous uiv shared and statistical behavior characteristics, represented as a real number
leki(old) ∈ [0, 50)

Number of SW historical keep-secret
behaviors

Previous uiv shared and statistical behavior characteristics, represented as a real number
seci(old) ∈ [0, 50)

(i) Input: SWi

(ii) Output: pathi

(1) Init trust value of SW, pathi, μi number of conspirators of SW
(2) Tri evaluate based on the feedback ef, retrieves SW historical trust values Tri

(3) If δl <Tri < δm then
(4) Release false vulj to SW to induce unauthorized behavior, Ffalse � true
(5) SWi↔ tokentracing Extract the tokentracing corresponding to the malicious SW
(6) μi + + increased number of SW conspirators
(7) If valid time expire then
(8) Invoke Self- Destruct
(9) Else:
(10) maccurrent not in pathi

(11) pathi add (maccurrent)
(12) End if
(13) Else
(14) Release normal vulj to SW.
(15) End if

ALGORITHM 3: Pseudocode implementation of trap external conspirators.

10 Security and Communication Networks

TensorFlow, and other python libraries. +e default simu-
lation elements are shown in Table 3.

+e simulations are executed in cycle-based manner. At
each cycle, a certain percentage of SWs are randomly se-
lected as dishonest SWs. +e behavioral pattern of honest
SW is modeled to always keep secret, while dishonest SWs
may leak an uiv message sometimes. Without punishment,
dishonest SWs will hinder the establishment of a trusted
vulnerability message sharing environment. In this section,
the performance and overload of the proposed UIV-TSP
scheme are experimentally evaluated under various
settings.

+e simulation uses 2,000 SWs to generate 399,284
access record samples for training. Meanwhile, all the data
generated are outputted to a.csv file. +e proportion of
benign access record samples to malicious access record
samples in the training set is almost 1 :1. +en, the data used
are split to 70% training, and 30% validation.

After dividing the dataset, this paper uses the Adam
optimization algorithm to obtain the optimal parameter
combination, such as learning rate, epochs, and batch size.
+en, the parameters obtained are used for feedforward
neural network training, and the performance is evaluated
by cross validation. Figure 7 shows the variation of model
scores under different learning rates. +e x-coordinate
represents the learning rate, while the y-coordinate repre-
sents the model score. +e shaded graph indicates the
fluctuation range of the model score for this training. It can
be seen that the training score and testing score reach the
optimal value when the learning rate is 0.1, epoch� 10, and
batch_size� 16.

In order to evaluate the performance of the trust
mechanism based on FNN algorithm, we analyze four
evaluation metrics, namely, precision (P), recall (R), accu-
racy (A), and F1-score (F1). In this paper, the precision and
recall are defined as follows:

A �
number of truly SWs detected

total number of SWs
�

TP + TN
TP + TN + FP + FN

,

R �
number of trulymalicious SWs detected
total number of truly malicious SWs

�
TP

TP + FN
,

P �
number of trulymalicious SWs detected

total number of malicious SWs
�

TP
TP + FP

,

F1 �
2∗P∗R

P + R
.

(11)

We compare the performance of feedforward neural
network (FNN) for identifying malicious SWs with two
other well-known deep learning models, namely, recurrent

Table 2: Comparison of data leak prevention scheme.

Scheme Data leakage preventing Transmission confidentiality Continuous logs tampering
UIV-TSP Yes Yes Yes
CROT No No No
ADS No Yes No
R-ADS No Yes No
E-ADS No Yes No

Table 3: Description of simulation elements.

Parameters Description Default
SWi Number of SWs 2000
per Percentage of dishonest SWs 10%–50%
δ +reshold of trust value (0.2, 0.5, 0.8)
Cycle Number of cycle simulation 200
ε Embedded times of access credential (1, 2, 3, 4)
k +e length of access credential (256, 512, 1024)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

m
od

el
sc

or
e

0.10.010.0010.0001
learning rate

testing score
training score

Figure 7: FNN learning rate score.

Security and Communication Networks 11

neural network (RNN) and convolutional neural network
(CNN). Table 4 shows that the FNN performs best in terms
of the accuracy, recall, precision, and F1-score. In addition,
FNN clearly lower than the other algorithms in terms of the
training time costs. +at is because the FNN algorithm has
obvious advantages in network structure, and owns simpler
node connections than RNN. Due to the convolution op-
eration, CNN will require more computation. +erefore, we
conclude that FNN is a suitable deep learning algorithm for
SW trust evaluation.

+en, we analyze the detection and false alarm rate of our
UIV-TSP scheme (i.e., probability of successful detection
leaker) in Figures 8 and 9. To analyze the effectiveness better,
we compare UIV-TSP with the undisclosed IIoT vulnera-
bilities sharing protection (UIV-SP) scheme without trust
mechanism.

In this simulation, the detection rate of UIV-TSP is
better than UIV-SP in Figure 8, while the false alarm rate of
UIV-TSP is lower than UIV-SP in Figure 9. +erefore, our
designed trust mechanism can improve the performance of

82.5

85.0

87.5

90.0

92.5

95.0

97.5
D

et
ec

tio
n

Ra
te

 (%
)

3020 4010 3515 4525 50
Percentage of dishonest SWs (%)

UIV-TSP
UIV-SP

Figure 8: Detection rate under the percentage of dishonest SWs.

5020 25 30 35 40 4510 15
Percentage of dishonest SWs (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fa
lse

 A
la

rm
 R

at
e (

%
)

UIV-TSP
UIV-SP

Figure 9: Alarm rate under the percentage of dishonest SWs.

Table 4: Comparison of the performance of different algorithms.

Accuracy Recall Precision F1-score Time (s)

FNN Train 0.9751 0.9518 0.9546 0.9532 228Test 0.9736 0.9050 0.9142 0.9096

CNN Train 0.7428 0.8370 0.6486 0.7306 337Test 0.7422 0.8366 0.6481 0.7305

RNN Train 0.8804 0.8455 0.8447 0.8452 410Test 0.8780 0.8454 0.8447 0.8449

12 Security and Communication Networks

UIV-SP distinctly in the construction of trusted sharing
environment.

+en, we validate the performance of our UIV-TSP
scheme against dishonest SWs, in terms of suppressing
leakage behaviors. Dishonest SWs will leak uiv in the
sharing environment. Consequently, some leakage be-
haviors may generate in each cycle, which may cause
unnecessary waste of network resources. So, the key per-
formance indicator of UIV-TSP is to suppress these leakage
behaviors. As shown in Figure 10, it is obvious that UIV-
TSP is better than UIV-SP in suppressing leakage behav-
iors. +is means that the trust mechanism plays a key role
in the detection of dishonest SWs. In this simulation, δ is
set as (0.2, 0.5, 0.8), respectively.

We also analyze the uiv leakage prevention performance
of UIV-TSP in terms of leakage probability. In this

simulation, the percentage of dishonest SWs is set as 30%,
respectively. As shown in Figure 11, the uiv leakage prob-
ability of UIV-TSP is also lower than UIV-SP.

Finally, we evaluate the traceability performance of
UIV-TSP in terms of computational complexity. We
count the number of time-consuming operations such as
the symmetric-key encryption/decryption (SKE), public-
key encryption/decryption (PKE), cryptographic hash
function (HASH), and exponential operation (EXP) in Gq

multiplicative operation (MUL) in Gq. As shown in Ta-
ble 5, we compare UIV-TSP with three types of traditional
schemes.

It can be found that UIV-TSP cannot require any ex-
ponential operation or public-key encryption/decryption.
Moreover, the requirements for hash and symmetric key
operations are limited in UIV-TSP.

0 25 50 75 100 125 150 175 200
cycle

0

10

20

30

40

50

60

70

80
pr

ob
ab

ili
ty

 o
f l

ea
ka

ge
 (%

)

σ = 0.8 UIV-TSP
σ = 0.8 UIV-SP

0

10

20

30

40

50

60

70

80

pr
ob

ab
ili

ty
 o

f l
ea

ka
ge

 (%
)

25 50 75 100 125 150 175 2000
cycle

σ = 0.5 UIV-TSP
σ = 0.5 UIV-SP

0

20

40

60

80

pr
ob

ab
ili

ty
 o

f l
ea

ka
ge

 (%
)

25 50 75 100 125 150 175 2000
cycle

σ = 0.2 UIV-TSP
σ = 0.2 UIV-SP

Figure 10: Suppressing leakage behaviors.

Security and Communication Networks 13

To further evaluate the traceability performance of UIV-
TSP in terms of computational complexity, we can observe
the traceability delay of UIV-TSP and these traditional
schemes.

We run 200 rounds of experiments and obtain their
average traceability delay as the result. We define k as the
length of access credential. In our UIV-TSP scheme, the
access credential is a dynamic token. In the traditional

schemes, the access credential is the private key of a user. A
sufficient length of k can contribute to the collision resis-
tance generated by hashing. As the length of k increases, the
user capacity will be improved. Of course, with the increase
of k and the embedded times of access credential, the
traceability delay grows as well. As shown in Figure 12, UIV-
TSP is more computationally efficient than ADS and CROT.
+e reason is that the sharing data in UIV-TSP need not to

0

200

400

600

800

1000

1200

le
ak

ag
e b

eh
av

io
rs

25 50 75 100 125 150 175 2000
cycle

UIV-TSP
UIV-SP

(a)

25 50 75 100 125 150 175 2000
cycle

0

200

400

600

800

1000

1200

Le
ak

ag
e b

eh
av

io
rs

UIV-TSP
UIV-SP

(b)

25 50 75 100 125 150 175 2000
cycle

0

200

400

600

800

1000

1200

Le
ak

ag
e b

eh
av

io
rs

UIV-TSP
UIV-SP

(c)

Figure 11: Probability of leakage at different δ. (a) δ � 0.8. (b) δ � 0.5. (c) δ � 0.2.

Table 5: Computational complexity.

SKE HASH PKE EXP MUL
CROT 4t 8t 3t 6t+ 3 2t+ 1
ADS 2t 2t N/A N/A N/A
R-ADS 2t 2t N/A N/A 4kt+ 2t
Ours work N/A 3t N/A N/A N/A

14 Security and Communication Networks

perform oblivious transfer (OT) and zero-knowledge proof.
Once the embedded times vary from 1 to 4, the number of
OT increases linearly.

In summary, our UIV-TSP scheme can prevent the uiv
information leakage effectively, which merely requires
limited traceability delay caused by multiple shared SWs.

5. Industrial Applications Discussion

Since the IIoT vendors generally have weak security
emergency response capabilities, some SWs can be invited to
help them path a new uiv by means of CVD. Our UIV-TSP
scheme can prevent the uiv leakage effectively in CVD and
trace the dishonest SWs with limited traceability delay. As
shown in Figure 13, UIV-TSP can be applied to several IIoT
scenarios, such as energy, logistics, manufacturing, and
transportation.

Take the IIoT manufacturing as an example. Once an
IIoT manufacturing vendor reports a new uiv in CVD, he
can select several SWs. +en, TA will assign tokenaccess to
each of them and store tokenaccess on the blockchain.
Without the implicit access credential, the unselected SWs
cannot acquire uiv. With the implicit access credential, a
selected SW can only acquire uiv on the basis of his high
trust value. In this way, the uiv sharing can be restricted
within the scope of permission, and the leakage problem of
dishonest SWs can be avoided in advance.

In our UIV-TSP scheme, the metadata of uiv and the
related SW access records are also stored on the blockchain,
which can make the access logs of the uiv sharing as tamper-
resistant. After the access, tokentracing and codepreleak can be
stealthily sneaked into the acquired uiv information. Once
the uiv information is one step away from the selected SW
host, codepreleak will destroy the uiv information and sends

2 3 41
Embedded time

0

20

40

60

80

100

120
Av

er
ag

e t
ra

ci
ng

 d
el

ay
 (m

s)

CROT
ADS

R–ADS
UIV–TSP

(a)

2 3 41
Embedded time

0

50

100

150

200

Av
er

ag
e t

ra
ci

ng
 d

el
ay

 (m
s)

CROT
ADS

R–ADS
UIV–TSP

(b)

0

100

200

300

400

Av
er

ag
e t

ra
ci

ng
 d

el
ay

 (m
s)

2 3 41
Embedded time

CROT
ADS

R–ADS
UIV–TSP

(c)

Figure 12: Average tracing delay. (a) k� 256. (b) k� 512. (c) k� 1024.

Security and Communication Networks 15

back feedback containing the token, thus avoiding a wide-
spread damage to the users of the IIoT manufacturing de-
vices after the uiv leakage.When themitigationmeasures are
developed, the uiv patch will be accurately distributed to the
target IIoTmanufacturing devices. Under the circumstances,
uiv can be made public.

6. Conclusion and Future Works

In this paper, we propose an undisclosed IIoT vulnerabilities
trusted sharing protection scheme against internal leakage.
To facilitate the detection of leakage behaviors, we design a
dynamic token as the implicit access credential and trace-
ability clue. Assisted by blockchain, the continuous access
logs of SWs can be securely stored. To prevent the leakage of
a vulnerability, we present a benign logic bomb called
codepreleak, which is embedded into the undisclosed IIoT
vulnerability information. A trust management system
based on deep learning is adopted to evaluate the trust value
of SWs, which can quickly distinguish SWs. Simulation
results indicate that our proposed scheme is resilient to
suppress dishonest SWs, and merely require limited trace-
ability delay.

For future works, we will investigate on the selfish SWs
and motivate them to develop the mitigation measures of
undisclosed IIoT vulnerabilities under the protection of
UIV-TSP.

Data Availability

+e data required for simulation are generated through
experiments.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e study was supported by the National Natural Science
Foundation of China (No. 61802302) and the Natural Sci-
ence Basic Research Program of Shaanxi (No. 2019JM-442).

References

[1] J. Gui, L. Hui, N. N. Xiong, and J. Wu, “Improving spectrum
efficiency of cell-edge devices by incentive architecture ap-
plications with dynamic charging,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 2, pp. 795–808, 2021.

[2] D. Cecchinato, T. Erseghe, and M. Rossi, “Elastic and pre-
dictive allocation of computing tasks in energy harvesting IoT
edge networks,” IEEE Transactions on Network Science and
Engineering, vol. 8, no. 2, pp. 1772–1788, 2021.

[3] F. Shamieh, X. Wang, and A. R. Hussein, “Transaction
throughput provisioning technique for blockchain-based
industrial IoT networks,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 4, pp. 3122–3134, 2020.

[4] W. Lu, S. Hu, X. Liu, C. He, and Y. Gong, “Incentive
mechanism based cooperative spectrum sharing for OFDM
cognitive IoTnetwork,” IEEE Transactions on Network Science
and Engineering, vol. 7, no. 2, pp. 662–672, 2020.

[5] R. Zhou, X. Wang, J. Wan, and N. Xiong, “EDM-fuzzy: an
euclidean distance based multiscale fuzzy entropy technology
for diagnosing faults of industrial systems,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 6, pp. 4046–4054, 2021.

Blockchain

Dynamic token management

Evaluation trust valueTA

cooperation

Acquire uiv information/Submit
uiv patches

Manufacturing

Store tokenaccess

Assign tokenaccess

SWi SWi

SWi

Rep
ort a

 new
 uiv

D
istribute uiv

patches

Figure 13: Industrial application case of UIV-TSP.

16 Security and Communication Networks

[6] L. D. Xu, W. He, and S. Li, “Internet of +ings in industries: a
survey,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 4, pp. 2233–2243, Nov 2014.

[7] Z. Zhou, C. Zhang, C. Xu, F. Xiong, Y. Zhang, and T. Umer,
“Energy-efficient industrial Internet of UAVs for power line
inspection in smart grid,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 6, pp. 2705–2714, 2018.

[8] C. Zhang, G. Zhou, H. Li, and Y. Cao, “Manufacturing
blockchain of +ings for the configuration of a data- and
knowledge-driven digital twin manufacturing cell,” IEEE
Internet of)ings Journal, vol. 7, no. 12, pp. 11884–11894,
2020.

[9] Y. Zhang, Z. Guo, J. Lv, and Y. Liu, “A framework for smart
production-logistics systems based on CPS and industrial
IoT,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 9, pp. 4019–4032, 2018.

[10] J. Feng, Y.Wang, J. Wang, and F. Ren, “Blockchain-based data
management and edge-assisted trusted cloaking area con-
struction for location privacy protection in vehicular net-
works,” IEEE Internet of)ings Journal, vol. 8, no. 4,
pp. 2087–2101, 2021.

[11] J. M. Mcginthy and A. J. Michaels, “Secure industrial Internet
of+ings critical infrastructure node design,” IEEE Internet of
)ings Journal, vol. 6, no. 5, pp. 8021–8037, Oct 2019.

[12] Y. Shah and S. Sengupta, “A survey on classification of cyber-
attacks on IoT and IIoT devices,” in Proceedings of the 2020
11th IEEE Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON), pp. 0406–
0413, New York, NY, USA, October 2020.

[13] W. Zhao and G.White, “A Collaborative Information Sharing
Framework for Community Cyber Security,” in Proceedings of
the 2012 IEEE Conference on Technologies for Homeland Se-
curity (HST), pp. 457–462, Waltham, MA, USA, November
2012.

[14] “ISO/IEC 29147:2018 Information technology -Security
techniques- Vulnerability disclosure,” 2018, https://www.iso.
org/standard/72311.html.

[15] D. Allen, “+e CERT guide to coordinated vulnerability
disclosure,” 2019, https://vuls.cert.org/conf luence/display/
CVD/+e+CERT+Guide+to+Coordinated+Vulnerability+
Disclosure.2019-12-12.

[16] I. Vakilinia, D. K. Tosh, and S. Sengupta, “Privacy-preserving
cybersecurity information exchange mechanism,” in Pro-
ceedings of the 2017 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems
(SPECTS), pp. 1–7, Seattle, WA, USA, July 2017.

[17] S. Badsha, I. Vakilinia, and S. Sengupta, “Privacy preserving
cyber threat information sharing and learning for cyber de-
fense,” in Proceedings of the 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC),
pp. 0708–0714, Las Vegas, NV, USA, January 2019.

[18] J. M. de Fuentes, L. Gonzalez-Manzano, J. Tapiador, and
P. Peris-Lopez, “PRACIS: privacy-preserving and aggregat-
able cybersecurity information sharing,” Computers & Secu-
rity, vol. 69, pp. 127–141, 2017.

[19] D. Homan, I. Shiel, and C.+orpe, “A new network model for
cyber threat intelligence sharing using blockchain technol-
ogy,” in Proceedings of the 2019 10th IFIP International
Conference on New Technologies, Mobility and Security
(NTMS), pp. 1–6, Canary Islands, Spain, June 2019.

[20] D. Preuveneers, W. Joosen, J. Bernal Bernabe, and
A. Skarmeta, “Distributed Security Framework for Reliable
+reat Intelligence Sharing,” Security and Communication
Networks, vol. 2020, pp. 1–15, Article ID 8833765, 2020.

[21] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and
R. Jain, “Machine learning-based network vulnerability
analysis of industrial Internet of +ings,” IEEE Internet of
)ings Journal, vol. 6, no. 4, pp. 6822–6834, Aug 2019.

[22] V. Sharma, G. Choudhary, Y. Ko, and I. You, “Behavior and
vulnerability assessment of drones-enabled industrial Internet
of +ings (IIoT),” IEEE Access, vol. 6, pp. 43368–43383, 2018.

[23] F. Xiao, L.-T. Sha, Z.-P. Yuan, and R.-C. Wang, “VulHunter: a
discovery for unknown bugs based on analysis for known
patches in industry Internet of +ings,” IEEE Transactions on
Emerging Topics in Computing, vol. 8, no. 2, pp. 267–279,
2020.

[24] E. V. Mangipudi, K. Rao, J. Clark, and A. Kate, “Towards
automatically penalizing multimedia breaches (extended
abstract),” in Proceedings of the 2019 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW),
pp. 340–346, Stockholm, Sweden, June 2019.

[25] C. Huang, D. Liu, J. Ni, R. Lu, and X. Shen, “Achieving ac-
countable and efficient data sharing in industrial Internet of
+ings,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 2, pp. 1416–1427, 2021.

[26] L. Y. Zhang, Y. Zheng, J. Weng, C.Wang, Z. Shan, and K. Ren,
“You can access but you cannot leak: defending against illegal
content redistribution in encrypted cloudmedia center,” IEEE
Transactions on Dependable and Secure Computing, vol. 17,
no. 6, pp. 1218–1231, 2020.

[27] J. Ning, Z. Cao, X. Dong, and L. Wei, “White-box traceable
CP-abe for cloud storage service: how to catch people leaking
their access credentials effectively,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 5, pp. 883–897,
2018.

[28] Y. Imine, A. Lounis, and A. Bouabdallah, “An accountable
privacy-preserving scheme for public information sharing
systems,” Computers & Security, vol. 93, Article ID 101786,
2020.

[29] W. Zhang, J. Zhang, Y. Shi, and J. Feng, “Blockchain-assisted
undisclosed IIoT vulnerabilities trusted sharing protection
with dynamic token,” 2021, https://arxiv.org/abs/2103.08908.

[30] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang,
“Blockchain and federated learning for privacy-preserved data
sharing in industrial iot,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 6, pp. 4177–4186, 2020.

[31] V. Buterin, “On Public and Private Blockchains,” 2015,
https://blog.ethereum.org/2015/08/07/on-public-and-
private-blockchains.

[32] Q. Zeng, L. Luo, Z. Qian et al., “Resilient user-side android
application repackaging and tampering detection using
cryptographically obfuscated logic bombs,” IEEE Transactions
on Dependable and Secure Computing, vol. 18, pp. 2582–2600,
2021.

[33] A. Jϕsang and R. Ismail, “+e beta reputation system,” Proc.
)e 15th Bled Electronic Commence Conference, vol. 5,
pp. 2502–2511, 2002.

[34] C. Zhang, W. Li, Y. Luo, and Y. Hu, “AIT: an AI-enabled trust
management system for vehicular networks using blockchain
technology,” IEEE Internet of)ings Journal, vol. 8, no. 5,
pp. 3157–3169, 2021.

[35] H. Wang, Z. Zheng, S. Xie, H. N. Dai, and X. Chen,
“Blockchain challenges and opportunities: a survey,” Inter-
national Journal of Web and Grid Services, vol. 14, no. 4,
pp. 352–375, 2018.

Security and Communication Networks 17

https://www.iso.org/standard/72311.html
https://www.iso.org/standard/72311.html
https://vuls.cert.org/conf luence/display/CVD/The+CERT+Guide+to+Coordinated+Vulnerability+Disclosure.2019-12-12
https://vuls.cert.org/conf luence/display/CVD/The+CERT+Guide+to+Coordinated+Vulnerability+Disclosure.2019-12-12
https://vuls.cert.org/conf luence/display/CVD/The+CERT+Guide+to+Coordinated+Vulnerability+Disclosure.2019-12-12
https://arxiv.org/abs/2103.08908
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains

