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Using image segmentation techniques to assist physicians in brain tumor diagnosis is a hot issue in computer technology
research. Although most brain tumor segmentation networks to date have been based on U-Net, the prediction results are
depending on which are not well generalized and need to be further improved. As the depth of the network increases, the
gradients of the network vanish together with the decrease of the accuracy; meanwhile, the large number of parameters in the
network will cause data redundancy. Moreover, a single modality of MRI images cannot adequately segment tumor details.
Therefore, a segmentation network with an improved U-Net model is proposed in this paper, which combines Dilated
Convolution-Dense Block-Transformation Convolution-Unet (hereafter referred to as DRT-Unet). The network adopts the
combination of dilated convolution, dense residual block, and transposed convolution. In the coding process, a dilated
convolution block and a local feature residual for fusing dense block are adopted to replace the 3 x 3 convolution layers on each
layer in U-Net, and a transition layer is used for down-sampling. In the decoding process, a local feature residual is adopted for
fusing dense blocks; meanwhile, a deconvolution structure with up-pooling and transposed convolution cascade is used. By
connecting the decoded output features with the encoded low-level visual features, the information on transition layer loss is
obtained. The experiments in this paper are carried out on BraTs2018 and BraTs2019 datasets; as a result, the DRT-Unet

network can effectively segment tumor lesion regions.

1. Introduction

Brain tumors are a general term for tumors of the nervous
system that grow inside the skull, second only to tumors of
the lung, stomach, uterus, and breast, accounting for ap-
proximately 5% of systemic tumors, 70% of childhood tu-
mors [1], and more than 2.4% of deaths [2]. Magnetic
resonance imaging (MRI) is one of the most commonly used
diagnostic techniques in clinical care, which is particularly
important in the diagnosis of brain tumors. It is noninvasive,
accurately providing the shape, size, and location of the
brain tumors without the patients receiving high ionizing
radiation, as well as having good soft tissue contrast [3].
Accurate segmentation of brain tumors is of essential im-
portance for disease diagnosis, pathological research, and
later surgical plan determination.

Although accurate segmentation of brain tumors is re-
quired in clinical research, it is usually filled with challenges,
mainly including image artifacts, noise, and low contrast, as
well as considerable variations in tumor shape, size, and
location from case to case. What is more, the segmentation
of brain tumors is more challenging since the boundaries
between the structures of brain tumors are fuzzy and the
internal structures are similar. Manual segmentation of the
brain tumors, which depends on the doctor’s expertise and
experience, is quite cumbersome. Therefore, the study of a
method that can automatically, accurately, and effectively
segment brain tumors is of great significance for clinical
diagnosis and surgery.

In recent years, deep learning has achieved a series of
successes in many fields such as image, audio, and natural
language. Among them, convolutional neural networks
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(CNNs) have important references in computer vision tasks
[4-9], and significant progress has been made in semantic
image segmentation [10, 11]. CNNs learn visual and se-
mantic features in images during the training process, re-
ducing the complexity of the network model and making it
possible to train networks in depth. In summary, deep CNNs
have a wide range of applications in medical image pro-
cessing [12-14]. According to the different input and output
methods, the image segmentation method based on deep
learning can be divided into block segmentation and end-to-
end segmentation, and the latter is mainly realized through
the encoder-decoder structure. The complete image or image
block is input, and the type probability of each pixel in the
output image is decoded, so as to achieve the purpose of
tumor region segmentation. The relevant model of this
method is mainly based on the U-Net network, which
proposes a symmetric structure with jump connections to
retain image details, becoming the mainstream framework
for most image segmentation tasks. Although the improved
method based on U-Net improves the segmentation per-
formance, there is still room for improvement in network
depth and generalization. In recent years, the concept of
identity mapping has been introduced to balance the depth
and performance of the network. However, the use of re-
sidual blocks to adjust the number of channels makes the
number of channels increase dramatically, resulting in data
redundancy. Unimodal MRI images cannot complete the
full segmentation of tumor-related areas and details, and the
use of multimodal brain tumor images can make up for the
above weaknesses.

In this paper, the characteristics and performance of
each model are combined and a multimodal brain tumor
segmentation method is proposed for the DRT-Unet net-
work, which is similar to U-Net in the overall framework.
The exact contributions of this paper are as follows:

(1) The ordinary convolution with dilated convolution is
combined to expand the sensory field and optimize
the feature extraction capability. While introducing
two mapping methods, 3 x 3 ordinary convolution
and dilated convolution in parallel can obtain a
sensory field larger than 9 frames, with a greater
sensory field and better feature extraction capability.
Each pixel in the output feature map can respond to a
larger area in the image.

(2) The dense block used in this paper consists of a dense
layer and a residual fusion of local features. The
“jump connection” of ResNets is introduced in the
down-sampling process, which is combined with the
dense block to preserve and propagate the rich low-
level visual features [15], such as brain tumor
brightness, color, texture, and other features that
directly stimulate vision.

(3) In the decoding process, dense blocks are fused by
using local feature residuals to form a cascaded
deconvolution structure, so that the output image
has the same dimension as the input image, while in
the decoding process, low-level visual features from
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the encoding process are connected with the same
dimension and channels; meanwhile, features are
fused to obtain the missing information after the
transition layer in the encoding path.

2. Related Work

Currently, most deep CNNs used for brain tumor seg-
mentation networks are end-to-end. End-to-end brain tu-
mor segmentation networks use an encoding-decoding
approach where the input is the whole image or image block.
The features are extracted by encoding in the convolutional
layer, which is then decoded to obtain the class probability of
each pixel point in the whole image or image block finally.
Such a segmentation method is mainly based on FCN [16]
and U-Net networks [17]. Raza et al. [18] proposed a hybrid
model based on a deep residual network and U-Net, which
takes the residual network as the encoder to deal with the
problem of gradient disappearance, as well as uses low-level
and high-level features to predict. Nevertheless, this method
ignores the context information, resulting in high compu-
tational costs. Zhang et al. [19] proposed a multi-scale mesh
aggregation network. By introducing an improved inception
module to replace the standard convolution, effective in-
formation is extracted and aggregated from different re-
ceptive fields, and the network aggregation strategy is
adopted to gradually refine shallow features. However, the
number of network parameters is large, accompanied by low
segmentation efficiency. Chen et al. [20] proposed a sym-
metric network based on a deep convolution neural network,
which expanded the functional mapping between low-level
and high-level features by adding symmetric masks in
multiple layers, and combined the prior knowledge of
symmetry with brain tumor segmentation; however, the
effect of low-contrast tumor segmentation was poor. Wang
et al. [21] proposed a segmentation network based on a
segmented attention module, which extracted useful in-
formation in connected features through different attention
mechanisms and discarded redundant information to realize
selective aggregation of features. What is more, Wang et al.
[22] proposed extracting multi-scale image features by using
a spatial module composed of multiple parallel dilated
convolution layers and deepening the network structure by
using a residual module. Shen et al. [23] proposed a multi-
task full convolutional network for the automatic segmen-
tation of brain tumors. Based on the hierarchical relation-
ship between tumor substructures, the network takes
multimodal MRI images and their symmetric differential
images as inputs to extract multi-level background infor-
mation. Experiments showed that the proposed multi-task
FCN outperformed single-task FCN for all subtasks.
However, there were limitations in the FCN-based approach
for predicting low-resolution images [24]. Based on U-Net
network, Hao et al. [25] proposed a new network for brain
tumor segmentation. They used a comprehensive data en-
hancement scheme to preprocess the data and conducted the
experiments with BraTs2015 dataset. The DSC values ob-
tained in the intact tumor region, the core tumor region, and
the enhanced tumor region were 0.86, 0.86, and 0.65,
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respectively. Although the performance of the network can
be improved as more layers are added to the network,
degradation and gradient disappearance can occur with the
deepening of the network. The ResNets proposed by He et al.
[26] in 2015 cope with this problem by introducing the
concept of residual blocks. ResNets perform well in a range
of image recognition, localization, and detection tasks, such
as ImageNet and COCO object detection. The literature [24]
proposes RefineNet, a generalized multi-path optimization
network whose components are connected by using resid-
uals according to the idea of identity mapping, so as to
achieve efficient end-to-end training. Experimentally, the
method proved to improve the performance of the seg-
mentation. However, the addition of a multi-path refine-
ment network on ResNets increased the parameters of that
network as well.

DenseNet [27], as the best paper of CVPR2017, does not
take deepening and widening the network as the two ways to
improve the performance of the network, but considers the
feature perspective, greatly reducing the number of pa-
rameters as well as alleviating the problem of gradient
disappearance through feature reuse and bypass settings.
The authors in the literature [28] proposed a fully con-
volutional network for semantic segmentation, ie., FC-
DenseNet, by fusing dense blocks in DenseNet with jump
connections of ResNets. Kaku et al. [29] proposed a brain
tumor segmentation network named DenseUnet by incor-
porating the dense block structure into U-Net and con-
ducted experiments in Mindboggle-101 and New York
University (NYU) artificial correction dataset. The best Dice
values of 0.819+0.011 and 0.800+0.012 were obtained,
respectively, which were better than the segmentation
performance of U-Net.

3. Network Model

On the basis of the advantages and disadvantages of FCN,
U-Net, ResNets, and DenseNet and the computational
principles of CNNs, this paper proposes a segmentation
network of DRT-Unet, whose network structure is shown in
Figure 1. The DRT-Unet network is similar to U-Net in the
overall framework; meanwhile, a dense fusion of dilated
convolution blocks, as well as local feature residuals, is used
in the encoding process. In the coding process, the dilated
convolution block and the local feature residual fusion dense
block are used instead of two repetitive 3 x 3 convolution
layers in U-Net: the dilated convolution block consists of
dilated convolution and normal convolution, which can
expand the perceptual field without losing local information.
An X x X convolution layer can make the value of each pixel
feel an area of X2 size; for example, a 3 x 3 convolution layer
can obtain the receptive field of 9 lattice size, but the parallel
connection of ordinary convolution and dilated convolution
can not only obtain receptive fields larger than 9 lattices, but
also introduce two mapping methods at the same time.
Therefore, the combined hole-convolutional block has larger
receptive fields and better feature extraction ability. The
dense block in this paper is composed of a dense layer and
residual fusion of local features, and the identity mapping of

ResNet is connected to the dense block and the coding
process, so as to retain and spread more low-level visual
features. The transition layer is used for down-sampling in
the coding process. The decoding process is implemented by
using a deconvolution structure with local feature residual
fusion dense blocks and up-pooling and transposed con-
volution cascades, while the decoding process connects with
the lower-level visual characteristics in the encoding process
with the same dimension and number of channels, and the
features with high-level semantic information are then fused
to generate new features to obtain the missing information
after the transition layer in the encoding path. (Since then,
the deconvolution in the following refers to the cascading
operation of up-pooling and transposed convolution in the
decoding network).

It is required that the feature maps remain the same size
in the same dense block, so only a transition layer between
different dense blocks is implemented for down-sampling.
To further decrease the network parameters, a 1 x1 con-
volution operation is inserted between every two dense
blocks. The transition layer is the TD (transition down)
module in Figure 1, whose specific structure is BN + Conv
(1x1)+2x2 max-pooling. The number of layers in the
down-sampling part of the network is set according to the
number of layers in the first four dense blocks in FC-
DenseNet.

3.1. Dilated Convolution Block. Deep CNNs usually use
down-sampling or convolutional layers to enhance the
perceptual field of the network, which, however, will reduce
the spatial resolution. In order to be able to balance both
resolution and perceptual field, the literature [30] proposes
dilated convolution, also known as dilated convolution.
Therefore, in this paper, the coding process of the network
uses the dilated convolution at each layer instead of the twice
repeated 3 x 3 convolution used in the U-Net network.

The computational effort of the dilated convolution is
comparable to that of the conventional convolution, except
that the sampling density of data is changed. However, in
the results of a layer obtained by using the dilated con-
volution, the neighboring pixels are obtained from the
convolution of independent subsets. There is a lack of
correlation between them as well as a problem of local
information loss, while the network model in this paper
adopts the dilated convolution and normal convolution in
parallel to obtain this information and solve the problem of
lack of correlation between the convolution results. Input
image or image block, a 3 x 3 dilated convolution layer, and
a 3x3 ordinary convolution layer are used to extract
features under different receptive fields, and the feature
extraction results under two different mapping methods
are obtained. Two different feature extraction result ma-
trices are spliced, and the combined hole convolution block
output results are obtained through the activation function.
Compared with 3 x 3 ordinary convolution, the result has a
larger receptive field and richer contextual information.
The structure of the dilated convolution block used in this
paper is shown in Figure 2.
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3.2. Dense Residual Block. Recent research has shown that
CNNis can be trained more deeply, accurately, and efficiently
if shorter connections are used between their input and
output layers. Based on this conclusion, the literature [27]
proposed DenseNets, which consist of dense blocks that
connect each layer with all previous layers. The features on
the input of each of these layers are the outputs of all
previous layers, and the features on the output of each layer
will be used as the input of all subsequent layers. This dense
connection now makes a direct connection on the input and
loss at each layer, so the dense network can mitigate the
problem of gradient disappearance. Given the above ad-
vantages of dense blocks, the dense block of local feature
residual fusion from the literature [15] is cited in this paper,
which consists of two parts, i.e., a densely connected block
and a local feature residual block fusion.

3.3. Deconvolutional Network. The DRT-Unet network uses
local feature residuals to fuse dense blocks and up-pooling
and transposed convolutional cascade with a deconvolution

structure to realize the decoding process of feature map size
scaling. The information generated by the dense block
during the encoding process is lost after the transition layer,
but this lost information can be obtained in the decoding
path by making a jump connection to the encoding path.
Thus, the feature map after the up-pooling operation is
jump-connected with the features of the same layer in the
coding network to form the input of the next dense block. In
order to reduce the spatial dimension, the input of the dense
block in the deconvolution-decoding network is not cas-
caded with its output. As shown in Figure 1, the coding
network in the upper half is a feature extractor that extracts
feature descriptions from the input image, while the
decoding network in the lower half is a shape generator used
to generate segmentation targets from the extracted feature
maps. It can be seen that the deconvolution-decoding
network is almost a mirror result of the convolution-
encoding network.

The feature map recovered by up-pooling becomes a
sparse feature map due to the presence of a large number of 0
elements. The transposed convolution refers to the
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transposition of the convolution kernel learned in the
process of convolution. Compared with the sparse feature
map obtained after up-pooling, this sparse feature map is
used to form a dense feature map so as to correspond
multiple feature maps to one feature map. In order to
maintain the same size as the feature map obtained from the
up-pooling, the obtained dense feature map needs to be
cropped accordingly. Using the convolution kernel learned
by transposed convolution and up-pooling, the shape of the
target object based on the reconstruction is obtained in the
deconvolution network. By applying the structure of up-
pooling and transposed convolutional cascades in the
decoding path and combining jump connections to com-
pensate for the missing information, a deeper dense block
network is constructed without generating a feature map
explosion.

4. Experimental Results and Analysis

4.1. Dataset and Preprocessing. The datasets used in this
paper were derived from BraTs2018 and BraTs2019, in which
each case has four modalities, namely, T1-weighted imaging,
T2-weighted imaging, contrast-enhanced Tlce, and liquid-
attenuated inversion recovery column Flair [31], with dif-
ferent imaging modalities providing different information
about brain tumors (each modality represents a different
response to different tumor tissues) [32]. Although MRI
images can quickly and effectively detect changes in water
content in the sensing region and provide rich diagnostic
information, a single MRI modality image cannot adequately
subdivide the tumor in the region of interest and therefore
cannot solve the problem of precise regional segmentation.
Besides, using different MRI modalities can compensate for
the above weaknesses. Hence, the slices of four modalities
are used in this paper as the input of the segmentation
network.

In this paper, BraTs2018 is selected as the training set,
which contains 285 cases. Among them, 210 cases of HGG
and 75 cases of LGG are included [33]. BraTs2019 has added
49 cases of HGG and 1 case of LGG based on BraTs2018, the
new addition of which is used as the validation set. The
dimension of each MRI image in the dataset is
155 x 240 x 240. MRI images are represented as stereoscopic
pixels in NIFTI format, and a series of preprocessing op-
erations are required to fit the 2D network in this paper. A
dichotomous segmentation was used to cut the brain tumor
cases from the cross-sectional plane and obtain 2D images. A
z-score approach is then used to normalize each modal
image [34]. To alleviate the inter-category imbalance
problem, slices without lesions in the image are discarded.
To enhance the performance of model segmentation, the
original 2D images are cropped from width and height
dimensions of 240 mm to 160 mm in this paper, and the
linear features and corresponding distribution relations of
the image distribution are not changed during cropping.
After the above steps, the images were divided into 4
channels and saved as an array of formats for data training
and validation. Finally, the training set contains 17,925 slices
and the validation set contains 7,750 slices.

4.2. Evaluation Indicators. In order to measure the effect of
DRT-Unet network on brain tumor segmentation in a
comprehensive and multi-faceted way, this paper adopts
Dice [35], positive predictive value (PPV), sensitivity, in-
tersection over union (IoU) ratio [36], and Hausdorff dis-
tance (95% HD) [37] as evaluation indexes, and the
prediction results are compared with the real labeled data to
show the segmentation effect from a visual perspective.

Dice is used to measure the resemblance between the
segmentation result and the true value. The value of Dice is 1
when the segmentation result is best, and 0 when it is worst,
which is defined by the following formula:

|ANB 2TP
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PPV indicates the proportion of samples with positive
predictions that are correctly predicted, and it is defined by
the following formula:

TP

= — 2
TP + FP 2

PPV

Sensitivity indicates the proportion of samples predicted
to be positive to the total positive samples (true-positive
rate), which is defined by the following formula:

Sensitivity = L (3)
YT TP+ EN

IoU is a measure of the accuracy of the detection object,
which is defined by the following formula:

TP

= e —— (4)
FP + TP + FN

IoU

The Hausdorff distance (95% HD) is sensitive to contour
information. The more this value tends to 0, the more ac-
curate the predicted value is. In order to exclude the in-
stability and unreasonableness of the segmented data caused
by a few outliers, the parameter 95% was chosen as the
maximum distance quartile, which is defined as follows:

95%HD = max{dXY, dYX}

max min max min (5)
= max >
xeXyeY [yeYxeX

where A and B are the actual expert data values and model
prediction values, respectively. TP indicates a positive
sample with a positive model prediction, TN indicates a
negative sample with a negative model prediction, FP
represents a negative sample with a positive model pre-
diction, and FN denotes a positive sample with a negative
model prediction.

4.3. Experimental Parameter Settings. In this paper, PyTorch
library is adopted to build DRT-Unet network, while Adam
optimizer is used to train the method, with the training batch



being 20 and the training round being 400. The initial
learning rate is set to 2 x 107, with the weight decay co-
efficient set to 0.0002. k in the dense block is an indicator of
the number of feature map output per layer in each dense
block, which is set differently in this paper. Since Dice is
more commonly used than the other three evaluation
metrics, only the average value of Dice over the three seg-
mentation regions is used as the reference standard in the
stage of determining the parameter k. The results of model
segmentation under different k are shown in Table 1, where
the optimal data are in bold.

The best segmentation results are obtained when the
value of k is 16. The experimental results show that the
smaller the k is, the better the segmentation effect is;
meanwhile, the network can be avoided to become too wide.

4.4. Experimental Results and Discussion. In order to verify
the impact of each module in DRT-Unet network on the
segmentation performance, this paper takes the U-Net
network model as the basis, then adds the local feature
residual fusion dense block and the dilated convolution in
turn, respectively, to improve it, and finally, compares the
obtained experimental results with DRT-Unet. As shown in
Table 2, the experimental results in the table are mean values,
where the optimal data are in bold.

U-Net, as the reference basic framework in this paper,
obtained Dice coefficient of 0.810, precision of 0.822, recall
0f 0.919, and 95% HD of 1.157. After replacing the two 3 x 3
convolutions on each layer in the U-Net coding process with
a dense block of local feature residual fusion, all four metrics
are improved, with precision improved by 2.8% over the
U-Net network, which indicates that the dense block of local
feature residual fusion can effectively propagate and retain
low-level visual features, and can reduce the information loss
in deep network training through the fusion of local features.
When the dilated convolution block is added to the encoding
process, precision and recall are improved by 1.7% and 1.6%,
respectively, based on the previous step, indicating that the
fusion of normal convolution and dilated convolution can
expand the perceptual field, obtain richer features, and
provide more detailed information. As can be seen from the
data in Table 2, the values of Dice and 95% HD have sig-
nificantly changed, increasing by 2.2% and decreasing by
2.9%, respectively, compared with the previous method,
which indicates that the combination of up-pooling and
transposed convolution can effectively capture the global
features and detailed features, and recover the extracted
features well to the original pixels. Finally, the Dice value of
DRT-Unet is 0.861, the precision value is 0.881, the recall
value is 0.948, and the 95% HD value is 1.112. Compared
with the U-Net network, these four metrics are improved by
5.1%, 5.9%, 2.9%, and 5.3%, respectively, which fully
demonstrates the effectiveness of the proposed method in
this paper.

In order to further prove the segmentation performance
of this method, the classical deep learning segmentation
networks FCN8s, U-Net, and the methods in literature [29]
(DenseUnet), literature [38] (DeepResUnet), literature [39]
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TaBLE 1: Dice coefficient values at different k.

k Dice coeflicient value
16 0.861
32 0.796
48 0.789

TaBLE 2: Comparison of different segmentation network models in
each index.

Network model Dice Precision Recall 95% HD
U-net 0.810 0.822 0.919 1.157
L-DB + U-Net 0.823  0.850 0.929 1.146
Dilated conv+L-DB+U-Net 0.839 0.867 0945 1.133
DRT-Unet 0.861 0.881 0.948 1.104

(H 2 NF-Net), as well as literature [40] (MCA-ResUNet) are
compared with DRT-Unet network, and all experiments use
multimodal images of the same dataset as the input to the
network. The goal of this paper is to segment three regions,
WT, TC, and ET. WT is the intact tumor, which represents a
blue region in the figure. Preoperative MRI images showing
the extent and volume of the edema of the intact tumor can
achieve high-precision localization of the tumor. TC is the
core tumor, which corresponds to the white region in the
figure and is a malignant tumor evolving from glial cells in
the brain. The red region belongs to ET, which is the tumor-
enhancing necrotic region, and is composed of necrotic cells.
In this paper, the Flair sequence with the most obvious
bright contrast is selected as the original contrast image from
four modalities, T1, T2, Flair, and Tlce. Three cases with
different characteristics are selected for doing visual effect
comparison, the results of which are shown in Figures 3-5.
In the figures, (a) is the original Flair sequence image, (b) is
the manual segmentation label, and (c), (d), (e), (f), (g), (h),
and (i) are the segmentation results of FCN8s, U-Net,
DenseUnet, DeepResUnet, H 2 NF-Net, MCA-ResUNet,
and DRT-Unet, respectively.

From the experimental results of the above three cases,
the segmentation results of FCN8s are relatively rough.
Figures 3 and 4 clearly reveal that the segmentation at the
edge of the tumor is unclear, and the TC and ET regions
cannot be finely segmented, with the poor overall effect.
DenseUnet uses dense blocks to compensate for the detailed
information of U-Net, which substantially improves the
segmentation effect. However, by observing Figure 3, we find
that the segmentation of WT edge region appears hollow. In
Figure 5, we find that the segmented edge branching region
is broken, and the contour is incoherently connected.
DeepResUnet uses residual blocks to fuse multidimensional
features. Although the segmentation results are generally
better, the generalization ability is poor and there are many
fragmented points at the boundary of WT region. Compared
with U-Net segmentation results, DRT-Unet segmentation
in WT area is more accurate, and the false segmentation
region is smaller. It is obviously shown in Figure 4 that
U-Net is unable to perform fine segmentation for areas with
irregular edges, while the outline of DRT-Unet is closer to
manual labels, showing that the dilated convolution block
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FIGURE 3: Case 1: weak contrast between light and dark inside the
image, and difficulty in further fine segmentation of heterogeneous
regions. (a) Original image. (b) Handmade labels. (c) FCNS8s. (d) U-
Net. (e) DenseNet. (f) DeepResUnet. (g) H 2 NF-Net. (h) MCA-
ResUNet. (i) DRT-Unet.
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FIGURE 4: Case 2: tumor spread and metastasis can reflect seg-
mentation effects on multiple regions. (a) Original image. (b)
Handmade labels. (c¢) FCNS8s. (d) U-Net. (e) DenseNet. (f)
DeepResUnet. (g) H 2 NF-Net. (h) MCA-ResUNet. (i) DRT-Unet.
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FIGURE 5: Case 3: the image is characterized by complex edges and
many contour bifurcations, which can reflect the segmentation of
contour details. (a) Original image. (b) Handmade labels. (c)
FCNB8s. (d) U-Net. (e) DenseNet. (f) DeepResUnet. (g) H 2 NF-Net.
(h) MCA-ResUNet. (i) DRT-Unet.

can obtain more abundant features; in addition, the com-
bination of up-pooling and transposed convolution can
effectively capture detailed features. DRT-Unet segmenta-
tion in each region is more complete compared with the
above methods, the contrast between the core tumor region
and the intact tumor region is clearer, and the contour line
segmentation also performs better in detail than the existing
algorithms.

Meanwhile, the IoU curves and loss function curves of
the proposed methods in this paper are compared with those
of FCNS8s, FCN16s, FCN32s, U-Net, DenseUnet, and
DeepResUnet, as shown in Figures 6 and 7. From these two
figures, it can be seen that the IoU value of DRT-Unet is
significantly higher than that of other methods, while the
final loss function value is the lowest.

To better reflect the segmentation effect, the segmen-
tation results of WT, TC, and ET were further and quan-
titatively analyzed by four assessment metrics, namely, Dice,
precision, recall, and 95% HD, respectively. The whole tu-
mor (WT) category includes all visible labels (a union of
blue, yellow, and red labels), while the tumor core (TC)
category is a union of red and yellow. Different from the two
mentioned above, the enhancing tumor (ET) core category is
only yellow (a hyperactive tumor part). The comparison
results between DRT-Unet and other networks are shown in
Tables 3-6, where the optimal data are shown in bold. As can
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FiGure 7: Comparison of loss function curves.

be seen from the table, the best data of DRT-Unet on these
four evaluation indicators can reach 0.918, 0.93, 0.968, and
0.748, respectively. Besides, the values of each index on TC

are higher than those on WT and ET regions, which indicates
that the TC region is relatively well segmented. Although the
precision and Dice of DRT-Unet are slightly worse than
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TaBLE 3: Dice coefficient values under different networks.
Di Network
ice
FCN8s  FCN16s FCN32s  U-Net DenseUnet DeepResUnet H2 NF-net MCA-ResUNet  DRT-Unet
WT 0.564 0.539 0.418 0.769 0.792 0.799 0.913 0.849 0.842
TC 0.897 0.898 0.872 0.917 0.921 0.92 0.849 0.865 0.918
ET 0.531 0.495 0.351 0.743 0.765 0.765 0.79 0.784 0.823
Average 0.664 0.644 0.547 0.81 0.826 0.828 0.85 0.833 0.861
TaBLE 4: Precision values under different networks.
o Network
Precision
FCN8s FCN16s FCN32s U-Net DenseUnet DeepResUnet H2 NF-Net MCA-ResUNet  DRT-Unet
WT 0.564 0.536 0.414 0.783 0.809 0.812 0.83 0.868 0.842
TC 0.911 0.905 0.897 0.935 0.932 0.926 0.912 0.89 0.918
ET 0.526 0.485 0.357 0.76 0.782 0.791 0.788 0.805 0.823
Average 0.667 0.642 0.556 0.826 0.841 0.843 0.854 0.854 0.861
TaBLE 5: Recall values under different networks.
Recall Network
eca
FCN8s  FCNI16s FCN32s U-Net DenseUnet DeepResUnet H2 NF-Net MCA-ResUNet  DRT-Unet
WT 0.94 0.913 0.91 0.925 0.928 0.94 0.923 0.86 0.95
TC 0.918 0.926 0.922 0.935 0.966 0.966 0.9 0.845 0.968
ET 0.908 0.879 0.853 0.909 0.914 0.915 0.894 0.917 0.923
Average 0.922 0.906 0.895 0.923 0.936 0.942 0.915 0.874 0.947
TABLE 6: 95% HD values under different networks.
Network
95% HD
FCN8s  FCN16s FCN32s U-Net DenseUnet DeepResUnet —H2 NF-Net MCA-ResUNet  DRT-Unet
WT 1.809 2.211 2.598 1.334 1.42 1.345 1.1 2.592 1.252
TC 0.788 0.829 0.913 0.711 0.698 0.749 1.14 1.595 0.748
ET 2.114 2.27 2.738 1.417 1.476 1.407 2.61 2.739 1.315
Average 1.579 1.77 2.083 1.154 1.198 1.167 1.617 2.31 1.105

DenseUnet in the TC region, all the metrics of WT and ET
are improved to various degrees compared with other
methods, and the mean values of all the metrics of the
proposed method are the highest in all three regions, in-
dicating that DRT-Unet can segment WT, TC, and ET better
and achieve more satisfactory segmentation results.

5. Conclusion

At present, the majority of brain tumor segmentation
methods are based on two networks, FCN and U-Net, but
the network connection based on FCN is not fine-grained
and ignores the relationship between different pixel points.
The U-Net model is experimentally proven to be slightly
improved compared with FCN, but the overall general-
ization of prediction results is not strong and needs to be
improved to a certain depth. To address these problems,
this paper proposes a DRT-Unet network for the accurate
segmentation of brain tumors, where four MRI modality
images are used as input, and a dilated convolution block is
used to expand the perceptual field in the coding process, so
that the network can obtain richer and more detailed

feature information. Meanwhile, a dense block of local
feature residual fusion is used in the coding process to
propagate and preserve low-level visual features, reducing
the information loss in deep network training through the
fusion of local features. The DRT-Unet network adopts a
dense block of local feature residual fusion and a decon-
volution structure of up-pooling and transposed convo-
lution cascade to achieve the decoding process of feature
map size enlargement. The up-pooling and transposed
convolution play a key role in recovering the global features
and detailed features of the image. It can be seen from the
experiments in this paper and the comparison with other
methods that the DRT-Unet method can achieve effective
segmentation of brain tumor lesions. Moreover, compared
with the other four segmentation methods, the proposed
network in this paper has better performance in visual
effects and objective indexes.
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