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As the number and computational power of electronic computing units installed in standard automobiles continue to increase,
contemporary motor vehicles face more cybersecurity threats than previous designs, while providing greater convenience and
various useful features. Although vehicles are attacked at various entry points, eventually, attacks are injected into the in-vehicle
controller area network (CAN) to cause vehicle anomalies. Currently, OEMs and research fields have implemented protection for
the CAN bus in terms of external interfaces, internal protocols, and intrusion detection. Although the deployment of intrusion
detection solutions is the most effective approach, the main challenges currently faced by automobile intrusion detection al-
gorithms in practice involve limited computing resources, insufficient real-time responsiveness, and low recognition accuracy. In
this study, we propose a novel intrusion detection method based on the message and time transfer matrix to address these
difficulties, which can be applied to the vehicle Electronic Control Unit (ECU) to achieve real-time attack signal identification with
high accuracy. Experiments on actual vehicles show that the proposed algorithm identified various attacks with high accuracy
while consuming less computational and storage resources than previous methods. Moreover, the efficiency of the proposed
algorithm is not affected by the attack injection frequency. Compared with other methods, the proposed method achieved better
attack identification performance. Additionally, the message and time transfer matrix used by the algorithm can be used as a
message transfer fingerprint of the CAN bus to discover anomalies.

1. Introduction

With the general increase in available computational power
and the number of Electronic Control Units (ECUs) [1, 2],
automobiles have become more intelligent and networked.
Vehicles are no longer only a means of transportation but
have become a smart terminal with computing and com-
munication capabilities. Nowadays, intelligent vehicles
improve the driving experience and provide drivers with
greater convenience, such as through more accurate
assisted driving and more diverse media access. Aside from
comfort and functionality, security threats to cars have
increased [3, 4] and drawn attention from the research
community. Researchers have demonstrated the possibility
of attacks against intelligent vehicles [3–5]. In one poignant

example, in 2015, Miller et al. exploited a CAN bus-con-
nected entertainment system and ECU firmware to attack a
Jeep Cherokee driving on the highway, causing a series of
severe consequences such as loss of vehicle power, radio
problems, and uncontrolled water spray [6]. Moreover,
Rogers et al. succeeded in stopping a Tesla in place and
shutting down the car by sending commands via an iPhone
[7]. In 2019, Keen Labs in China exploited vulnerabilities in
assisted driving systems to drive vehicles into the reverse
lane and even control vehicles’ steering remotely using a
gamepad [8]. In 2021, two researchers from Kunnamon
used a drone to control the infotainment system of a Tesla
via Wi-Fi and conducted a series of malicious operations to
open doors, change steering, and acceleration modes [9].
Although the entry points for attacks against vehicles vary,
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all these attacks cause anomalies in the vehicle’s internal
network, leading to anomalous vehicle behavior. ,e
conventional controller area network (CAN) is commonly
used for internal vehicle networks. CAN is a reliable serial
bus that provides communication between individual
ECUs. However, the CAN bus uses broadcasts for com-
munication and has no encryption or authentication
mechanisms. Once hackers gain access to the CAN network
from other entry points, they can attack the vehicle control
unit, severely threatening the vehicle occupants and
pedestrians.

Original equipment manufacturers (OEMs) and re-
search organizations continue to strive to find protective
measures to address the security of the existing CAN bus.
Two protection strategies are currently used by OEMs to
prevent the CAN bus from being compromised.,e first is
to privatize the Database CAN (DBC) file that describes
the meaning of CAN messages to prevent attackers from
sending control messages to the CAN network. ,e other
is to filter anomalous messages at the OBD-II interface,
which is the CAN network’s external physical interface.
However, works [10–12] have already explored methods
to reverse engineer the DBC file used by OEMs for
protection. In addition, it is easy for hackers to find other
entrances aside from the OBD-II interface to defeat the
second security protection to execute an attack. Two main
types of CAN protection measures have also been pro-
posed in the relevant literature. ,e first approach is to
add encryption and authentication security mechanisms
to the ECU, which will inevitably increase the production
cost of the vehicle and the transmission delay of CAN
messages and cannot be used in vehicles with time-sen-
sitive control systems. ,e other is to deploy intrusion
detection algorithms in the vehicle to detect and protect
against intrusions, which is currently possible but still has
several challenges. Practical intrusion detection algo-
rithms mainly include machine learning-based and single-
feature lightweight algorithms. Machine learning-based
intrusion detection algorithms involve the challenge of
limited or deployment in resource-constrained ECUs, and
their required computation time does not meet the real-
time requirements of automotive systems. Lightweight
intrusion detection algorithms do not meet the accuracy
requirements of automotive applications, although they
solve the latency and resource problems.

To solve the problems of current automotive CAN bus
intrusion detection algorithms related to insufficient real-
time response, low accuracy, and high resource occupation,
in this study, we propose a CAN intrusion detection algo-
rithm with high accuracy, low latency, and low resource
consumption. We analyze CAN messages and time transfer
characteristics and construct a multidimensional matrix of
message ID transfer, data transfer, and time transfer based
on the results of feature analysis. ,is matrix and message
association analysis are used in the detection algorithm to
achieve fast and accurate identification of intrusion mes-
sages in daily automotive driving scenarios. ,e critical
contributions of the proposed method are summarized as
follows.

(i) In this study, an innovative attack detection method
based on a message and time transfer matrix is
proposed to detect anomalous attacks in real time,
having a high recognition rate and requiring less
resources than existing methods.

(ii) ,is study uses actual vehicle data to model, vali-
date, and detect. ,e results show that the method is
sufficiently accurate and unaffected by the speed of
attack injection in both stationary and moving
vehicles.

(iii) Compared to existing methods, the proposed
method consumes fewer ECU resources, having a
shorter response time and higher accuracy. ,ese
characteristics make it more suitable for real-world
automotive electronics.

,e remainder of this study is organized as follows.
Chapter 2 provides a preliminary overview of the CAN bus,
describes CAN network-based attack scenarios and models,
and analyzes other related works. Chapter 3 analyzes the
message transfer and time transfer characteristics of CAN
messages. Chapter 4 describes the data collection and in-
jection devices used by the algorithm, the model con-
struction and verification process, and the detection scheme.
Chapter 5 describes the accuracy results, time and resource
performance, performance of the method in actual vehicle
experiments with different attack injection frequencies,
advantages over other available schemes, and applications in
typical CAN network architectures. Chapter 6 presents a
scheme using message and time transfer matrices as fin-
gerprints for CAN data transfer. Finally, Chapter 7 sum-
marizes the work of this paper and provides some directions
for future research.

2. Background and Related Work

2.1. CANBus Preliminary. As shown in Figure 1, a standard
CAN frame begins with the start of frame (SOF), which is
explicit and allows all nodes to be hard-synchronized. ,e
SOF is followed by the arbitration field, which consists of an
11-bit identifier (ID) and remote transmission request
(RTR). ,e identifier bit is used for arbitration when
multiple nodes send data simultaneously, and the smaller the
identifier, the higher the priority. Furthermore, RTR is used
to distinguish the type of message. ,e arbitration field is
followed by a 6-bit control field, where IDE and r0 specify
the length of the frame, and the data length code (DLC) sets
the number of bytes in the data field. ,en, the data field of
the CAN frame, which contains the car’s control commands,
status data, and any other data to be transmitted, is included.
Subsequently, the circular check code (CRC) and the ac-
knowledgment field (ACK) are used to detect and confirm if
an error occurred in the transmission of the message. Fi-
nally, EOF identifies the end of the message.

In addition, there are two states in the CAN bus network,
0 is the explicit level, and 1 bit is the implicit level. If both a
dominant and a recessive level are present, the status of the
CAN bus is set to the dominant level. So when arbitrating

2 Security and Communication Networks



between different IDs, the smaller the ID, the higher the
priority.

For the attacker, the most meaningful information is the
identifier and the data fields. Based on the arbitration
mechanism of the CAN bus, an attacker can use the iden-
tification bits to implement denial of service (DoS) attacks.
In addition, the attacker will focus on the control and status
commands in the data field to perform fuzzing and replay
attacks.

2.2.CANAttackSurfaceandModel. ,is section analyzes the
attack surface and attack models on the automotive bus
based on the existing automotive CAN network architecture.

2.2.1. Attack Surface. ,e current typical CAN network
architecture is shown in Figure 2. ,e in-vehicle CAN bus
network is divided into several domains, including the
chassis, body, power, and information. Within each domain,
communication between individual ECUs is conducted
through the CAN bus. Additionally, each domain is con-
nected to a central controller, enabling interdomain com-
munication through the central controller. ,e attack
surface against this architecture can be mainly divided into
contact attacks and noncontact attacks.

When implementing physical contact attacks, because
the OBD-II interface is typically not easily found under the
steering wheel, hackers can access an attack device at the
OBD-II interface to inject anomalous messages. Addition-
ally, the attacker may hitch the attack device to an exposed
CAN connection to inject the attack. In noncontact attacks,
the hacker controls the nodes in the CAN network to send
attack messages to the CAN bus. ,e in-car entertainment
system is the most vulnerable to hacking as a node for
human-vehicle interaction. Once the node is compromised,
the attacker can send any attack message remotely. Fur-
thermore, as vehicle manufacturers are increasingly using
Over-the-Air Technology (OTA) to upgrade ECU firmware,
hackers can tamper with the upgrade package to take control
of the ECU and consequently send arbitrary messages to the
CAN bus. Either way, hackers send attack data to the CAN
network either directly or indirectly to cause abnormal
vehicle behavior.

2.2.2. Attack Model. We surveyed numerous research works
on CAN bus attacks and concluded that the current effective
attack models included DoS, fuzzy, and replay attacks. In the
actual vehicle attack tests conducted by the researchers in
this paper, it was found that there is also an ulterior fuzzy
attack that has a higher efficiency in executing attacks against
the CAN bus. Among the CAN attack models, the easiest to
identify is the DoS attack, followed by the fuzzy attack. ,e
ulterior fuzzy attack and the replay attack are more

challenging to recognize. ,e following section describes the
four CAN bus attack models.
(1) DoS Attack. All ECU nodes share the same bus resources,
and no node is under the administrator’s control. In this
case, a malicious ECU can increase the bus occupancy
without following the bus protocol, causing delays, or even
suspending other messages. ,erefore, hackers can imple-
ment DoS attacks by injecting high-priority messages into
the bus in a short time, thus preventing the delivery of other
CAN messages. An example of the DoS attack is depicted
in Figure 3. ,e bus messages with higher priority (e.g.,
ID� 0x000) were randomly injected into the typical message
traces at high speed. For example, a DoS attack can be
implemented by injecting packets with an ID of 0x000 at a
rate that is ten times the regular message interval.

(2) Fuzzy Attack. A fuzzy attack indicates that an attacker
sends random compromised IDs and data to the CAN
network at any time, even if the attacker does not have any
specific information about the victim. ,e attacker is only
required to send a malicious message in the same form as a
normal CAN message all the time, and the vehicle may be
successfully attacked. Unlike a DoS attack, the fuzzy attack
paralyzes the vehicle’s functionality or causes an abnormal
ECU reaction instead of preventing regular message delivery
by occupying the bus. ,erefore, fuzzing attack messages
consisting of random IDs and data are randomly inserted
into the regular CAN bus traffic. An example of the attack is
shown in Figure 4. When the fuzz attack was implemented
on the test vehicle, the vehicle randomly performed ab-
normal reactions, such as abnormal engine noise, flashing
lights, abnormal increase in power, and gear switching.

(3) Ulterior Fuzzy Attack. Unlike the basic fuzzy attacks, a
savvy attacker may gain prior knowledge of the victim and
narrow down the random data by eavesdropping on the bus
data. A more advanced fuzzy attacker can perform a more
efficient attack by first knowing all the valid IDs in the CAN
bus and sending attack messages containing existing IDs and
random data. An example of the ulterior fuzz attack is shown
in Figure 5. Such attacks are realized efficiently by inserting
some messages randomly. ,e IDs of these messages exist in
typical message traces, and the data field is random. Ex-
periments show that ulterior fuzz attacks can cause
anomalous vehicle behaviors more frequently than fuzz
attacks.

(4) Replay Attack. As shown in Figure 6, the replay attack
causes problems by injecting a set of CAN messages
extracted and recorded in a particular order into the CAN
bus. Replay attack datasets can be generated by randomly
inserting a segment of prerecorded CAN messages into the
typical traffic trace. Experiments on the test car indicate that
the replay attack could cause the car to reproduce some of its
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Figure 1: Standard CAN message frame.
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previous operations, such as increasing air conditioning
wind, gear switching, and window lifting.

2.3. RelatedWork. To combat malicious attacks in the CAN
bus, it is crucial to build anomaly detection algorithms by
analyzing the characteristics of CAN messages to identify
attack messages and provide accurate reference information
for system protection. Several methods have emerged for

CAN anomaly detection, but they fall short in accuracy,
usability, and real-time.,e first type of method relies on the
physical features of the CAN bus for anomaly detection. For
example, Cho and Shin proposed a method called Viden,
which extracts the voltage characteristics of ECUs through
voltage measurements to identify abnormal voltage values.
,is method can detect illegal access quickly and accurately
[13]. Tian et al. proposed a temperature compilation fin-
gerprinting technique to detect CAN bus intrusions and
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Gear EngineBattery Entertainment
System

Audio

DashboardLight DoorBrake ClutchAirbag

Central Controller

⋯

Other ECUs
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⋯
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Other ECUs
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Other ECUs

Contact attack
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Figure 2: Typical CAN network architecture and attack entry.
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identify intrusion sources [14]. However, these methods are
only suitable for detecting attacks at the physical layer rather
than the application layer. Furthermore, they require ad-
ditional hardware for physical feature acquisition, increasing
vehicle manufacturing overheads. ,e second type of
method relies on legitimate CAN data analysis results for
anomaly detection. For example, Song et al. analyzed the
periodicity of CAN bus messages and found injected attack
messages by examining the occurrence periods of the
messages with the same ID [15]. Stabili et al. constructed a
lightweight CAN intrusion detection algorithm to handle
escalating attack messages that did not satisfy the Hamming
distance requirement [16]. Additionally, they proposed an
anomaly detection algorithm for ID sequences to discover
illegitimate ID transfers [17]. Lee et al. identified a fixed
pattern of response offset versus time for remote frames, and
this pattern will be broken when an attack occurs. ,ey
exploited this pattern to detect attacks [18]. ,ese methods
used lightweight algorithms for the situation where ECU
resources are constrained. However, the algorithms can only
discover attacks from a single dimension, obtaining poor
accuracy in anomaly identification, particularly in identi-
fying advanced attacks. ,e third type of method uses in-
formation theory to identify anomalous attacks. For
example, Yu et al. proposed an intrusion detection system
based on the estimation of multiorder Rényi entropy [19].
Wu et al. proposed an information entropy-based approach
that uses a fixed amount of information as a sliding window
to improve the accuracy of attack identification and reduce
false positives [20]. Although this type of method can ef-
fectively identify anomalies, it cannot make judgments
immediately after an attack occurs and does not meet the
requirements of rapid automotive response. Furthermore,
there is another type of method based on machine learning

algorithms for CAN attack detection. For example, Tariq
et al. used a rule-based approach and a recursive neural
network algorithm to detect anomalous messages with an
accuracy exceeding that of previous algorithms collabora-
tively [21]. Song et al. proposed an intrusion detection
system based on a deep convolutional neural network
(DCNN) [22]. ,e DCNN learned network traffic patterns
and detected malicious traffic, reducing the false alarm and
missed alarm rates. Seo et al. proposed a GAN-based CAN
bus intrusion detection system that uses deep learning
models to generate adversarial networks to improve the
identification rate of attacks [23]. Wang et al. proposed a
distributed anomaly detection system using hierarchical
time memory (HTM) [24]. ,ey designed predictors
exploiting the HTM algorithm and logarithmic loss function
to calculate anomaly scores. ,ese methods identify attacks
with high efficiency, but they cannot be fully applied to
vehicles owing to their limited computational resources.

3. CAN Message and Time Transfer
Characteristics Analysis

Based on the investigation of existing studies and actual
vehicles, in this section, we analyze the data characteristics
and time characteristics of data frame transfer in the au-
tomotive CAN bus. In addition, mainstream electric cars,
sedans, and sport utility vehicles (SUV) in the market were
investigated to illustrate the correctness of the results.

3.1.Message Transfer Feature. First, we analyzed the transfer
characteristics of the IDs used for arbitration in CAN
messages. By analyzing the CAN bus traces of various types
of vehicles in daily driving scenarios, this study finds that
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each ID follows only a subset of all available IDs. ,is result
implies limited rules for the transfer of two neighboring IDs
rather than being completely random. Figures 7 and 8 depict
the ID transfer graph for two commercially available
mainstream vehicles with the previous ID on the x-axis and
the following ID on the y-axis. ,e dark color in the graph
indicates the presence of a legitimate ID transfer from x to y,
while the blank indicates no transfer. From this result, it may
be observed that there were 39 available IDs for electric cars
but only 780 legitimate transfers. In addition, 81 legal IDs
exist for the sedan, but only 4542 ID transfers are present.
,is result is consistent with the finding of Stabili and
Marchetti [17]. Based on this conclusion, the ID transfer rule
of CAN messages can be used as a feature to detect intru-
sions, especially for DoS attacks and fuzzy attacks.

In addition, the transfer characteristics of the CAN
message data fields are investigated in this paper. By ana-
lyzing the variation of adjacent CAN message data fields for
different vehicles, this study finds that the distance of data
bits fluctuates within an interval rather than being com-
pletely random, regardless of the distance model used.
Because anomalies are usually caused by colliding control
commands randomly when implementing attacks on the
CAN bus, we investigated the collision resistance of each
legal transfer under different models based on the transfer
characteristics of the data fields. Specifically, we used the
Hamming distance [25], Levenshtein distance [26], cosine
distance [27], Jaro distance [28], and Jaro-Winkler distance
[29] for an electric vehicle to calculate the distance interval
for each legitimate message transfer. ,en, the distance
intervals are collided with the fuzzy attack to obtain the best
distance model for each legitimate transfer against the fuzzy
attack. ,e best model was applied to achieve accurate
anomaly aware messages.

3.2. Time Transfer Feature. ,is study analyzed the time
interval of each legal message transmission in CAN traffic in
all test vehicles. We found that the time intervals of message
transmission all satisfied the following four distributions.
,e first type of time interval is a discrete constant, as shown
in Figure 9(a), with an integer between 228 and 242. ,e
second type of time interval includes continuous values, as
shown in Figure 9(b), with a continuous interval between
240 and 325.,e third type approximates time intervals
satisfying a one-sided normal distribution, as shown in
Figure 9(c). As shown in Figure 9(d), the fourth type
contains completely random values for a time interval of a
random number between 0 and 6000.

Because injecting anomalous messages into CAN is
entirely random, the time interval can be essential for
detecting anomalous behavior. For interval distributions
that satisfy discrete and continuous values, intrusions that
do not meet their distributions can be detected directly and
efficiently. For cases that satisfy the normal distribution, the
interval of messages can be filtered by using the PauTa
criterion to select the best confidence interval. For the utterly
random case, the maximum variation range is used as an
interval to discover intrusion messages outside the interval.

,e time interval of the message is unavailable for an at-
tacker, so the attack injection is entirely random. If the time
interval distribution of CAN messages is used as a feature to
detect anomalies, then they can be identified without dis-
tinguishing the type of attack.

4. Methodology of In-Vehicle Network
Intrusion Detection

In this study, we analyze the attack surface of CAN networks
as described above, demonstrating that the ultimate goal of
intruding the CAN network is to send attack messages,
irrespective of whether the CAN bus is directly contacted. In
addition, this paper analyzes the current measures on CAN
network protection in OEM and scientific fields in the re-
lated work. ,e current relatively effective method is to
deploy an intrusion detection mechanism to discover in-
trusions and protect against them. However, existing
methods still cannot meet accuracy, real time response, and
resource requirements of network-connected vehicles.

To solve the difficulties faced by the current CAN bus
intrusion detection, we designed a CAN intrusion detection
model with high accuracy, low latency, and low resource
consumption based on the message and time transmission
characteristics of CAN messages, which achieved fast and
accurate identification of four attacks using this model and
up-down message correlation analysis. ,e overview of the
method is shown in Figure 10. ,e algorithm constructs a
transfer feature matrix by extracting messages and time
transfers from CAN traces generated by regular driving. ,e
attack messages are discovered in real-time using contextual
correlation analysis based on the transfer feature matrix.
Additionally, with its lightweight feature, the algorithm can
be deployed in the central controller to identify cross-do-
main attacks and in resource-constrained ECUs to identify
abnormal data in the domain.

,is section first defines a set of variables used in the
algorithm, then describes the devices used for data collection
and algorithm detection, and finally describes the algorithm
feature model construction, model validation, and anomaly
detection.

4.1. Definition. ,e following variables are defined herein to
better describe the process of algorithm model construction
and algorithm detection.

(i) ΩT: the message and time transfer matrix used to
record CAN message and time transfer
characteristics

(ii) mi: the i-th CAN message
(iii) da tai: the data field of the mi

(iv) idi: the identifier of the mi

(v) ti: the timestamp of the mi

(vi) Dij: the list that records data distance character-
istics from mi to mj

(vii) Tij: the list used to record the time interval from
the mi to mj
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(viii) (ID0, ID1, ....., IDn): the set of unique IDs con-
taining all occurrence identifiers in the CAN traffic

4.2. Data Acquisition and Injection Equipment. ,e test
vehicle used in this study was a Chinese-made electric ve-
hicle with an internal network implementing the standard
CAN bus protocol. Furthermore, the vehicle has an open
OBD-II interface for message collection and injection
(OBD-II is an interface for monitoring CAN bus data and
obtaining diagnostic trouble codes). Additionally, the pro-
posed algorithm is applied to the test vehicle to demonstrate

its accuracy, real time responsiveness, and feasibility, be-
cause the vehicle has typical interfaces and bus protocols
representative of most current commercially available
vehicles.

,e data acquisition device used is shown in
Figure 11(a). We used a Raspberry Pi 3B+ and RS 485
expansion board for real-time communication with the
vehicle CAN bus. ,e main relevant technical parameters of
the Raspberry Pi are as follows. A 64-bit 1.2GHz quad-core
ARM Cortex-A53 CPU is installed, along with 1GB of RAM
and an 802.11n Wi-Fi wireless chipset. ,e RS 485 CAN
expansion board is CAN-capable, and it uses the MCP2515
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Figure 9: Time intervals distributions of the test vehicle. (a) Discrete time interval. (b) Continuous time interval. (c) Normal distribution
time interval. (d) Random time interval.
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Figure 10: Algorithm overview.
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CAN controller with an SPI interface and SN65HVD230
transceiver to receive CAN information. ,e setup for in-
vehicle CAN message collection is shown in Figure 11(b).
,e acquisition device collects CAN traffic from the test
vehicle at a baud rate of 500 kbps.

,e message injection device was a combination cable
comprising an OBD-II to DB9 diagnostic cable and a
PCANUSB FD adapter. ,e cable was connected from the
vehicle’s OBD-II port to the USB port on the computer side
to enable real-time attack message injection. It is noteworthy
that we utilized a splitter to divide the OBD-II interface into
two parallel hardware interfaces when detecting anomalies,
as shown in Figure 12(a). One interface was connected to a
laptop computer configured with the proposed algorithms
for identifying intrusions.,e other interface was connected
to an attack device capable of sending four attack messages
based on the attack model, as shown in Figure 12(b).

4.3. Model Construction and Validation. In Chapter 3, we
analyzed the features of CAN messages and time transfer
and illustrated their advantages in detecting various types of
attack messages. Based on these facts, the model con-
struction phase extracts the ID transfer, data transfer, and
time transfer features from the CAN traces generated during
everyday driving of the test vehicle and deposits them into
the feature matrix ΩT. ΩT is a square matrix of order n,
where n is the number of elements in the set of unique IDs
(ID0, ID1, ....., IDn) in the CAN bus traces. ,e model
construction flow is depicted in Figure 13.

First, the row and column index of ΩT are initialized to
the set of unique IDs (ID0, ID1, ....., IDn) in the initialization
phase.,e initialized values of the elements in the matrix are
two empty lists Dij and Tij, which hold the data distance and
time interval distribution of message transfers in CAN
traces, respectively. Additionally, the optimal distance al-
gorithm table for each type of message transfer is set con-
sidering the input dataset using the transfer characteristics of
the CAN message data fields.

Next, when ΩT is created, all legally transferred adjacent
CAN messages must be examined. When two consecutive

messages are input, the best distance model is selected based
on the results of the characteristic analysis. ,e selected
model is exploited to calculate the distance value, and the
calculation result is stored in Dij. Similarly, the time interval
of adjacent messages is calculated, and the calculation result
is appended to Tij. As an example, if there are two legal
adjacent CAN messages (mi and mj, where mi with idi,
payload da tai, and timestamp ti, and mj with idj, payload
da taj, and timestamp tj), then the distances between da tai

and da taj and tj − ti are, respectively, appended to Dij and
Tij in ΩT[idi][idj]. For all legal CAN traces, ΩT is traversed
and filled in this manner.

Finally, after all CAN trajectories have been traversed, all
Dij in ΩT keep only the maximum and minimum values of
the list. Furthermore, for Tij inΩT, the values in each list are
classified according to the message time shift characteristics.
Each discrete value is kept if it satisfies the discrete distri-
bution. ,e maximum interval is kept if it satisfies the
continuous or the completely random. ,e interval corre-
sponding to the 3-sigma principle is kept if it satisfies the
normal distribution. In particular, for nonexistent transfers,
the corresponding elements of the matrix are two empty
lists.

At this point, the matrix based on the CAN message and
time transfer characteristics has been established, and it can
describe the legal ID transfer, data transfer, and time transfer
characteristics in automotive CAN networks.
ΩT must be validated to improve the algorithm’s ef-

fectiveness and minimize the false positive rate during de-
tection. ,e model validation phase used ΩT and the
validation dataset as input, and the validation steps were as
follows:

(1) For consecutive CAN messages in the validation
dataset, check whether their ID transfer exists in the
index of ΩT. If it exists, proceed to the next step. If it
does not exist, add the ID transfer as the index inΩT

and go to the next step.
(2) Check the element indexed by the ID transfer in ΩT.

When the element is not empty, check whether the
distance and time interval of consecutive CAN

(a) (b)

Figure 11: Data acquisition equipment. (a) Data acquisition device. (b) Data acquisition setup.
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(a) (b)

Figure 12: Experimental environment for detection. (a) OBD-II splitter. (b) Detection setup.
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messages satisfy Dij and Tij and if they do, go to the
next step; if they do not, update Dij and Tij with the
current value. When the element is empty, fill the
element with the distance and time interval
distribution.

(3) Extract the next message transfer in the verification
dataset and repeat the above steps.

4.4. Detection Scheme. ,e detection scheme used by the
proposed algorithm utilizes CAN messages correlation
analysis rather than simply comparing the transfer char-
acteristics of adjacent messages. ,e algorithm uses the
validated ΩT to identify anomalies in the raw CAN bus data
in the detection phase. ,ree consecutive messages (mi, mj,
and mk) are used as inputs to determine if mj is an anomaly,
where mi is the reference message, mj is the current message,
and mk is the following message. According to Figure 14, the
steps for detection are as follows.

(1) First, the message transfer characteristics from mi to
mj are checked. If the transfer satisfies the transfer
characteristics in ΩT, i.e., ΩT[i][j] is not empty, and
the distance and time interval of message transfer are
legal values, the transfer from mi to mj exists and
proceeds to the next step. If it fails to satisfy the
transfer characteristics, mj is identified as an ab-
normal message.

(2) Check whether the transfer from mj to mk satisfies
the transfer characteristics of ΩT. If it does, mj is a
standard message; otherwise, go to the next step.

(3) Determine if the transfer from mi to mk is legal. If the
transfer exists, mj is identified as an exception
message; otherwise, mj is legal.

Specifically, if mj is identified as a legitimate message, the
algorithm uses mj as a reference to determine the legitimacy
of mk. When mj is identified as an abnormal message, the
algorithm still uses mi as a reference and mk+1 as a subse-
quent message to check the legitimacy of mk.

5. Performance Evaluation

,is section details the application and performance eval-
uation of the proposed CAN intrusion detection scheme in
test vehicles. Firstly, this section describes the dataset used
for model construction, validation, and detection, together
with the data collection and attack injection scenarios.
Secondly, the performance of the proposed algorithm is
evaluated in terms of recognition efficiency, time and re-
source consumption, and the algorithm’s performance
under different fault injection rates. Afterward, the algo-
rithm’s advantages in terms of accuracy are compared with
other existing algorithms. Finally, specific applications of the
algorithm and protection strategies combined with the
central controller are described.

5.1. Datasets and Scenarios. To fully and effectively evaluate
the performance of the proposed algorithm, we used datasets

from different driving scenarios in the model construction,
validation, and detection phases.

,e dataset used for model construction contained CAN
traffic collected while the test vehicle was driving on its daily
commute route. ,e driving route of the test vehicle is
shown in Figure 15(a), which included three driving sce-
narios: country roads, highways, and congested city roads.
,e dataset for model construction is shown in Table 1; it has
29213281 messages containing seven days of CAN traffic for
commuter driving. Road conditions include slippery roads,
congested roads, and rainy and foggy conditions. ,e CAN
message and time transfer matrix ΩT constructed using this
dataset is a 39× 39 square matrix that contains 780 legal
transfers. ,e best distance model for the CANmessage data
fields in the test vehicle is publicly available, and the results
indicate the best distancemodel for resisting fuzzy collisions.

,e dataset used to validate the model is shown in
Table 1, which is twice the size of the modeling dataset. ,is
dataset was collected using the vehicle driving route, as
shown in Figure 15(b). After the model was validated, it had
zero false positives for the CAN bus traffic of the validation
dataset, and the final validated matrix was the same as the
original feature transfer matrix. ,is result confirms the
existence of a fixed bus message transfer pattern under
different driving habits and vehicle driving conditions.

To evaluate the detection efficiency of the proposed
algorithm, the anomalous data were injected into the CAN
bus of the test vehicle using data injection equipment based
on four attack models in the vehicle stationary state and
vehicle driving state, respectively. ,e attack dataset is
shown in Table 2, in which 1003756 attack messages were
injected when the vehicle was stationary and 1316894 attack
messages were injected during driving. ,ey all contained
DoS attacks, fuzzy attacks, ulterior fuzzy attacks, and replay
attacks. In addition, the driving route was set in a relatively
safe country road to prevent the occupants of the vehicle
from being harmed by any anomalies, as shown in
Figure 15(c).

5.2. Identification Efficiency Evaluation. ,e performance of
the proposed intrusion detection algorithm to identify
anomalies was evaluated in terms of the accuracy of online
detection of injected attack messages in actual vehicles. ,is
section describes the accuracy of the algorithm in detecting
attack messages in actual stationary and moving vehicles.

,e experimental results show that the algorithm
identifies all four types of CAN bus attacks well, as shown
in Figure 16. ,e algorithm performs best in identifying
DoS and fuzz attacks, maintaining almost 100% accuracy
regardless of the vehicle state. ,e accuracy of identifying
ulterior fuzz attacks was 95.7% when the vehicle was
stationary, compared to 95.5% when the vehicle was
running. ,e accuracy of identifying replay attacks was
90.6% when the vehicle was running and 93.6% when the
vehicle was stationary. Overall, the anomaly detection
accuracy when the vehicle was stationary was slightly
higher than that of the vehicle in the running state. ,is
result occurred because fewer types of messages appear
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when the vehicle is stationary, there are relatively few
message transfers, and attack messages are not easily
ignored. Furthermore, more messages appear in the CAN
network when the vehicle is moving, and the probability

of fuzzy attacks and replay attacks randomly colliding as
legitimate transfers increases.

,e performance analysis of the proposed algorithm is
conducted as follows. When implementing DoS attacks, the

(a) (b) (c)

Figure 15: Test vehicle travel routes. (a) Modeling dataset driving route. (b) Validation data set driving route. (c) Detection driving route.

Figure 14: ,e diagram of detection stage.
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attacker interferes with the CAN bus communication by
sending messages with higher priority (i.e., message data
with smaller IDs), thus occupying the total resources of the
CAN bus. ,e proposed algorithm can quickly identify
malicious messages using the presence or absence of ID
transmissions alone, so the algorithm has a very high
identification accuracy for DoS attacks. Fuzzy attacks inject
messages randomly, implying that the message ID, data, and
timestamp are random. When the algorithm detects an

ambiguous attack, it checks whether the ID transfer, data
distance, and time interval of three neighboring messages
satisfy the legal conditions of the transfer matrix. Most fuzzy
messages fail to satisfy these legal conditions, and very few
fuzzy attacks that happen to satisfy the conditions can be
misclassified as correct messages. Because the distance
model, which works best for random data, is utilized in the
modeling phase, the probability of such misclassification is
minimal, causing the algorithm to have an accuracy rate
close to 100% for fuzzy attacks. However, the ulterior fuzz
attack is subtler than the fuzz attack, as it sends random
messages with legitimate IDs.,erefore, ulterior fuzz attacks
are more likely to be misclassified as legitimate by the al-
gorithm. Although the ID transfer of messages is correct in
detecting such attacks, the data distance and time interval
between adjacent messages are random, so the proposed
algorithm can still effectively identify ulterior fuzz attack
messages. However, the identification accuracy is relatively
lower than that for the first two attack messages. ,e replay
attack is the most difficult to identify because it exactly
replicates the previous correct message sequence and its ID
and data fields are legitimate. ,e proposed algorithm
identifies replay attacks by examining the characteristics of
three consecutive messages. Although the ID transfer and
data distance may be judged as correct, the replay timestamp
is entirely random and judged as abnormal by the algorithm.

5.3. Time and Resource Effectiveness Assessment. Table 3 lists
the time consumed by the algorithm for identifying the four
types of attacks. ,e time required to identify standard
information was the shortest, averaging 0.261ms. In
detecting attack messages, the time required to identify DoS
attack information was the shortest, averaging 0.265ms, and
that required to identify replay attacks was the longest,
averaging 0.284ms. ,is result also validates the algorithm’s
model identification process, which uses only the ID transfer
to identify DoS attacks and therefore takes the shortest time.
Identifying the replay attack takes the longest time, as the
three main features of ID transfer, data field distance, and
time interval distribution are used. ,e total time to identify
anomalies is the sum of the time interval of adjacent
messages and the time required for algorithm identification.
,e time from the appearance of an anomaly message to its
recognition is the sum of the time from that message to the
appearance of the following message and the algorithm’s
recognition time. During normal CAN message acquisition,

Table 1: Model construction and validation dataset.

Model construction dataset Validation dataset
No. Message Quantity Travel Time Road Condit Message Quantity Travel Time
1 5379428 72min Jammed 10161141 136min
2 5155282 69min Rainy 10086421 135min
3 3362140 45min Smooth 9264563 124min
4 3138009 42min Smooth 7770308 104min
5 4781710 64min Jammed 6724279 90min
6 3063285 41min Smooth 7247284 97min
7 4333427 58min Foggy 7546140 101min

Table 2: Attack dataset in detection.

Vehicle Status Attack type Attack messages

Stationary

DoS 595704
Fuzzy 153947

Ulterior fuzzy 153307
Replay 100798

Driving

DoS 597031
Fuzzy 239962

Ulterior fuzzy 239950
Replay 239951
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Figure 16: Accuracy of the proposed algorithm against different
attacks.
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the average time interval between adjacent messages is
0.991ms. ,e average time required for the algorithm to
identify anomalous messages is then between
1.256milliseconds and 1.275milliseconds. Overall, the al-
gorithm achieved a high level of real-time performance in
CAN bus anomaly detection, showing the ability to respond
to anomalies as soon as they occur.

,e proposed algorithm can meet the hardware re-
source constraints of automotive ECUs in terms of com-
putational and storage resources. ,e execution of the
algorithm in the detection phase is based on a simple
lookup and comparison operation. Finding legitimate
transfer features in the transfer matrix is a high-speed
operation with a computational cost of O (1) that is not
dependent on the number of IDs. In contrast, the memory
requirements of the algorithm are related to the number of
different IDs transferred in the vehicle CAN bus. To fa-
cilitate a fast search for information transmission char-
acteristics, the algorithm uses a two-dimensional matrix
with indexes for storage. In the experiments, there were 39
legitimate IDs and 780 legitimate transmissions in the test
vehicle’s CAN traces, and the transmission matrix’s storage
requirement was 20,064 bytes. When the algorithm detects
the original CAN bus information, it must identify three
adjacent messages with a storage requirement of 327 bytes.
,e total storage requirement of the algorithm is
20,391 bytes, which is much smaller than the hardware
limitation of current automotive ECUs [30]. ,erefore, the
proposed algorithm can be applied to resource-constrained
vehicles.

5.4. Performance under Different Injection Frequencies. To
better evaluate the method’s performance in identifying
attack information, the accuracy and recall of the algorithm
were tested at different attack injection frequencies. ,e
performance of the proposed algorithm under different
injection frequencies is shown in Figure 17, where four types
of CAN bus attacks are injected at a frequency ranging from
10% to 100%. ,e percentage represents the ratio between
the frequency of attack injections and actual messages. ,e
detection of DoS attacks was independent of the injection
frequency, and the accuracy and recall were always main-
tained at 1. Similarly, the identification of fuzz attacks was
almost independent of the attack injection frequency, and
the accuracy and recall remained close to 1. As the injection
frequency increased, the recall of the proposed algorithm for
detecting ulterior fuzz attacks approached 1, and the ac-
curacy decreased but remained at 0.85 or more. As for
detecting replay attacks, the recall of the proposed algorithm

increased with the injection frequency, while the accuracy
decreased.

DoS and fuzz attacks respectively rely on higher-priority
IDs and completely random messages to cause CAN bus
anomalies.,e proposed algorithm can almost identify these
anomalies using ID shifting and data distance, so the de-
tection results are independent of the injection frequency.
For the detection of ulterior fuzz attacks, the judgment using
the ID transfer is no longer valid. Whether the messages are
legal must be checked based on the dimensions of data
distance and time interval, so the detection result is affected
by the injection frequency to a certain extent.,e increase in
injection frequency causes an increase in attack messages,
resulting in a certain number of missed and false positives
and decreasing accuracy and precision. However, with the
increase in injection speed, anomalies are more easily de-
tected with time, and the recall is subsequently increased.
,e detection of replay attacks by the proposed algorithm
almost depends on the time interval between messages, so it
is affected by the injection frequency. ,e faster the replay
attacks are injected, the easier the algorithm is to identify. In
this case, the number of missed anomalies is reduced, and
recall and accuracy are subsequently improved.

5.5. Results Compared to Other Available Methods. ,is
section compares the proposed intrusion detection methods
with schemes applied to onboard ECUs. ,e currently
available intrusion detection schemes are the ID sequence-
based approach proposed byM.Marchetti and D. Stabili, the
Hamming distance-based scheme, and the message-cycle-
based method proposed by H. M. Song. ,ese schemes can
be applied to ECUs due to their lightweight design, but their
accuracy in identifying anomalous messages needs
improvement.

Table 4 indicates that both the sequence-based method
and the proposed method can identify DoS attack messages
very well. In contrast, the other two methods cannot identify
DoS attacks because they do not use ID features. ,ese four
methods maintain an accuracy above 0.99 for identifying
fuzz attacks. For identifying ulterior fuzz messages, the al-
gorithm proposed in this paper achieved the best perfor-
mance with an accuracy of 0.957, followed by the Hamming
distance-based method, message-cycle-based method, and
sequence-based method. For identifying replay attacks, the
proposed method achieved an accuracy of 0.936. Except for
the proposed method, the Hamming distance-based method
achieved the best performance with an accuracy of 0.878, but
its recall indicated that the method had missed several
messages.

5.6. Applications and Discussion. ,e experimental results
verify that the proposed method achieved excellent per-
formance in detecting CAN bus attack messages with high
accuracy for DoS attacks, fuzz attacks, advanced ulterior fuzz
attacks, and replay attacks. Moreover, the proposed algo-
rithm achieves outstanding performance under different
attack injection frequencies. DoS attacks were injected at the
highest possible frequency to suspend CAN bus

Table 3: Identification times of different messages.

Message Type Average Time (ms)
DOS message 0.265
Fuzz message 0.274
Ulterior fuzz message 0.271
Replay message 0.284
Normal message 0.261
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communications in an actual attack. ,e proposed algo-
rithm’s excellent performance in detecting DoS attacks al-
lows it to effectively identify the attack messages and
implement protection along with the corresponding ECU.
Fuzz attacks are usually sent randomly with entirely random
content, and the proposed algorithm can maintain an ac-
curacy exceeding 95% for anomaly identifications regardless
of the injection frequency. In practical tests, it was found that
the faster the replay attacks were injected, the better the
algorithm recognized them. ,e proposed method out-
performed all other methods in identifying anomalous
messages. Additionally, it effectively detected four common
CAN bus attacks and exhibited a convincing ability to
handle all the attacks under different injection frequencies,
making it suitable for practical application scenarios. If the
algorithm is applied to an ECU and combined with the CAN
bus protection function, it will be able to identify CAN
attacks quickly to protect the vehicle effectively.

In addition, the vehicle CAN bus intrusion detection
scheme proposed herein can be applied in the typical CAN
network architecture mentioned in Chapter 2. For intra-
domain communication in CAN networks, the scheme can
be deployed in any intradomain ECU to achieve intra-
domain anomaly detection and instruct the attacked ECU to
respond. For cross-domain communication in the CAN
network, the solution can be deployed in the central

controller to detect abnormal CAN messages in cross-do-
main communication traffic in time to block them and notify
the driver to check the vehicle. Primarily, when numerous
replay messages and high-frequencymessages appear, timely
blocking is performed to prevent the car from being mali-
ciously manipulated.

6. Message and Time Transfer Matrix as CAN
Bus Data Transmission Fingerprinting

In this section, the features in the ΩT and the features of the
four attack models are analyzed. From the results, significant
differences between the features of ΩT and those of the
present attacks are revealed.,erefore, the message and time
transfer matrix are exploited as a fingerprint to quickly
distinguish the legitimate transfer matrix from the anom-
alous transfer matrix.

6.1. Comparison of Legal Transfer Characteristics and Ab-
normal Characteristics. As shown in Figure 18, there was a
clear difference between the legitimate ΩT and the transfer
matrix when a DoS attack occurred. Based on this difference,
it is possible to quickly identify whether the CAN bus is
under a DoS attack. ,e difference between the message
distance of the legitimateΩT and that of the message transfer

Table 4: Comparison with other applicable algorithms in terms of accuracy and recall.

Scheme Indicator DoS Fuzz (%) Ulterior fuzz (%) Replay (%)

Message and time transfer matrix Accuracy 100% 99.87 95.74 93.63
Recall 100% 99.89 94.34 84.67

ID sequence-based Accuracy 100% 99.64 85.09 79.65
Recall 100% 98.8 44.64 17.08

Hamming distance-based Accuracy — 99.6 88.66 87.81
Recall — 98.25 98.13 6.8

Message-cycle-based Accuracy — 99.21 87.56 87.05
Recall — 31.09 68.1 47.49
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Figure 17: Performance at different injection frequency. (a) Accuracy under different injection frequency. (b) Recall under different
injection frequency.
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Figure 18: Legitimate ID transfer vs. ID transfer in the presence of DoS attack. (a) Legitimate ID transfer matrix. (b) ID transfer matrix for
DoS attack occurred.
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under fuzzy attack and ulterior fuzz attack is shown in
Figure 19. When an attack occurs, the message distance
fluctuates in a much larger range than that of the legitimate
transfer and takes different values. ,e time intervals of the
legitimate message transfer can be classified as discrete and
continuous intervals, respectively exhibiting a normal dis-
tribution and random value distribution, as shown in Fig-
ure 9. However, the time intervals under an attack are
entirely random. ,us, the anomalies can be distinguished
by the characteristics of the transfer matrix.

6.2. Legal Message and Time TransferMatrix as CANMessage
Transfer Fingerprint. Based on the results of this study, the
legalΩT was used as a fingerprint for CANmessage transfers
to quickly identify abnormal messages in the automotive
CAN bus and assist the ECU in ensuring vehicle security and
further safeguarding the safety of drivers and pedestrians.
Moreover, this fingerprint can help the government and
enterprises monitor the illegal modification of vehicles and
other unlawful behaviors.

7. Conclusion

In this study, we have proposed a CAN bus anomaly de-
tection algorithm based on CAN message transmission

characteristics applied to real vehicle applications. We found
that a message and time transmission matrix for attack
detection can be constructed using the characteristics of ID
transmission, data distance, and time interval. Moreover,
this message and time transmission matrix combined with
message correlation analysis can effectively identify DoS
attacks, fuzzy attacks, and the more challenging collapse
attacks and replay attacks. Additionally, the efficiency of the
proposed algorithm in identifying these four types of attacks
is not affected by the frequency of attack injection. Fur-
thermore, the proposed algorithm has low computational
and storage resource consumption, facilitating its applica-
tion to vehicles without significant hardware resources. In
addition, compared with three other lightweight CAN bus
intrusion detection methods, the proposed method can
effectively identify four types of attacks and achieve a high
identification accuracy and recall rate. In practical vehicle
applications, the proposed method can be deployed in any
ECU within a functional area to identify intradomain attack
messages, thanks to its low resource consumption. Alter-
natively, it can be deployed in the central controller to detect
cross-domain attacks.

,e excellent attack discovery capability of the proposed
algorithm can be combined with the security protection
function of the ECU to filter and locate the attack infor-
mation, which helps to rank the threat nodes in the vehicle
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CAN bus network. Future research will focus on more
lightweight algorithms and finer-grained feature processing.
Meanwhile, a CAN intrusion detection system will be built
by combining bus traffic and physical bus features.

Data Availability
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