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Leakage of long-term secrets is a major concern when cryptographic schemes are implemented on devices with weak protection
capability, especially for resource-constrained IoT devices. Forward secrecy is a means to minimize the damage when such an
event takes place. For pub-/sub-based IoT systems, several end-to-end (from publisher to subscriber) encrypted message
transmission schemes have been proposed to tackle the confidentiality problems brought by malicious message brokers. But none
of them provide forward secrecy. 'is article presents FSEE, a forward secure end-to-end encrypted message transmission system
for pub-/sub-based IoT. To support FSEE, we design a novel group key exchange protocol BA-GKE, which relies on a semi-trusted
key exchange server to provide forward secrecy and support asynchronous communication between groupmembers.We prove its
forward secrecy by ProVerif. 'e core idea of FSEE is to establish a forward secure symmetric key per device using BA-GKE
asynchronously, and this device-specific key is shared with the device and its authorized subscribers for encrypting messages
securely. By adding a semi-trusted key exchange server to realize BA-GKE in the current IoTarchitecture, FSEE does not need to
change the existing message broker and could be deployed incrementally. 'e experimental results show that FSEE has
comparable performance to existing prominent research and provides higher security.

1. Introduction

In order to realize large-scale communication between
multiple entities in the Internet of 'ings (IoT), many IoT
systems distribute messages based on the publish-subscribe
(pub/sub) paradigm. A typical pub-/sub-based IoT system
contains devices with sensors, user’s mobile applications,
and the message broker (generally deployed on the cloud
platform) [1], and the network architecture is shown in
Figure 1. Devices and applications perform as publishers and
subscribers in the systems. Devices publish the sensor col-
lected data to a specific topic (such as topic_stat), and au-
thorized users’ applications subscribe to the topic. With the
help of the message broker’s subscription collection and

message forwarding, all the authorized users could get their
interested messages. At the same time, the devices also
subscribe to a topic with regard to control (such as
topic_com), and authorized users control the devices by
issuing control commands to the specific topic through the
application. As device sharing is ubiquitous in IoTsystems, a
device is generally accessed by multiple authorized users
(such as office members or maintenance workers et al.). 'e
communication model in pub-/sub-based IoT systems is not
one-to-one, but one-to-many (one device is accessed by
multiple users), not direct communication between them,
but through a middle message broker. Users’ access rights to
the device and revocation of the authorization are both
managed by the device owner.
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Currently, the data transmitted between clients (pub-
lishers and subscribers) and the message broker in IoT
systems are generally protected by TLS [1–3]. �e publisher
encrypts and sends the packets to message broker through
the secure channel established between the two parties via
TLS.�emessage broker gets the plaintext by decrypting the
packets, then encrypts for each authorized subscriber, and
sends the corresponding packet to the subscriber again via
TLS. TLS is designed for one-to-one communication be-
tween two entities, and the message broker could get all the
plaintext of each client. �is approach forces us to trust the
broker for data processing [4]. Since the IoT device man-
ufacturers or IoT cloud platform vendors usually establish
and maintain the broker, we cannot take its trustworthiness
for granted.

Under normal circumstances, the data generated by
IoT devices are usually closely related to users’ living
habits, whereas the message broker is not completely
reliable. �e centralized services provided by the message
brokers perform like a black box for IoTusers, where users
do not have control over how brokers use their data [5].
Many Internet-accessible message brokers even do not
deploy any security policies, and anyone can inject data or
receive messages [6]. Some researchers show that the
MQTT message brokers of a speci�c tra�c monitoring
system were disclosing the tra�c �ow of Mexico City [7].
Servers infected by spyware may leak secret credentials to
an adversary, which may hamper the security of mission-
critical data [8]. What’s more, most of the current IoT
systems are constructed based on the MQTT messaging
protocol, and the MQTT protocol is not designed for
hostile environments. Yan Jia et al. found that the MQTT
protocol has serious �aws. Platforms using MQTT pro-
tocol can allow adversaries to access devices, launch large-
scale denial of service (DoS) attacks, steal users’ private
information, and forge users’ device status [9].

To address the privacy and con�dentiality concerns
brought by malicious message brokers, several end-to-end
(from publisher to subscriber) encrypted message dis-
tribution methods have been proposed. Essentially, the
existing methods can roughly be divided into three cat-
egories. �e �rst category is that the publisher and sub-
scriber coordinate to establish an encryption key [10–14].
�e broker in the middle does not know the key and
therefore cannot get the plaintext. �is approach ensures
that the messages are encrypted from the publisher to the
subscriber, and only the communication endpoints own
the cryptographic keys, which are necessary to decrypt the

messages. �ere is no need to trust the underlying message
broker. �e second category is the re-encryption method
[15–17]. �e broker with some speci�c information (such
as re-encryption keys) can transform the ciphertext of a
publisher into the ciphertexts that can be decrypted by
authorized subscribers. �e third category is based on
some trusted entities, such as trusted broker (as [3, 9]) or
trusted hardware [18]. However, none of the existing end-
to-end encryption schemes provide forward secrecy.

1.1. �e Need of Forward Secrecy in IoT. Leakage of long-
term secret keys is a major concern when cryptographic
schemes are implemented on devices with weak security
protection capability (especially for resource-constrained
IoT devices). Forward secrecy is used as a means to
minimize the damage when such an event takes place.
Forward secrecy ensures that the compromise of entities
at this moment does not impact the security of the entities’
previous completed communication. Most current de-
signs of secure communication protocols consider for-
ward secrecy an indispensable design goal [19]. Because
adversaries with massive storage abilities and powerful
penetration capabilities are increasing [20], long-term
secrets leakage is often more likely to happen than ex-
pected: the keys may be stolen by system intruders or
extracted from the stolen smartphones, law enforcement
agencies may force users to reveal their key according to
law, backup software may inadvertently upload a copy of
the key to network storage, and so on [21].

1.2. �e Challenges for Achieving Forward Secure Key Ex-
change Asynchronously. At present, there are generally
three methods to achieve forward secrecy in key estab-
lishment [20]. One is to extend the traditional DH key
exchange protocol [22, 23], it requires entities to be always
online to interact with each other, and asynchronous
communication is not supported. �is method is not
suitable for IoT systems, as multiple authorized users of a
device are not necessarily online at the same time, and the
o¤ine users will a¥ect the communication of online users.
�e second method is to use precomputed key, which is
also a common method to achieve forward secrecy
without interaction. But this method is prone to message
suppression attacks [20]. �e third method is to convert a
puncturable public key encryption scheme [24] into a
puncturable key exchange scheme to provide forward
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Figure 1: Typical architecture of pub-/sub-based IoT system.
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secrecy [25]. However, because of the high computational
complexity of puncturable encryption, this method is not
suitable for low-power IoT devices. Naturally, we are
interested in the following question:

1.3.MotivationQuestion. How to establish a forward secure
session key asynchronously among a group while keeping
low overhead for each member?

1.4. Our Scheme. Identity-based public key cryptography
can greatly simplify the management of certificates by taking
user’s identity as its public key, whereas key exchange based
on implicit authentication (such as HMQV [26]) can greatly
reduce the communication overhead. In our work, com-
bining BKEM [27] proposed by Colin et al. with identity-
based implicit authentication [28], we propose an efficient
forward secure asynchronous group key exchange protocol
BA-GKE. Based on BA-GKE, a forward secure end-to-end
encryptedmessage transmission system FSEE is designed for
IoT. More details are given below.

1.5. +e New Protocol: BA-GKE. BA-GKE is essentially an
extension of DH-based key exchange in groups, which relies
on a semi-trusted server to provide forward secrecy and
support asynchronous communication of group members.
We present a formal security validation of BA-GKE using
ProVerif. 'e results show that it can provide mutual au-
thentication for group members, guarantee the confidenti-
ality of generated session keys, and provide forward secrecy
at the same time.

1.6. +e New Solution: FSEE. Based on the group key ex-
change protocol BA-GKE, we design FSEE, which utilizes
BA-GKE to update the symmetric key between the device
and its multiple authorized users in IoT. 'e core idea of
FSEE is to establish a symmetric key per device that can be
used to protect sensitive messages.'is device-specific key is
shared with the device and its authorized users. Due to the
use of BA-GKE, FSEE adds a semi-trusted key exchange
server to the current IoT architecture, does not need to
change the existing message brokers, and can seamlessly
integrate into existing ones. FSEE empowers the device
owner the ability to control their data by controlling with
whom to share the encryption key. Each device owner is
responsible for authorizing and revoking access rights to its
devices, without relying on a fully trusted third party.

1.7. Our Contributions. Specifically, our main contributions
are as follows:

(1) Combining BKEM and identity-based implicit au-
thentication, an efficient group key exchange pro-
tocol BA-GKE is proposed, which can establish a
forward secure session key asynchronously among a
group while keeping low overhead for each member.

(2) Based on the protocol BA-GKE, we propose FSEE, an
end-to-end encrypted message transmission system

for IoT to address the confidentiality concerns of
malicious brokers and compromised clients. FSEE
achieves confidential and forward secure end-to-end
communication in IoT, and supports asynchronous
communication and decentralized authorization at
the same time.

(3) Based on the open-source MQTT broker HiveMQ,
the forward secure end-to-end encrypted message
transmission system is implemented and tested. 'e
experimental results show that FSEE not only is easy
to implement on the existing commercial brokers,
but also has comparable performance to recent
prominent research while providing higher security.
'e proposed system can be used for real-time IoT
applications.

'e manuscript is organized as follows. Section 2
presents the related work. In Section 3, assumptions and the
requirements for end-to-end encryption system are dis-
cussed. In Section 4, we detail some basic components of our
scheme, including BKEM, identity-based implicit authen-
ticated key agreement protocol, identity-based public en-
cryption and message authentication code. 'e design of
BA-GKE is presented in Section 5. Based on BA-GKE,
Section 6 designs the forward secure end-to-end encryption
system FSEE. 'en, Section 7 implements the system and
evaluates the performance of our scheme. Finally, we con-
clude this article in Section 8.

2. Related Work

Security of IoTsystems has been studied extensively, such as
physical security of IoT devices [29–31], secure authenti-
cation [32, 33], access control [34, 35], data integrity [36],
and outsourcing of computations [37]. Realizing end-to-end
security for pub/sub communication has only been studied
by few approaches to date.

2.1. Schemes Based on Trusted Broker. Currently, most IoT
systems use TLS to protect the packets between brokers and
clients [3]. 'e message broker could get all the plaintext
produced by the devices and users. 'is approach forces
users to trust the broker for data processing. Due to the
access control problem in MQTT [9], Yan Jia et al. propose
MOUCON, in which the access rights to a message for every
client are checked based on specific policies. However, full
trust in the broker is also required, which does not solve the
confidentiality concern caused by malicious brokers.

2.2. SchemesBased onTrustedKey Server. A transparent end-
to-end encryption scheme for pub-/sub-based cyber-phys-
ical systems (CPSs) is provided by Markus et al. [13], in
which a trusted key server is required to distribute the topic-
specific key to all the authorized clients.'is approach forces
users to trust the key server, whose compromise can lead to
the breach of millions of client accounts and permissions.

Security and Communication Networks 3



2.3. Schemes Based on Proxy Re-Encryption. PICADOR uses
a lattice-based proxy re-encryption scheme to realize a pub/
subsystem with end-to-end encryption [15]. However, based
on the publisher’s private key and each subscriber’s public
key, PICADOR requires a trusted authority to generate a re-
encryption key for each subscriber. Compromise of the
trusted authority may lead to the exposure of all the pub-
lishers’ private keys. Furthermore, PICADOR does not
satisfy forward secrecy. References [16, 17] are also proxy re-
encryption-based schemes, which have the same problem as
PICADOR.

2.4. SchemesBasedonSecret Sharing. Sana belguith et al. [38]
propose an efficient revocable secure pub/sub system based
on the idea of secret sharing. A broker is divided into three
parts: topic matching, routing, and message sending. 'e
adversary cannot compromise all the brokers. 'ree brokers
re-encrypt the publisher’s message in turn and then send it
to the subscriber. However, the scheme requires the de-
velopment of a custom message broker, which is difficult to
deploy and does not achieve forward secrecy too.

2.5. Schemes Based on Hardware. Segarra et al. restrict the
broker to run only in a trusted execution environment (TEE)
[18] to tackle the problem of malicious or compromised
brokers, thus ensuring that the broker software is executed as
intended. However, TEE is not available on every server,
which is difficult to deploy. Additionally, several attacks
against the current mainstream TEE were shown [39],
rendering its benefit questionable.

2.6. Schemes Based on IBE or ABE. JEDI [11] uses WKD-IBE
algorithm to implement end-to-end encryption between
devices and users in IoT. Sieve [12]and Yu at el. Reference
[40] use ABE to control which principals have access to
encrypted data in the cloud. All of these schemes support
asynchronous communication and decentralized authori-
zation but do not provide forward secrecy as well.

2.7. Schemes Based on Chaos Cryptography. Some schemes
[41–45] implement real-time image encryption for IoTusing
chaos-based cryptography. Essentially, chaos-based cryp-
tography utilizes chaotic signals to generate pseudorandom
sequences, which is more suitable for video and image
encryption compared to traditional cryptography tech-
niques (DES, IDEA, and AES) [46]. 'ese efforts focus on
solving the problems of large data capacity, strong adjacent
pixels correlation, high real-time performance, and high
redundancy among raw pixels, and they do not provide
forward secrecy as well.

3. Assumption and Requirements for End-to-
End Encryption System

3.1.Assumption. As is shown in Figure 1, the device owner is
a special user of its devices, who can grant their device’s
access rights to others (such as guests, office members, and

maintenance workers) and also revoke their authorization.
We make the following assumptions:

(1) Each device corresponds to a unique device owner
and is completely controlled by its owner. A device
trusts its owner completely. If the device owner is
compromised, the adversary can gain full control
over its device.

(2) When a user initially purchases an IoT device from
the manufacturer and binds it to the message broker,
we call the user the owner of the device. 'e device
owner operates his mobile APP and establishes a
local connection with the device. We assume that the
device and the device owner are mutually authen-
ticated through the local connection, and some
initial secret keys are reliably exchanged between the
two.

(3) By distributing authorization tokens to other users
through secure channels (such as the local connec-
tion or some out-of-band channels), the device
owner can grant their device’s access rights to others.

3.2. Requirements for End-to-End Encryption Scheme.
Based on the consideration of security and availability, we
summarize five requirements that end-to-end encryption
methods should meet.

3.2.1. Confidentiality. Confidentiality ensures that the in-
terpretation of a message is impossible for anyone except the
target authorized users. As the authorized user set is dy-
namically changing (a user is authorized or revoked), there
are two meanings of confidentiality here: first, newly joined
users should not be able to interpret encrypted data before
their joining time; second, revoked users that previously had
a key should not be able to interpret future encrypted data
using their previous revoked key.

3.2.2. Support Asynchronous Communication. In the In-
ternet of 'ings, data generated by a device may be obtained
by multiple authorized users. Generally, these users may not
always be online. Users who are offline cannot affect the
communication between the device and other users.
'erefore, an IoTend-to-end encryption solution also needs
to support asynchronous communication. Even if a user is
offline at a certain time, it will not affect other users to get the
updated symmetric session key. Once the user is online, the
latest session key can be obtained.

3.2.3. Forward Secrecy. Forward secrecy means that com-
promise of long-term secrets does not lead to compromise of
session keys of previously completed sessions. Namely, the
confidentiality of previously encrypted messages can be
guaranteed when an entity is compromised later.

3.2.4. Deployability. To ensure wide deployment of the end-
to-end encryption system, the security scheme should be
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designated in a deployable manner; that is, the security
scheme should make as few modi�cations as possible to the
current IoTmessage broker, preferably easy to implement on
the existing ones, to minimize the cost of implementing the
security scheme. Otherwise, the redevelopment of a cus-
tomized message broker will not only take too long but also
is incompatible with existing systems and cannot be
interconnected.

Furthermore, most IoT devices are powered by batteries
and with limited resources. �erefore, operations of IoT
devices should be as simple as possible.

3.2.5. Decentralized Authorization. Relying on a centralized
authority to achieve �ne-grained authorization of all devices
has poor scalability, and this authority may become the
target of adversaries. �erefore, the end-to-end encryption
scheme should not rely on a centralized trusted third party,
and the authorization of each device should be fully con-
trolled by its owner. If an adversary compromises a device
owner, it only threatens the safety of the owner and its
devices, and the safety of other users and devices will not be
a¥ected.

4. Preliminaries

4.1. Blinded Key Encapsulation Mechanism (BKEM). �e
concept of key encapsulation mechanism (KEM) is to use
public key encryption algorithm to transport keys for use in
symmetric encryption and does not provide any forward
secrecy. Blinded key encapsulation mechanism (BKEM) [27]
is proposed in the scenario with cloud participation. �e
semi-trusted cloud is used to provide forward secrecy for
communication between entities. BKEM consists of three
entities: a cloud server, an initiator, andmultiple responders.
A BKEM has two additional algorithms: blinding algorithm
and unblinding algorithm.

A blinded KEM (BKEM) consists of �ve algorithms
(KG,Encap,Blin d,De cap,Unblin d). Figure 2 is a DH
based BKEM. Let G be a cyclic group of prime order q with
generator P.

KG(λ)⟶ (ek, dk): �e key generation algorithm is
executed by the cloud, and on input security parameter,
output an encapsulation key ek and a decapsulation key dk.

Encap(ek)⟶ (C, k): �e encapsulation algorithm is
executed by the initiator, takes as input an encapsulation key
ek, and outputs an encapsulation C and a group session key
k. �e initiator will transfer the encapsulation C to whoever
he wants to establish the shared session key. Note that
encapsulation C must be transmitted to the intended re-
sponders secretly; otherwise, anyone who knows the en-
capsulation C can interact with the cloud to get the �nal
session key k.

Blin d(t, C)⟶ (C̃, uk): �e blinding algorithm is
executed by multiple responders. Each responder chooses a
random blind value t, inputs the encapsulation C from the
initiator, outputs a blinded encapsulation C̃ and an
unblinding value uk. uk is closely related to the selected
random blind value t. �en, responders send the blinded
encapsulation C̃ to the cloud.

De cap(dk , C̃)⟶ k̃: �e decapsulation algorithm is
executed by the cloud. It takes decapsulation key dk and a
blinded encapsulation C̃ as input, outputs a blinded key k̃ to
the responders.

Unblin d(uk, k̃)⟶ k: �e unblinding algorithm is
executed by the responders. It takes as input an unblinding
value uk and a blinded key k̃ from the cloud and outputs the
�nal session key k.

In BKEM, the cloud is semi-trusted. �e initiator uses
the cloud to negotiate the same group session key with
multiple responders noninteractively, and multiple re-
sponders do not need to be online at the same time, thus
supporting asynchronous communication. BKEM is es-
sentially a DH key exchange between the initiator and the
cloud. �e encapsulation C generated by the initiator is
actually its DH public key. �e initiator secretly transmits
the encapsulation C to the responders, and the cloud cannot
obtain the encapsulation C, which ensures that only the
initiator and the responders can negotiate the same session
key, whereas the cloud cannot get any useful information of
the session key. In addition, based on the property of DH key
exchange, compromise of user’s long-term secrets does not

Figure 2: Di�e–Hellman-based blinded KEM in the case of one responder.
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lead to compromise of session keys of previously completed
sessions. So forward secure communication between the
initiator and the responders is realized.

4.2. Identity-Based Authenticated Key Exchange (ID-AKE).
Sherman et al. proposed an identity-based key exchange
protocol (ID-AKE) [28]. While completing the key ex-
change, the identity of both sides can be implicitly au-
thenticated. 'e scheme includes the following three stages:
system setup, key extraction, and interaction.

AKE.Setup(λAKE)⟶ (mskAKE, paramsAKE): On input
a security parameter λAKE, 'e Key Generation Center
KGCAKE generates (G,GT, e) where G and GT are groups of
prime order q and e: G × G⟶ GT is the pairing function.
KGC chooses three cryptographic hash functions
H: 0, 1{ }n⟶ G, H0: G × 0, 1{ }∗ ⟶ Z∗q and a key deri-
vation functionK. All three of these are modeled as random
oracles. KGC also randomly chooses an arbitrary generator
P of G. An element s is randomly chosen from Z∗q as the
master secret key mskAKE, and the corresponding public key
is Ppub � sP. Finally, KGC keeps mskAKE secret and makes
public parameters paramsAKE � 〈G,GT, q, e, P, Ppub,

H,H0,K〉 public.
AKE.Extract(mskAKE, IDi)⟶ SIDi

: On input an
identity IDi and master secret key mskAKE, the public key
QIDi

of IDi is set asH (IDi). KGC uses the master secret key
s to generate user’s private key SIDi

� sH(IDi).
AKE.Interact(SA, IDA, SB, IDB)⟶ sk: If user A and

user B want to authenticate each other and finally exchange a
session key, they first interact with each other to exchange
some information and then use their private key, the re-
ceived information and the identity of the other party to
authenticate each other, and negotiate the same session key.
'e interaction process is shown in Figure 3. User A ran-
domly chooses a fromZ∗q , computes (WA, TA) � (aQA, aP),
and sends (IDA, WA, TA) to B. User B randomly chooses b

from Z∗q , computes (WB, TB) � (bQA, bP), and sends
(IDB, WB, TB) to A. Both user A and user B calculate hA �

H0(WA, TA, IDB) and hB � H0(WB, TB, IDA). Finally, user
A calculates the final session key as skA � K(e((a + hA)SA,

WB + hBQB), aTB), and user B calculates the final session key
as skB � K(e(WA + hAQA, (b + hB)SB), bTA).

'is scheme can provide session key indistinguishability
and KGC forward secrecy, and also can be proved to be
secure in the CK (Canetti–Krawczyk) model [47]. 'e
session key indistinguishability means that the real session
key is indistinguishable from a random value for the ad-
versary. KGC forward secrecy means that although the
adversary can not only get the private key of both sides but
also get the master secret key of KGC, he still cannot recover
the session key previously negotiated by both sides.

4.3. Identity-Based Public Key Encryption (IBE). An identity-
based encryption scheme consists a tuple of algorithms
(IBE.Setup, IBE.Extract, IBE.Enc, IBE.De c).

IBE.Setup(λIBE)⟶ (mskIBE, paramsIBE): input secu-
rity parameter λIBE, output a master secret key mskIBE and

public parameters paramsIBE. KGCIBE keeps mskIBE secret,
and makes the paramsIBE public.

IBE.Extract(mskIBE, IDi)⟶ skIDi
: input master secret

key mskIBE and a user’s identity IDi, and output the user’s
private key skIDi

.
IBE.Enc(IDi, m)⟶ CTi: input receiver’s identity IDi

and a message m, and output the ciphertext CTi.
IBE.De c(skIDi

, CTi)⟶ m/⊥: input receiver’s private
key skIDi

and the ciphertext CT, and output the plaintext m

or a special reject symbol ⊥.

4.4.MessageAuthenticationCode (MAC). AMAC scheme is
a pair of efficient algorithms (S,V), where S is called a
signing algorithm and V is called a verification algorithm.
Algorithm S is used to generate tags and V is used to verify
tags.

S(k, m)⟶ t: k is a key and m is a message, and output t

as the tag of message m.
V(k, m, t)⟶ r: k is a key, m is a message, and t is a tag,

and output r as either accept or reject.

5. BA-GKE Group Key Exchange Protocol

5.1. Protocol Design. BKEM can only realize forward secure
and asynchronous key exchange between the initiator and
responders in authenticated-links model [47], and the users
and cloud server also need to authenticate each other when
using BKEM to construct a secure group key exchange
protocol in unauthenticated-links model [47].

Here, combining ID-AKE with DH-based BKEM, a
novel group key exchange protocol BA-GKE is proposed.
Our scenario consists of the following participants:

(1) 'e initiator, also the group manager, wants to es-
tablish a shared session key with a set of responders.

(2) Multiple responders want to allow the initiator to
establish a shared key with them.

(3) 'e server temporarily stores information assisting
the responders to compute the shared session key.

'e BA-GKE group key exchange protocol is defined in
Figure 4 in the case of one responder and is parameterized by
the following components.

(1) BKEM � (KG,Encap,Blin d,De cap,Unblin d) be
a DH based BKEM,

(2) I D − AKE � (Setup,Extract, Interact) be an
identity-based implicit authenticated key exchange
scheme,

(3) IBE � (Setup,Extract,Enc,De c) be an identity-
based public key encryption scheme,

(4) H1 be a secure hash functions,
(5) MAC � (S,V) be a message authentication code

scheme (MAC).

'e process of the protocol includes two phases: In phase
1, based on the ID-AKE protocol of Sherman et al. [28], the
initiator and the server authenticate each other, and a session
key sk is negotiated, which is used by the server and multiple
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responders to authenticate each other in the next phase; in
phase 2, based on BKEM, the initiator negotiates a common
session key k with multiple responders with the help of
server. In this phase, the identity-based encryption scheme
(IBE) is used to transfer sk and encapsulation C to each
responder. Speci�cally, BA-GKE works in the following
steps.

5.1.1. System Initialization. On input the security parameter
λAKE, the KGC of ID-AKE KGCAKE output mskAKE and
public parameters paramsAKE.

5.1.2. Server and Initiator Registration. On input server’s
identity IDS and initiator’s identity IDI, KGCAKE runs al-
gorithm AKE.Extract, uses mskAKE to generate server’s
private key SS and initiator’s private key SI, and sends the
corresponding private key to them securely.

5.1.3. Responder Registration. If initiator IDI wants to ne-
gotiate a common session key with multiple responders, the
initiator acts as the KGC of an IBE scheme. On input security
parameter λIBE, the initiator outputs a master secret key
mskIBE and public parameters paramsIBE. �en, the initiator
runs algorithm IBE.Extract, uses mskIBE and each re-
sponder’s identity IDR to generate its private key skR, and
sends the private key to the corresponding responder
through secure channel.

5.1.4. Initiator and Server Authentication. Initiator and
server run algorithmAKE.Interact to exchange information
with each other, and �nally output the same session key sk,
which is used as the MAC key in the following steps.

5.1.5. Encapsulation Key Generation. �e server runs al-
gorithmKG of BKEM generates an encapsulation key ek and

Figure 4: Message sequence chart of the BA-GKE group key exchange protocol in the case of one responder.

Figure 3: �e interaction process of both parties of ID-AKE.
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a decapsulation key dk, computes the session identifier
sid � H1(IDI, WI, IDS, WS, ek), and uses session key sk as
theMAC key to generate ek’s tag tSI

. Finally, the server sends
(ek, tSI

) to the initiator.

5.1.6. Encapsulation Generation. Upon receiving the mes-
sages (ek, tSI

) from the server, the initiator first uses sk to
verify tSI

. If it is not a valid tag, the initiator outputs ⊥;
otherwise, it runs Encap to get the group session key k and
encapsulation C and also computes the session identifier
sid � H1(IDI, WI, IDS, WS, ek). For each responder Rj,
initiator runs algorithm IBE.Enc, takes each responder’s
identity IDRj

, encapsulation C, sk, and session identifier si d

as input, and outputs the ciphertext CTRj
to the corre-

sponding responder Rj.

5.1.7. Blinded Encapsulation Generation. On receiving the
ciphertext CTRj

, each responder Rj runs algorithm
IBE.De c, takes its private key skRj

and CTRj
as input, and

gets the plaintext (C, sk, sid). 'en, the responder runs al-
gorithm Blin d to generate the blinded encapsulation C and
an unblinding value uk, uses sk as the MAC key to generate
C’s tag tR, and finally sends (C, tR, sid) to the server.

5.1.8. Decapsulating for Responders. Upon receiving the
messages (C, tR, sid) from the responder, the server first uses
sk to verify the tag tR. If it is not a valid tag, the server outputs
⊥; otherwise, it runs algorithm De cap, takes its decap-
sulation key dk and responder’s blinded encapsulation C as
input, and outputs a blinded key k. Finally, the server uses
MAC key sk to compute k’s tag tSR

and sends (k, tSR
) back to

the responder.
Unblinding for blinded key on receiving the messages

(k, tSR
) from the server, the responder uses sk to verify the

tag tSR
. If it is not a valid tag, the responder outputs ⊥;

otherwise, it runs algorithm Unblin d, uses its unblinding
value uk and k as input, and gets the final group session key
k.

5.2. Formal Security Validation with ProVerif. 'is section
presents a formal verification of the proposed protocol using
ProVerif [48]. Our verification ensures that BA-GKE pro-
vides the secrecy of generated group session key, the au-
thentication between group members, and forward secrecy.
ProVerif is an automatic verifier for cryptographic protocols
defined in the Dolev–Yao model [49]. In this model, the
adversary is an active eavesdropper, who can add, delete,
modify, and delay messages on the network. In ProVerif, the
cryptographic primitives are considered idealized that they
are unbreakable without knowing the employed secret keys.

A protocol description in ProVerif is divided into three
parts: the declarations, the process macros, and the main
process. 'e ProVerif description of our scheme is given in
the appendix. As described in lines 1–43, the declaration part
consists of the used types, the security properties, the
cryptographic primitive functions, and the list of defined
events and queries. 'e queries defined in lines 29–31 are

used to verify the confidentiality of messages transmitted
between the initiator and responders. 'e initiator and
responders select a message and use the new group session
key to send the message, and test whether the adversary can
get the encrypted data through the queries in lines 30 and 31.
Lines 38–43 define a series of events to verify mutual au-
thentication between initiator and responders.

'e second part of the ProVerif program describes the
process macros for participants: initiator (Lines 44–72), key
exchange server (Lines 73–99), and responders (Lines
100–122). When defining the process macro of initiator and
responders, the events defined before are inserted to track
the authentication results between the two parties.

In the last part, the main process of the protocol is
defined in lines 123–134. In order to prove that the protocol
satisfies forward secrecy, two phases are defined in the main
process. In phase 0, instantiate the corresponding key ma-
terial, insert the key into the correct table, and run the
corresponding process macros infinitely. In phase 1, the
private key of the users is output to the adversary. Finally, the
running result of ProVerif is shown in Figure 5.

Lines 1-2 show the results of the queries
not attacker (secretowner) and not attacker(secretuser)
returned by ProVerif. As we shall see, these results are true,
which means that the secrecy of the random values
secretowner and secretuser are preserved by the protocol. In
other words, the secrecy of the group session key generated
by our scheme is preserved. In addition, we use phases to
prove forward secrecy properties. In phase 1, even if the
participants get corrupted (their private key is leaked to the
adversary), the secrets exchanged in phase 0 are preserved,
so our protocol achieves forward secrecy. Furthermore, lines
3-4 inform us that the proposed scheme provides mutual
authentication of the initiator and responders. As such, the
proved correspondence property in line 3 implies that the
initiator authenticates responders by the fact that responders
can correctly retrieve the group session key. Similarly, line 4
indicates that the responders can authenticate the initiator.

6. FSEE: The End-to-End Encryption
System for IoT

6.1. System Framework. In this section, we develop FSEE,
which allows forward secure end-to-end encrypted message
transmission in pub/sub communication in IoT. 'e core
idea of FSEE is using BA-GKE to update the session key per
device between its authorized users, and the security of
previously negotiated session key is guaranteed even when
users’ long-term secrets are compromised.

As BA-GKE relies on a semi-trusted key exchange server
for noninteractive key exchange and forward secrecy, FSEE
adds a semi-trusted key exchange server to the existing IoT
architecture. It includes four types of entities: the IoT de-
vices, the message broker, multiple authorized users, and the
key exchange server. 'ese entities constitute two networks,
and the specific structure is shown in Figure 6. In the actual
deployment, the message broker and key exchange server
can be deployed together or separately.
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On one hand, the device, message broker, and multiple
authorized users constitute a data transmission network. All
kinds of information collected by the device will be sent to
users’ applications through the message broker.

On the other hand, multiple authorized users and the key
exchange server form a key update network. It is responsible
for updating the group session key between the authorized
users and the device when the user set changes. When a
user’s access rights are revoked by the owner, BA-GKE
group key exchange protocol proposed in the previous
section is adopted, and the group session key between au-
thorized users is updated through the key exchange server.
Since BA-GKE is relatively time-consuming, hash chain
could be used to update the group session key when the
device owner authorizes a new user to access its device.

6.2. Steps of FSEE. Speci�cally, FSEE includes the following
seven steps.

6.2.1. System Establishment Stage. �e device manufacturer
is the key generation center of ID-AKE and runs the
AKE.Setup algorithm, enters the security parameters, and
returns public parameter paramsAKE and master secret key
mskAKE. �e device manufacturer entrusts the key exchange
service of all its devices to a third-party key exchange server

and runs AKE.Extract to generate the private key SS for the
third-party key exchange server.

6.2.2. Device Owner Registration. When a user purchases an
IoT device, the user is the owner of the device. �e man-
ufacturer runsAKE.Extract to generate and send the private
key SI to the owner through a secure channel (SMS or sent
with the device).

At the same time, the device owner, as the key generation
center of IBE, chooses the corresponding security param-
eters and returns the public parameter paramsIBE and master
secret key mskIBE.

6.2.3. Device Registration. Generally, a newly purchased IoT
device begins its life cycle through “device discovery.” �e
device owner operates his mobile APP, and the APP es-
tablishes a local connection with the device [1]. After the
“device discovery” stage, the device and the device owner
complete the mutual authentication and both sides share an
initial key ik and a key encryption key kek through the local
connection.�e shared initial key ik is the �rst group session
key shared between the device and its owner.

6.2.4. Authorization Stage. When the device owner wants to
grant the device access rights to others, the device owner �rst

Figure 5: Veri�cation results of the BA-GKE group key exchange protocol.

device
Message broker

Device owner

Granted users

Key exchange
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Data transmission network
Key update network

Transmit encrypted data

Transmit key update information

Figure 6: Network architecture of FSEE.
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uses hash chain to generate a new session key k′ from the
current one k using a hash function, and the generated new
session key is sent to newly joined users. At the same time, a
key update command is broadcasted, so that the device and
other authorized users can also update their shared session
key through the same hash function. 'is is to maintain the
consistency of the shared session key between the group
members. From then on, the device and all its authorized
users use the new session key to encrypt and decrypt
transmitted messages.

In addition, for each newly joined users IDj, the device
owner uses its IBE master secret key mskIBE to generate new
user’s IBE private key skIDj

and sends it to the new user
through secure channel.'e new user keeps their private key
skIDj

secret.

6.2.5. Revocation Stage. When the device owner wants to
revoke the access rights of a user, as the initiator of BA-GKE,
the device owner starts a round of BA-GKE to update the
group session key with the remaining authorized users.
Specifically, it includes two phases: in the first phase, based
on ID-AKE, the device owner and the key exchange server
authenticate each other; in the second phase, based on
BKEM, the device owner negotiates a new shared session key
with the remaining authorized users with the help of the key
server. Identities of the remaining authorized users are used
to encrypt the new encapsulation C, whereas identities of
revoked users are not used.'e encrypted encapsulation C is
sent to the remaining authorized users, which can use their
private key to get the encapsulation C, and then interact with
the key exchange server to get the updated group session key,
whereas the device owner does not encrypt the new en-
capsulation C for revoked users, who cannot decrypt the
ciphertext to get the encapsulation and thus the updated
group session key cannot be obtained.

6.2.6. Update the Key of IoT Devices. As IoT devices are
generally resource-constrained, the calculation of the device
should be as simple as possible. In our scenario, when a new
user joins, the device updates the session key through the
hash chain just like other users. However, the device does
not participate in the revocation process of the above BA-
GKE protocol between group members, and the updated
session key during the revocation stage is distributed directly
by the device owner.

When a group member is revoked, the device owner
encrypts the updated session key directly with the key en-
cryption key kek shared with the device and then transfers it
to the device. 'e device uses the key encryption key to get
the updated session key. When the device successfully re-
ceives the new session key, the device and the device owner
also use the shared key encryption key as the input of a hash
function, and both sides update the key encryption key kek

synchronously to a new one kek′. Key encryption key update
is to ensure the forward secrecy of the communication
between the device and the device owner.

6.2.7. Update Session Key Using BA-GKE Periodically.
When the authorized user set remains unchanged for a long
time, the device-specific session key will remain unchanged,
which reduces the security of our system. 'erefore, we use
BA-GKE to update the device-specific session key periodi-
cally at the end of each hour (or other intervals). FSEE
performs key rotation using BA-GKE only at the end of each
hour or when a user is revoked, and cheap symmetric key
encryption and hash operation is incurred for the rest of the
time.

6.3. System Analysis. In this section, we provide a com-
prehensive analysis of the proposed FSEE and show that our
scheme has achieved all the requirements mentioned in
Section 2.

6.3.1. Confidentiality. When new users join the group, the
group session key is updated using hash chain. Based on the
one-way property of hash function, the session key obtained
by the new user cannot be used to derive the former session
key.

When a user is revoked, the device owner, as the initiator
of BA-GKE, relies on the key exchange server to renegotiate
the new group session key. 'e new session key is inde-
pendent of the old one. 'e revoked user cannot use the
former session key to derive the new group session key
updated by BA-GKE after revocation.

End-to-end encryption ensures that no server processing
the messages or any third-party adversaries can read the
message sent between the source and destination, so the
underlying broker cannot get any valid information.

6.3.2. Forward Secrecy. When the adversary gets the long-
term IBE private key of the authorized users, he can get all
the encapsulation C generated by the owner every time the
system uses BA-GKE to update the group session key, be-
cause the ephemeral encapsulation key ek and decapsulation
key dk of the key exchange server change once every time the
session key is updated. Even if the adversary gets the pre-
viously generated encapsulation C, it cannot interact with
the server to recover the previously negotiated group session
key. When the adversary gets the long-term ID-AKE private
key of the key server, he could not get the encapsulation C,
and knowing encapsulation key ek and decapsulation key dk

could not help him to get the session key too.

6.3.3. Asynchronous Communication. When new users are
authorized, the group session key is updated by hash chain,
and the offline group members will not affect the key update
process. When a user is revoked, as long as the device owner
and the key exchange server are online, the online group
members can update to the latest group session key, and the
key updating process will not be affected by the offline ones.
In addition, the device owner can send the encrypted en-
capsulation CT to the key exchange server for temporary
storage. Once the offline users are online, they can get the
latest encrypted encapsulation CT from the key exchange
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server. If the member is not revoked, it can decrypt with its
private key to get the latest encapsulation C and then use it to
interact with the server to get the latest group session key. In
a word, our end-to-end encryption scheme supports asyn-
chronous communication.

6.3.4. Deployability. In our scheme, the message broker is
only responsible for message routing and forwarding and
does not participate in the group key exchange process. Our
scheme does not need to change the existing IoT message
broker. When IoT device manufacturers develop new de-
vices, they can deploy our solution in the device and user
application, and build their key exchange server for all their
customers based on existing cloud service providers.
'erefore, our scheme has lower deployment costs and
supports incremental deployment.

6.3.5. Decentralized Authorization. FSEE allows each device
owner to act as an authority of its devices in its own trust
domain, without a single trusted third-party managing the
global authorization information.

7. Implementation and
Performance Evaluation

We evaluate FSEE in this section. In what follows, we first
introduce our prototype implementation and then measure
FSEE’s performance.

7.1. Prototype Implementation. 'e prototype of FSEE
contains multiple modules, including devices, user appli-
cations, a message broker, and a key exchange server. 'e
development of the device and user applications is based on
Eclipse Paho Java Client library [50]. 'e construction of
message broker is based on an open-source MQTT server
HiveMQ [51]. HiveMQ provides a flexible extension
framework that allows developers to create custom exten-
sions, and the key exchange server is implemented as a
HiveMQ extension. Cryptographic operations are supported
by Java Pairing-Based Cryptography Library [52]. 'e
prototype system runs on a laptop computer configured with
Intel Core i7-5600U 2.6 GHZ CPU and 8G RAM. 'e
computer’s operating system is Windows7. 'e develop-
ment environment of the device, user application, and key
exchange server is IntelliJ IDEA 2018.1.6.

7.1.1. BA-GKE Implementation. 'e BA-GKE group key
exchange protocol used in FSEE is constructed based on
DH-based BKEM, ID-AKE [28] and IBE. 'e IBE scheme
chooses the identity-based encryption scheme proposed by
Boneh-Franklin et al. [53]. 'e ID-AKE [28]and IBE [53]
schemes are constructed based on a symmetric bilinear
group. 'erefore, to achieve the security level of 80 bits,
FSEE uses the configuration file “a.properties” provided by
the JPBC library to generate a type “A” symmetric bilinear
group based on a 160 bits prime order elliptic curve y2 �

x3 + x mod p(p ≡ 3mod4) with embedding degree 2.

7.1.2. Client Implementation. Functions of device and user
application are simulated via Java console programs that rely
on the Eclipse Paho Java Client library. It is relatively easy to
implement the IoT device, as there are no complex cryp-
tographic operations on the device, and only symmetric
cryptographic algorithms are performed. 'e user appli-
cation is also based on Eclipse Paho Java Client library, and
two packages of JPBC library are added to support calcu-
lations related to bilinear pairing.

7.1.3. Message Broker and Key Exchange Server
Implementation. In the prototype system, the message
broker and key exchange server are deployed together on the
same computer. 'e message broker is built based on
HiveMQ Community Edition [54] to realize message
routing and forwarding. HiveMQ is a world-class, enter-
prise-ready MQTT broker that provides fast, efficient, and
reliable movement of data to and from connected IoT
devices.

'e key exchange server is realized as an extension of
HiveMQ based on HiveMQ Community Extension SDK
[55]. HiveMQ Community Extension SDK contains mul-
tiple HiveMQ interceptors, which provide a convenient way
for extensions to intercept and modify MQTTmessages. 'e
key server uses Publish Inbound Interceptor to provide key
exchange services for each authorized user.

7.1.4. Topic Design of FSEE. FSEE utilizes the key exchange
server to provide a symmetric session key per device, which
is used by the device and its authorized users to commu-
nicate with each other securely. To build a foundation to
transmit key materials to and from the key exchange server,
FSEE introduces a specific key exchange topic that is used for
all communication between the key exchange server and
users to establish a secure group session key based on
existing pub/sub MQTT protocol. Each client has its sub-
topic based on its clientID and role (owner or not), and the
topics to be handled by the device, device owner, and other
authorized users are shown in Table 1.

In FSEE, topics are divided into three categories: (1)
topics for data transmission (prefixed with Fsee/data/); (2)
topics for key exchange (prefixed with Fsee/keyex/); and (3)
topics for key update (prefixed with Fsee/keyup/).

'e key exchange topics are divided into two subcategories
according to whether the user is the device owner or not: a
topic prefixed with Fsee/keyex/I/ is used by the device owner
to interact with the server for authentication (prefixed with
Fsee/keyex/I/toKS/), to obtain the encapsulated key from the
server (prefixed with Fsee/keyex/I/toC/), and to send
encrypted encapsulation to other authorized users (prefixed
with Fsee/keyex/I/toR/). Another type of topic prefixed with
Fsee/keyex/R/ is used by other authorized users to interact
with the server to obtain the final symmetric session key.

Each device publishes data to the topic
Fsee/data/deviceID, and all authorized users subscribe to the
topic, thereby realizing data transmission in the system.
When the device owner authorizes a new user to access the
device, the device owner issues a key update command to
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topic Fsee/keyup/deviceID.�e device and other authorized
users subscribe to the topic to ensure that once the key
update command is received, they use the hash function to
update the device-speci�c session key.

�e key exchange server intercepts packets with topic
pre�xed with Fsee/keyex/I/toKS/ and Fsee/keyex/R/toKS/
in the Publish Inbound Interceptor. If the topic of the packet
is Fsee/keyex/I/toKS/clientID, it means that this is a message
sent by the device owner to the key exchange server. �e
server obtains the authentication message from the packet
payload, and the server’s authentication message and en-
capsulation key are returned to the owner through topic
Fsee/keyex/I/toC/clientID. If the topic is
Fsee/keyex/R/toKS/clientID, it means that other authorized
users are requesting the server to decapsulate its key. �e
server obtains the blinded encapsulation from the packet
payload, and the blinded key is returned to the user through
the topic Fsee/keyex/R/toC/clientID.

When a user’s access rights are revoked, the device
owner uses BA-GKE to update the session key, and the
device owner publishes the updated new session key to the
topic Fsee/keyup/toD/deviceID.�e device subscribes to the
topic to get the latest session key.

7.2. Evaluation. In this section, we evaluate the performance
of FSEE based on the prototype system.

7.2.1. Overhead of Updating the Symmetric Key Using BA-
GKE. Table 2 shows the performance of our type A curve
implemented on JPBC. Preprocessing feature could be used
to save time in the long run when a particular element is
exponentiated and paired several times. �e most time-
consuming operation is exponentiation in G1 and pairing.

Figure 7 gives the computational overhead of each
module (including device, device owner, key server, and
other authorized users) in the system when using BA-GKE
to update a symmetric key. �e key server provides
decapsulation services for each authorized user, so its
computational cost increases linearly with the number of
users, which increases by 15ms for each additional autho-
rized user. �e device owner �rst interacts with the key
exchange server based on ID-AKE and then encrypts the

encapsulation for each authorized user. Its processing
overhead is about 45ms in the case of one authorized user
and increases by 9ms for each additional authorized user.
Other users use their own IBE private key to obtain the
encapsulation and interact with the server to get the �nal
symmetric key, and the calculation overhead is about 37ms.
�e key of the IoT device is directly updated by the owner,
and devices only need to perform one symmetric decryption
algorithm, so their computational cost is about 0.2ms.

�e overhead of the key server and device owner in-
creases linearly with the number of authorized users.�e key
server is generally deployed on a workstation or cloud

Table 1: Topic to be handled by each module.

Stages Mode Device Device owner Other authorized user

Data transmission Pub Fsee/data/deviceID — —
Sub — Fsee/data/deviceID Fsee/data/deviceID

BA-GKE key exchange
Pub — Fsee/keyex/I/toKS/clientID Fsee/keyex/R/toKS/clientID

— Fsee/keyex/I/toR/authorized user’s clientID —

Sub — Fsee/keyex/I/toC/clientID Fsee/keyex/I/toR/clientID
— — Fsee/keyex/R/toC/clientID

New uers joins Pub — Fsee/keyup/deviceID —
Sub Fsee/keyup/deviceID — Fsee/keyup/deviceID

Device’s key update Pub — Fsee/keyup/toD/deviceID —
Sub Fsee/keyup/toD/deviceID — —

— represents that there are no topics to deal with.

Table 2: Execution time of di¥erent cryptographic operations.

Operation Time (ms)
Pairing 12.4
Pairing with preprocessing 6.4
G1 exponentiation 15.3
G1 exponentiation With preprocessing 2.2
GT exponentiation 1.4
GT exponentiation With preprocessing 0.2
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Figure 7: Computational overhead of each module of FSEE.
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platform with abundant resources. While the device owner
only manages the access rights of his own device through a
mobile phone application, the number of authorized users n
of one device is generally not too large (n≤ 20), and it is also
considered a practical cost of performing about 2 n asym-
metric operation per message on an iPhone 3GS [56].
Furthermore, it is also easy for the device owner to achieve
constant calculation overhead using e�cient identity-based
public key broadcast encryption algorithms [57, 58].

7.2.2. Secure Communication. To realize end-to-end secu-
rity of pub/sub communication in IoT, clients in FSEE use
the computed device-speci�c key to encrypt and decrypt
messages using AES. We study the resulting per-message
processing overhead for publishing and subscribing to
messages by comparing the computation overhead to un-
protected communication, which uses the same pub/sub-
stack without any enabled security features. As the runtime
depends on the size of transmitted messages, we perform the
measurements for message sizes of 128 B, 512 B, 1 kB, and
2 kB to represent smaller and larger value clusters typically
used in IoT.

As shown in Figure 8, the increased processing overhead
per message is about 0.2 ms-0.3ms at publisher and sub-
scriber compared to communications without any enabled
security features. Overall, the high level of security achieved
by applying FSEE to sensitive pub/subcommunication in
IoTonly introduces a modest increase in computation time,
which is suitable even for resource-constrained IoT devices.

7.2.3. Comparison to Existing Schemes. Table 3 compares
FSEE with other systems in regard to con�dentiality, for-
ward secrecy, decentralized authorization, deployability, and
performance. �e schemes based on chaos cryptography is
designed for one-to-one communication, while our work is
aimed at one-to-many communication, so chaos cryptog-
raphy-based schemes are not included in the scope of
comparison. We re-implemented JEDI using our crypto
library for a fair comparison and use it as a medium to
compare with proxy re-encryption-based schemes [15] and
ABE (attribute-based encryption)-based schemes [12, 40].

7.2.4. Con�dentiality. Most of the message broker in
commercial IoT system is not completely trusted. In a
scheme that completely relies on a trusted broker, the broker
can get all user’s data that does not meet the con�dentiality
requirement.

7.2.5. Forward Secrecy. Most current designs of secure
communication protocols consider forward secrecy an in-
dispensable design goal [19]. None of the existing solutions
satis�es forward secrecy.

7.2.6. Decentralized Authorization. In a scheme relying on a
centralized trusted server or broker, the authorization and
revocation of device access rights must be managed by the

server or broker. �erefore, these schemes have poor scal-
ability, and the server may become the target of the
adversary.

7.2.7. Deployability. Reference [38] divides the broker’s
function into three part, and the designed new broker needs
to be customized to meet the corresponding requirements;
reference [18] needs to install special hardware, both of
which are di�cult to deploy.

7.2.8. Performance. Trusted broker-based schemes do not
meet the requirement of con�dentiality, and References
[18, 38] are di�cult to deploy, so these schemes are not re-
implemented on our experimental platform. Trusted key
server-based schemes are faster than FSEE when distribute
symmetric key, but similar to FSEE when using a symmetric
key to transmit data in the common case. In JEDI [11], it re-
implemented PICADOR [15], whose performance is com-
parable to JEDI. JEDI uses WKD-IBE [59] to distribute the
symmetric key, the time to transmit a symmetric key (in-
cluding one encryption and one decryption) is about 95ms,
and the decryption time contains the time to generate a
decryption key for the encrypted pattern and the time to
decrypt the ciphertext. When computing the time of JEDI,
we use a pattern of 20 attributes, with the �rst 14 attributes
representing the URI and the last 6 attributes representing
the time. ABE algorithms are more complicated than IBE,
and the computational overhead of ABE-based schemes is
much bigger than IBE based ones, which is not appropriate
for resource-constrained IoT devices. FSEE takes about
115ms to distribute a symmetric key using BA-GKE. �e
computational overhead of FSEE is slightly higher than
JEDI, but it can provide forward secrecy.

In summary, existing schemes fall into one of the four
categories. (1) Trusted broker-based schemes need to fully
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Figure 8: Increased per-message runtime at publisher and sub-
scriber compared to unprotected communication for di¥erent
message sizes.
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trust the broker, which contradicts the confidentiality re-
quirement. (2) In trusted key server- or broker-based
schemes, a single component is trusted for all resources in
the system. Granting or revoking access to a user requires the
participation of the trusted party to generate new keys. (3)
Some schemes need to redevelop a customized message
broker or install special hardware, which is difficult to de-
ploy. (4) None of the existing schemes achieve forward
secrecy.

8. Conclusion

In this work, we propose FSEE, a forward secure end-to-end
encrypted message transmission system for pub/sub com-
munication in IoT, which addresses the confidentiality
concerns of malicious adversaries that fully compromise the
message broker. To support FSEE, a novel group key ex-
change protocol BA-GKE is designed to distribute sym-
metric key per device between each device and its multiple
authorized users, and its security is verified by ProVerif.
FSEE can achieve confidential and forward secure end-to-
end communication in IoT, and support decentralized au-
thorization, deployability, and asynchronous communica-
tion at the same time. Experimental evaluations were also
conducted to test the performance of FSEE. Further ex-
plorations of efficient user revocation and encrypted data
persistence are also interesting and may be our future re-
search direction.

Appendix

A. The Proverif description of BA-GKE

(1) free c: channel.
(2) type G.
(3) type GT.

(4) type exponent.
(5) const p: G [data].
(6) fun sm (G, exponent): G.
(7) fun e (G, G): GT.
(8) fun addG (G, G): G.
(9) fun addexp (exponent, exponent):exponent.
(10) equation for all x: exponent, y: exponent; sm (sm

(p, x), y)� sm (sm (p, y), x).
(11) equation for all G1 :G, x: exponent, G2 :G, y:

exponent; e (sm (G1, x), sm (G2, y))� e (sm (G1, y),
sm (G2, x)).

(12) type nonce.
(13) fun senc (bitstring, nonce):bitstring.
(14) reduc forall x:bitstring, y:nonce; sdec (senc (x, y),

y)� x.
(15) type pkey.
(16) type skey.
(17) fun pk (skey):pkey.
(18) fun aenc1 (G, pkey): bitstring.
(19) reduc forall x:G, y:skey; adec1 (aenc1 (x, pk (y)),

y)� x.
(20) fun aenc2 (nonce, pkey):bitstring.
(21) reduc for all x:nonce, y:skey; adec2 (aenc2 (x, pk

(y)), y)� x.
(22) fun bitstring_to_G (bitstring): G [data,

typeConverter].
(23) fun H0 (G, bitstring):exponent.
(24) fun H1 (GT):nonce.
(25) fun H2 (bitstring, G, bitstring, G, G):nonce.
(26) fun H3 (nonce, G):nonce.
(27) fun Inverse (exponent):exponent.

Table 3: Comparison of different end-to-end encryption schemes.

Schemes Confidentiality Forward
secrecy

Decentralized
authorization Deployability Performance

Trusted broker based,
as TLS [3], MOUCON
[9]

✕ ✕ ✕ ✓ —

Trusted key server
based, as [13] ✓ ✕ ✕ ✓

Faster than FSEE when distribute symmetric
key, similar to FSEE when using symmetric

key to transmit regular data
PRE based, as [15–17] ✓ ✕ ✕ ✓ Similar to JEDI
Secret sharing based, as
[38] ✓ ✕ ✕ ✕ —

Trusted hardware
based, as [18] ✓ ✕ ✕ ✕ —

IBE based, as JEDI [11] ✓ ✕ ✓ ✓
Takes about 95ms (including device

encryption and user decryption) to distribute
symmetric key

ABE based, as [12, 40] ✓ ✕ ✓ ✓ Much slower than JEDI

FSEE ✓ ✓ ✓ ✓ Takes about 115ms to distribute symmetric
key in case of one authorized user

— represents that we do not re-implement these schemes on our experimental platform.
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(28) fun mac (G, nonce):bitstring.
(29) free s, mt, secretowner, secretuser: bitstring

[private].
(30) query attacker (secretowner).
(31) query attacker (secretuser).
(32) table akekey (bitstring, G).
(33) table responderPk (bitstring, pkey).
(34) table responderSk (bitstring, skey).
(35) table SIDdk (nonce, exponent).
(36) table SIDsk (nonce, nonce).
(37) not attacker (new masterkey).
(38) event beginARake (bitstring, bitstring).
(39) event endARake (bitstring, bitstring).
(40) event beginRAake (bitstring, bitstring).
(41) event endRAake (bitstring, bitstring).
(42) query x:bitstring, y:bitstring; event (endARake (x,

y)) �� > event (beginARake (x, y)).
(43) query x:bitstring, y:bitstring; event (endRAake (x,

y)) �� > event (beginRAake (x, y)).
(44) let processA (IDA:bitstring, IDB:bitstring, IDR:

bitstring)�

(45) new a:exponent;
(46) out (c, (IDA, sm (bitstring_to_G (IDA), a)));
(47) get akekey (� IDA, skA) in
(48) in (c, m:bitstring);
(49) let (IDX:bitstring, WB :G)�m in
(50) let expAA:exponent� addexp (a, H0 (sm (bit-

string_to_G (IDA), a), IDX)) in
(51) let expAB:exponent�H0 (WB, IDA) in
(52) let AG1 :G� sm (skA, expAA) in
(53) let AG2 :G� addG (WB, sm (bitstring_to_G

(IDX), expAB)) in
(54) let akeAsk:nonce�H1 (e (AG1, AG2)) in
(55) out (c, senc ((IDA, s), akeAsk));
(56) in (c, mes:bitstring);
(57) let (� IDB, messg:bitstring)� sdec (mes, akeAsk)

in
(58) in (c, ek:G);
(59) let Asid:nonce�H2(IDA, sm (bitstring_to_G

(IDA), a), IDX, WB, ek) in
(60) new Ai:exponent;
(61) let C :G� sm (p, Ai) in
(62) let ka:G� sm (ek, Ai) in
(63) let kafinal: nonce�H3 (Asid, ka) in
(64) get responderPk (� IDR, rPk) in
(65) event beginARake (IDA, IDR);
(66) out (c, aenc1 (C, rPk));
(67) out (c, aenc2 (akeAsk, rPk));

(68) out (c, aenc2 (Asid, rPk));
(69) out(c, senc ((IDA, secretowner), kafinal));
(70) in (c, (IDr:bitstring, mfromr:bitstring));
(71) if IDr� IDR then
(72) event endARake (IDA, IDR).
(73) let processB (IDB:bitstring, IDA:bitstring)�

(74) new b:exponent;
(75) out (c, (IDB, sm (bitstring_to_G (IDB), b)));
(76) get akekey (� IDB, skB) in
(77) in (c, m:bitstring);
(78) let (IDY:bitstring, WA :G)�m in
(79) let expBB:exponent� addexp (b, H0 (sm (bit-

string_to_G (IDB), b), IDY)) in
(80) let expBA:exponent�H0(WA, IDB) in
(81) let BG1 :G� addG (WA, sm (bitstring_to_G (IDY),

expBA)) in
(82) let BG2 :G� sm (skB, expBB) in
(83) in (c, ms:bitstring);
(84) let (� IDA, mb:bitstring)� sdec (ms, H1(e (BG1,

BG2))) in
(85) let akeBsk:nonce�H1 (e (BG1, BG2)) in
(86) out (c, senc ((IDB, mt), akeBsk));
(87) new dk:exponent;
(88) out (c, sm (p, dk));
(89) let Bsid:nonce�H2(IDY, WA, IDB, sm (bit-

string_to_G (IDB), b), sm (p, dk)) in
(90) insert SIDdk (Bsid, dk);
(91) insert SIDsk (Bsid, akeBsk);
(92) in (c, (BCr :G, macr1:bitstring, rsid1:nonce));
(93) get SIDsk (� rsid1, macverkey:nonce) in
(94) let macr2:bitstring�mac (BCr, macverkey) in
(95) if macr1�macr2 then
(96) get SIDdk (� rsid1, siddk:exponent) in
(97) let BK: G� sm (BCr, siddk) in
(98) let macsend:bitstring�mac (BK, macverkey) in
(99) out (c, (BK, macsend, rsid1)).
(100) let processR (IDA:bitstring, IDB:bitstring, IDR:

bitstring)�

(101) in (c, c1:bitstring);
(102) in (c, c2:bitstring);
(103) in (c, c3:bitstring);
(104) get responderSk (� IDR, rsk) in
(105) event beginRAake (IDR, IDA);
(106) let rC: G� adec1 (c1, rsk) in
(107) let MACk:nonce� adec2 (c2, rsk) in
(108) let rsid:nonce� adec2 (c3, rsk) in
(109) new t:exponent;
(110) let BC: G� sm (rC, t) in
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(111) let tinverse:exponent� Inverse (t) in
(112) let macr:bitstring�mac (BC, MACk) in
(113) out (c, (BC, macr, rsid));
(114) in (c, (BKr: G, macfroms:bitstring, rsidfroms:

nonce));
(115) let macfroms1:bitstring�mac (BKr, MACk) in
(116) if macfroms1�macfroms &&;rsidfroms� rsid

then
(117) let kr:G� sm (BKr, tinverse) in
(118) let krfinal:nonce�H3 (rsid, kr) in
(119) in (c, (IDi:bitstring, mfromi:bitstring));
(120) if IDi� IDA then
(121) event endRAake (IDR, IDA);
(122) out (c, senc ((IDR, secretuser), krfinal)).
(123) process
(124) new masterkey:exponent;
(125) new IDA: bitstring; new IDB: bitstring; new IDR:

bitstring;
(126) let skA: G� sm (bitstring_to_G (IDA), masterkey)

in
(127) let skB: G� sm (bitstring_to_G (IDB), masterkey)

in
(128) insert akekey (IDA, skA);
(129) insert akekey (IDB, skB);
(130) new Rsk:skey;
(131) insert responderSk (IDR, Rsk);
(132) let Rpk:pkey� pk (Rsk) in out (c, Rpk);
(133) insert responderPk (IDR, Rpk);
(134) (!processA (IDA, IDB, IDR)) | (!processB (IDB,

IDA)) | (!processR (IDA, IDB, IDR) | phase 1; out
(c, Rsk))
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