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-e security of unprotected automatic speaker verification (ASV) system is vulnerable to a variety of spoofing attacks where an
attacker (adversary) disguises him/herself as a specific targeted user. It is a common practice to use spoofing countermeasure (CM)
to improve the security of ASV systems so as to avoid illegal access. However, recent studies have shown that both ASV and CM
systems are vulnerable to adversarial attacks. Previous researches mainly focus on adversarial attacks on a single ASV or CM
system. But in practical scenarios, ASVs are typically deployed in conjunction with CM. In this paper, we investigate attacking the
tandem system of ASV and CM with adversarial examples. -e joint objective function is designed to restrict the generating
process of adversarial examples. -e joint gradient of the ASV and CM system is derived to generate adversarial examples. Fast
Gradient Sign Method (FSGM) and Projected Gradient Descent (PGD) are utilized to study the vulnerability of tandem ver-
ification systems against white-box adversarial attacks. -rough our attack, audio samples whose original labels are spoof or
nontarget can be successfully accepted by the tandem system. Experimental results on the ASVSpoof2019 dataset show that the
tandem system is vulnerable to our proposed attack.

1. Introduction

Automatic speaker verification (ASV) aims to extract fea-
tures from given utterances so as to determine whether the
utterance belongs to a specific speaker. ASV is undisputedly
a crucial technology for biometric identification, which is
broadly applied in real-world applications like access
control, military, judicial forensics, and surveillance [1].
However, unprotected ASV systems are vulnerable to a
variety of spoofing attacks [2]. In spoofing attacks, the at-
tacker usually disguises himself/herself as one of the enrolled
speakers by generating spoofing speech [3, 4]. -e emer-
gence of spoofing attacks promotes the research of spoofing
countermeasures (CM). Whether being independent of ASV
or combined with ASV, spoofing countermeasure has be-
come an indispensable part when deploying ASV [5]. In
recent years, by following ASVSpoof challenges, the works to
address voice spoofing attacks and their defenses have

become popular [6–10]. In view of various spoofing sce-
narios, researchers have proposed lots of effective anti-
spoofing methods [11–15]. -e scenarios of both logical
access (LA) and physical access (PA) are taken into account
in these works. -e LA scenario involves fake audios syn-
thesized bymodern text-to-speech synthesis (TTS) and voice
conversion (VC) models. -e PA scenario involves replayed
audio signals recorded in reverberant environments under
different acoustic configurations. Several teams in ASV-
Spoof2019 have achieved excellent performance in detecting
spoofing and reinforcing robustness of ASV systems under
both LA and PA scenarios. -erefore, with the rapid de-
velopment of spoofing detection, it is becoming common to
deploy ASV and CM together.

Adversarial attacks have potential threats to all types of
machine learningmodels [16–19], so they have attracted a lot
of attention in different classification tasks. According to
whether the attacker has the internal information of ASV
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(including model structure, parameters, loss function, and
gradient information), adversarial attacks can be divided
into white-box attack and black-box attack [20]. In general,
white-box attacks have a higher success rate, but black-box
attacks are more in line with realistic attack scenarios. In
recent years, preliminary progress has been made in
adversarial attacks on ASV and CM. Researchers conducted
white-box attacks [21–27] or black-box attacks [26–30] on
common ASV models. In [31, 32], the vulnerability of the
CM system against adversarial examples is also investigated.

Although there have been various works in the field of
adversarial attacks on ASV or CM, as far as we know,
adversarial attack research on the tandem system of ASV and
CM has not yet appeared [2]. As ASV is usually utilized in
combination with CM in real scenarios, it is necessary to
study the adversarial attack in this kind of tandem system. In
the tandem system, ASV and CM systems are trained in-
dependently and combined during the validation phase. In
order to measure the performance of the tandem system, the
tandem detection cost function (t-DCF) is proposed in
[33, 34]. -e calculation of t-DCF utilizes different kinds of
errors generated by two subsystems and assigns different
costs to these errors. In this paper, our goal is to enable
utterances that should have been rejected by the tandem
system to be accepted after an adversarial attack. Because
there are two independent subsystems in the tandem system,
it is necessary to consider the gradient and loss of subsystems
in the generation of the adversarial examples so that
adversarial utterance can deceive both ASV and CM systems.

In this paper, we implement the tandem verification
system of ASV and CMs on the ASVSpoof2019 Challenge
dataset. -e method of attacking the tandem system is also
proposed. To the best of our knowledge, it is the first work to
study adversarial attacks in the tandem system of ASV and
CM. Our contribution is as follows:

(1) For the tandem system of ASV and CM, a parallel
branch structure is designed to derive the joint target
function.

(2) -e joint adversarial gradient derived from the joint
target function is utilized to generate adversarial
examples.

(3) Compared with the step-by-step attack, the joint
adversarial attack method proposed by us is more
effective.

-e remaining part of the paper is organized as follows.
-e related works about adversarial attacks on ASV and CM
are introduced in Section 2.-e models of ASV and CM and
their combination are introduced in Section 3. -e algo-
rithm for generating adversarial examples in the tandem
system is proposed in Section 4. -e settings and results of
experiments are reported in Section 5. -e summary and
discussion are given in Section 6.

2. Related Works

In this section, we introduce the preliminaries of adversarial
attacks on ASV and CM, respectively.

2.1. Adversarial Attacks on ASV. Study [26] shows that end-
to-end ASV systems are vulnerable to adversarial attacks.
Adversarial examples are generated by adding a perceptually
indistinguishable structured noise to the original test ex-
amples. -is is the first work in the field of ASV adversarial
examples. Fast Gradient Sign Method (FGSM) is utilized to
carry out white-box and black-box attacks in a cross-corpora
and cross-feature setting. Another recent study [22] inves-
tigates the vulnerability of the Gaussian Mixture Model
(GMM) i-vector-based ASV under adversarial attacks. -e
transferability of adversarial examples from one ASV to
another is also evaluated in this work. “FakeBob” addressed
in [30] investigates the impacts of threats generated by
practical black-box attacks. -is study considers different
cases for practical scenarios, including various ASV archi-
tectures of commercial systems, transferability of attacks,
practicality of over-the-air through replay, and impercept-
ibility based on human perception. Further studies have also
explored real-time, practical, and robust adversarial attacks.
-e estimated room impulse response (RIR) is integrated
into the adversarial example training process [25, 28].

2.2.AdversarialAttacks onCM. Unlike the adversarial attack
research that has been widely explored on the ASV systems,
adversarial attacks on spoofing countermeasures have re-
ceived little attention. A recent work [32] investigates the
vulnerability of spoofing countermeasures for ASV under
both white-box and black-box attacks with the FGSM and
the Projected Gradient Descent (PGD) methods. -e per-
formance of black-box attacks across spoofing counter-
measure models with different network architectures and
different amount of model parameters is compared in this
work. It reveals that spoofing countermeasure models are
vulnerable to FGSM and PGD attacks under the scenario of
white-box attack.-e black-box attacks are also proved to be
effective. In addition to the work in [32], the work in [31] has
also proposed a black-box attack utilizing the transferability
of adversarial examples.

3. Two Subsystems and Their Combination

In this section, the subsystems ASV and CM are introduced.
Method of their combination is also introduced.

3.1.!e Tandem System as the Attack Victim. Both ASV and
CM systems belong to binary classification systems [34].
Each trial of ASV is an enrollment-test pair, where ue is
collected at the enrollment phase and ut at the verification
phase. If in pair (ue, ut) the identities of speakers are the
same, it is known as a target trial; otherwise, it is a nontarget
trial. -erefore,

H
asv
0 (nontarget): id ue( ≠ id ut( ,

H
asv
1 (target): id ue(  � id ut( ,

⎧⎨

⎩ (1)

where id(u) ∈ N represents the speaker identity corre-
sponding to utterance u. ASV systems may encounter the
intrusion of spoofed trials. -erefore, it is necessary to
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deploy the CM system to reject spoofed utterance.�e object
of the CM system is to verify the authenticity of test ut-
terance ut. If ut corresponds to genuine speech produced by
real human speaker, the trial is referred to as a bona�de trial.
If ut corresponds to nongenuine, manipulated, or synthe-
sized speech, the trial is referred to as a spoof trial. �erefore,

Hcm
0 (spoof): ut is as poofing utterance,

Hcm
1 (bonafide): ut is a bonafide utterance.

{ (2)

Although both ASV and CM systems have the same
object of preventing illegal access, they each have speci�c
goals. ASV system should be able to reject zero-e�ort im-
posters (nontarget speakers), and the CM system should be
able to detect spoo�ng speakers. �e ASV and CM systems
play complementary roles, and both are needed to ensure
spoo�ng-robust ASV.

Traditional fusion systems typically involve two sub-
systems with the same objectives, such as the fusion of two
ASV systems or two CM systems. However, ASV and CM do
not have the same objective function, so the ASV-CM
tandem system is di�erent from the traditional fusion sys-
tem. �e real target speakers’ trials should be accepted by
both ASV and CM. Cascaded tandem detection framework
shown in Figure 1 has shown the potential in previous work
[34]. �erefore, the cascaded system shown in Figure 1 is
chosen as the victim system in this paper. Obviously, it is
needed to set thresholds for both CM and ASVmodules.�e
�nal decision result will be obtained after comparing scores
with two thresholds (i.e., thresholds of CM and ASV sub-
systems). Trials can be accepted only when scores are not less
than both thresholds. For tandem systems, three di�erent
types of trials will be encountered: (i) target, (ii) nontarget,
and (iii) spoof. �ere are two �nal decisions for the tandem
system: (i) accept and (ii) reject. Only trials labeled target
should be accepted, and both nontarget and spoof trials
should be rejected.

3.2.�eModel Details of ASV and CM Subsystems. �e deep
neural network structure for ASV is presented in Figure 2,
which follows the architecture utilized in [35, 36]. �e
mutual-information maximization method is utilized for
training the Siamese network. All training procedures only
update the back-end of ASV (Siamese and discriminator
module), while the front-end feature extraction module
remains �xed. �e green squares in Figure 2 are “Siamese”
module, and the orange squares are “discriminator” module.
�e traditional cosine metric or PLDA scoring at the back-
end is not utilized in this modi�ed structure. Instead, in
order to obtain the gradient, a fully connected layer is
utilized to measure the similarity of speech features. If both
inputs xenrol and xtest belong to the same speaker, the score is
1; otherwise, it is 0.

�e Squeeze-Excitation Network (SENet) structure for
CM is presented in Figure 3 and Table 1, which follows the
SENet34 architecture proposed in [13].�e system proposed
in [13] is ranked 3rd and 14th places for the PA and LA
scenarios, respectively. SENet adaptively recalibrates the

channel feature responses by explicitly modelling the de-
pendencies between channels, which has shown great ad-
vantages in image classi�cation tasks [37]. �e use of SENet
has also achieved excellent results in the �eld of CM.

4. Tandem Attack Methods

4.1. Adversarial Attack Methods. Given audio sample x, the
goal of the attack is to generate a perturbed audio signal:

max
‖δ‖p ≤ ε

L(θ, x̃, l)

x̃ � x + δ s.t. ‖δ‖p ≤ ε,
(3)

where θ is the parameters of the model that has been �xed, x̃
is the perturbed audio, l is the original label of x, L is the loss
function, and ε is the upper limit of perturbation.�e goal of
the adversarial attack is to lead the classi�er to misclassify x̃.
If the real label of audio sample x is l, then after the
adversarial attack, the classi�er will identify the label of x̃ as l̃,
and l̃≠ l. In an adversarial attack, it is necessary to ensure
that the perturbation is imperceptible enough so as to make
it di�cult for humans to distinguish between x̃ and x. �e
value of p is generally 2 or∞, and p �∞ in this work. In
order to solve the above optimization problems, Fast Gra-
dient Sign Method (FGSM) [17] and Projected Gradient
Descent (PGD) [38] are utilized in our paper.

(1) FGSM. FGSM is a single-step attack method with
high computational e�ciency. �e main idea is to
extract the sign of the gradient function to generate
adversarial examples. Loss will increase by moving
along the gradient direction. �e perturbed signal
generated by FGSM is as follows:

x̃ � x + ε · sign ∇xL(θ, x, l)( ). (4)

(2) PGD. PGD is a method of generating adversarial
examples through iteration. �e attack success rate
of PGD is higher than FGSM, but it also consumes
more computing resources. First, initialize x0 � x,
and then the audio after each iteration is

x̂k+1 � clip xk + α · sign ∇xkL θ, xk, l( )( )( ), (5)

where 0≤ k≤K and K is the maximum number of iterations.
α is the step-size of the gradient descent update.�e function
clip is utilized to clip the perturbation to satisfy
0≤ ‖xK − x‖∞≤ ε.

CM

Cascade System

target

nontarget
CM Accept Accept

Reject

CM Reject

ASV

Figure 1: Integration system of ASV and CM.
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4.2. Adversarial Attack in Tandem System. Previous work on
adversarial attacks has been done in ASV or CM subsystems,
respectively. In this paper, adversarial attacks are conducted
against the CM-ASV tandem system. We propose that the
joint gradient is utilized to generate adversarial examples of
the tandem system so that ASV and CM systems can be
deceived simultaneously. In order to derive the joint ob-
jective function utilized to generate adversarial examples, a
parallel decision structure is proposed, as shown in Figure 4.
In fact, there are two methods to combine CM and ASV,
including a cascade one and a parallel one, whose decision
principles are similar to that of victim systems in Figure 1.
�e tandem system accepts the input utterance only if both
ASV and CM systems accept it. �erefore, our design can be
utilized not only for parallel systems but also for cascaded
systems. �e input features for both ASV and CM in our
algorithm are uni�ed, which simpli�es the computation of
joint gradients regarding features. �e CM and ASV

subsystems adopt the network structures introduced in
Figures 2 and 3. In order to ensure the additivity of
adversarial gradients generated by ASV and CM, the input
features of subsystems are uni�ed to Log Power Spectrum
(LPS).

In FGSM and PGD, both the loss function and gradient
information of the target system need to be obtained. �e
simplest method is to add perturbation to the original ut-
terance against CM and then ASV (or swap the order).
However, the perturbation added later will override the
perturbation added earlier, making it impossible to deceive
both systems at the same time. �e analysis will be shown in
Section 4. For these reasons, the joint loss function is
introduced:

Conv3*3
stride = s

Conv3*3
stride = 1

Batch
Norm

Batch
Norm

Conv3*3
stride = s

Batch
Norm

yx

Global
Pooling FC layer

FC layer Sigmoid

ReLU

ReLU

Figure 3:�e network module of Squeeze-Excitation Network (SENet), where (s) is the stride control variable, (x) is the input, and (y) is the
output.

Table 1: �e architecture of SENet34.

Type Filter/stride Output
Conv 7∗7/2∗2 431∗300∗16
Batch norm — 431∗300∗16
ReLU — 431∗300∗16
Max pool 3∗3/2∗2 215∗150∗16
SEResNet module ∗3 — 215∗150∗16
SEResNet module ∗4 — 107∗75∗32
SEResNet module ∗6 — 53∗37∗64
SEResNet module ∗3 — 26∗18∗128
Global AvgPool — 128
FC — 2

Reject

Reject

Accept
Accept

Accept

ASV

CM

Testing
Waveform

ASV Training
Dataset

CM Training
Dataset

Feature Extraction

Figure 4: Parallel decision architecture. Dotted lines represent the
¨ow of training information.

TDNNXenrol

Xtest

FC 512
Dropout

FC 512
Dropout

FC 512 FC 256 FC 256

FC 1

TDNN FC 512 FC 256 FC 256

Figure 2: �e neural network architecture for ASV. Dashed lines indicate shared parameters. All hidden layers use ReLU activation. Green
boxes represent “Siamese” modules and orange “discriminator” modules.
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Ltotal � LASV + LCM, (6)

� αCE lasv,f(x)(  +βCE lcm,g(x)( , (7)

� α 
i�tar

l
i
asv · log fi(x) + 

i≠tar

1− l
i
asv  · log 1− fi(x)( ⎡⎢⎣ ⎤⎥⎦,

(8)

+β 
i�bon

l
i
cm · log gi(x) + 

i≠bon
1− l

i
cm  · log 1− gi(x)( ⎡⎢⎣ ⎤⎥⎦,

(9)

where LASV, LCM, and Ltotal are loss functions of ASV, CM,
and tandem system. CE is the cross-entropy loss function.
lasv (target� 1; nontarget� 0) and lcm (bonafide� 1;
spoof� 0) are labels of ASV and CM. f(x) and g(x) are
models of ASV and CM. α and β are weights of ASV and CM;
in this paper, α � β � 0.5, and α + β � 1. LASV and LCM are
obtained by the subsystems shown in Figures 2 and 3, re-
spectively. During the generation of adversarial examples,
inputs are original utterances, labels for ASV and CM, and
claimed identity. Since Ltotal is a function of x, lasv, and lcm, it
can be represented as F(x, lasv, lcm). -e gradient of the joint
loss function can be calculated as follows:

zF x, lasv, lcm( 

zx
� α ·

zF x, lasv, lcm( 

zf(x)
·
zf(x)

x

+ β ·
zF x, lasv, lcm( 

zg(x)
·
zg(x)

x
.

(10)

Substituting formulas (6)–(10) into the FGSM or PGD
algorithm, the adversarial examples of the tandem system
can be obtained.

5. Experiments

5.1. Datasets and Metrics. -is work utilizes the ASV-
spoof2019 dataset, which encompasses partitions for the
assessment of LA and PA scenarios. LA implies a scenario in
which a remote user seeks access to a system or service
protected by ASV. An example is a telephone banking
service. In this scenario, attackers may connect and then
send synthetic or converted voice signals directly to the ASV
system while bypassing the microphone, that is, by injecting
audio into the communication channel. Attacks in the LA
scenario can be generated using the latest TTS and VC
technologies. -e best of these algorithms produces speech
that is perceptually indistinguishable from bona fide speech.
In the PA scenario, spoofing attacks are presented to a fixed
microphone which is placed in an environment where
sounds propagate and are reflected from obstacles such as
floors and walls. Implementing a replay spoofing attack
requires recording bonafide speech in advance and then
playing those recordings back to the microphone of the ASV
system with a replay device. In this paper, we only utilize the
LA partition. -e dataset provides spoofing samples

generated by different spoofing methods, as well as labels of
speaker and spoofing method [9, 10].

-e ASVSpoof2019 dataset is utilized to train the CM
system and evaluate the experimental results. -e structure of
CM has shown in Figure 3. When training the CM system,
LPS are extracted according to the speaker list of ASV-
Spoof2019. -ere are 25,380 utterances in the training set for
training the CM model. -ere are also 24,844 utterances for
development and 71,237 for evaluation. -e Blackman
window function is utilized to extract LPS with a length of
1724 as features, with a window length of 0.0081s [14]. During
the training phase, each training sample consists of a feature
and a {0,1} target. If the utterance comes from an imposter,
the target is 0; otherwise, it is 1. -e network is updated with
minibatches of size 64. -e maximum iteration round is 100.
-e training early stops when the classification accuracy rate
on the development set does not increase more than 5 it-
erations. During the training phase, the network is updated
with parameters through the softmax and cross-entropy loss
functions utilizing Adam. -e training batch size is 64, and
the weight decay rate is 0.001. It is worth mentioning that, in
this paper, adversarial examples are added to the feature
domain. Since attackers do not always have access to the
feature input interface of models, it is necessary to utilize
waveform to attack. During the test phase, the reconstructed
adversarial waveforms are utilized to attack the tandem
system. -e adversarial utterances are reconstructed by
combining the phase of the original spectrum with the
amplitude of the adversarial spectrum, which is a standard
adversarial waveform reconstructed approach when the
adversarial attack algorithm is implemented on frequency
domain as reported in [22, 23, 31, 32, 39].

VoxCeleb1 is utilized to pretrain the ASV. When training
the ASV system, LPS are extracted according to the speaker list
of VoxCeleb1.-e training set contains a total of 1,211 speakers
with a total of 148,624 utterances. -ere are also 4,874 ut-
terances from 40 speakers to test the performance of ASV.-e
structure of ASV is shown in Figure 2. During the training
phase, each training sample consists of two input features and a
{0,1} target. If both features originate from the same speaker,
the target is 1; otherwise, it is 0. -e network is updated with
minibatches of size 64, each containing an equal number of
samples with targets 0 and 1 to avoid class imbalance in
training. -e network parameters are updated to minimize the
cross-entropy loss between the sigmoided output of the net-
work and the target labels utilizing Adam. -e learning rate of
60 iterations is selected to be 0.001, and the weight of the two-
norm regularization is set to 5e− 5. After training on VoxCe-
leb1, the ASV model is fine-tuned on the ASVSpoof2019
dataset with the CM training list (ASVSpoo-
f2019.LA.cm.trn.txt) [40] for another 20 iterations. -e
learning rate is set to 0.0001. Each utterance is reduced by
TDNN to become a 512-dimensional vector [41]. During fine-
tuning, TDNNmodules in Figure 2 are fixed. Green “Siamese”
modules and orange “discriminator” modules are updated.

A normalized version of tandem detection cost function
(t-DCF) from [33, 34] is utilized to evaluate the performance
on attacking the combined system of ASV and CM. -e
detection threshold (set to the EER operating point) of the
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ASV system is fixed, whereas the detection threshold of the
CM system is allowed to vary. Results are reported in the
form of minimum normalized t-DCF values. -e normal-
ized t-DCF is defined as a function of the CM threshold, and
the minimum normalized t-DCF defined in (11) is finally
computed to evaluate the performance of the joint system,

t−DCF
min
norm�t−DCFnorm argminθCMt−DCFnorm θCM( ( .

(11)

-e value of (11) ranges from 0 to 1. -e closer it is to 1,
the more the errors occurring in the combined system are.

When evaluating the performance of the tandem system,
the same cost parameters as minimum normalized t-DCF in
the ASVSpoof2019 Challenge are utilized. -e threshold of
ASV is fixed to its Equal Error Rate (EER) and swept over
CM thresholds for minimal normalized t-DCF. t-DCF is
utilized only for final evaluation and not for optimization
training of ASV or CM systems. When evaluating the attack
effect of adversarial examples, the False Acceptance Rate
(FAR) is adopted, which is defined as the proportion of
speech uttered by imposters (nontarget or spoof) but ac-
cepted by systems. If there is no special notice below, all
experiments are tested on the combined protocols of the
ASVSpoof2019 dataset (ASVSpoof2019.LA.asv.dev.gi.trl.txt
and ASVSpoof 2019.LA.asv.eval.gi.trl.txt).

5.2. Experiments Settings. A tandem system of ASV and CM
can be achieved by connecting the individually trained
subsystems in the form of Figure 4. -e tandem system is
attacked by FGSM and PGD. In both FGSM and PGD attack
settings, the maximum amplitude of perturbation ε is chosen
from the set of 0.1, 1, 5, 10{ }. Since PGD is an iterative al-
gorithm, the relationship between the step of PGD and the
maximum amplitude of perturbation is

ε � K · α. (12)

To achieve a valid adversarial attack, in addition to
having a high attack success rate, it is also important to make
adversarial examples indistinguishable from the original
audios to humans. An XAB listening test is conducted to
evaluate the imperceptibility of adversarial audios, which is a
standard detection method to assess the detectable differ-
ences between two choices of sensory stimuli. In the XAB
test, the adversarial examples generated by the PGD algo-
rithm when ε � 10 are utilized. Adversarial audios are
generated by combining perturbed LPS and the phase of the
original utterance. Five listeners were involved in the test,
each of whom was asked to listen to 50 randomly selected
adversarial-original audio pairs (A and B). An utterance (X)
was randomly selected from each pair, and listeners chose
whether the utterance was closer to A or B.

5.3. Experiments Results

5.3.1. !e Performance of Systems without Attacks. -e
performance of ASV and CM is evaluated under the
ASVSpoof2019 protocol separately. -e protocol file

contains both labels of the ASV and CM. Each trial contains
4 columns, which are claimed speaker ID, utterance ID, CM
label (bonafide/A01-A19), and ASV label (target/nontarget/
spoof). Here, ASV-V represents the model trained on
VoxCeleb1, and ASV-S represents the model fine-tuned on
ASVSpoof2019. When the thresholds of subsystems are all
fixed at the EER point, the FAR of ASV-V, ASV-S, and CM
are 9.47%, 6.21%, and 5.43%, and the FAR and t-DCF of the
tandem system are 5.67% and 0.023, respectively. When
testing the t-DCF of the tandem system, the ASV threshold is
fixed; adjust the CM threshold to find the minimized t-DCF,
as shown in Figure 5.

5.3.2. Evaluation of White-Box Digital Attacks. In order to
intuitively display the distribution of different kinds of
samples, the ASV and CM subsystems were utilized to score
samples with different labels. Figure 6 is the score histogram
of ASV and CM systems. Figure 6(a) shows the scores of
original utterances, and Figure 6(b) shows the scores of
adversarial examples. For the ASV system, the adversarial
object is to accept all the utterances originally labeled as
nontarget. For the CM system, the adversarial object is to
accept all the utterances originally labeled as spoof. Com-
paring Figures 6(a) and 6(b), it can be seen that the scores of
some utterances labeled nontarget and spoof are less than
the threshold of ASV before the adversarial attack. Also, the
score distinction between bonafide and spoof examples
derived from the CM system is obvious. However, after the
attack, the scores of most examples are higher than the
threshold of ASV, and the distinction between bonafide and
spoof has become not obvious.

-e performance of ASV-S, CM, and tandem systems
after adversarial attack is shown in Table 2. PGD-100 means
that the number of iterations is 100. FAR and t-DCF are
utilized to evaluate the performance of adversarial attacks. It
can be seen that the PGD method is more effective than the
FGSM. At the same time, the higher the upper perturbation
limit is, the more effective the attack is.

5.3.3. Visualization. Figure 7 is a t-SNE diagram of audios
w/o the adversarial attack. Samples whose Claimed IDs are
LA_0073 have been chosen to be shown in the figure. Before
the attack, three kinds of samples are clearly distinguishable,
and the boundaries of each type are relatively clear. -e
tandem system can easily distinguish the three types of
samples. After the attack, the classification boundary of the
adversarial examples is gradually blurred. -erefore, the
FAR and t-DCF will increase. -is shows that the proposed
attack algorithm on the tandem system has played its due
role and can make subsystems produce misclassifications at
the same time. -erefore, the utterance whose original label
is spoof or nontarget can be recognized as bonafide by CM
and target by ASV.

5.3.4. Evaluation of Imperceptibility. -e subjective XAB
listening test in Section 4 results in average classification
accuracy of 47.2%, which confirms the imperceptibility of
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adversarial examples. �e spectrogram of LA_D_1000265.-
wav w/o adversarial attack is shown in Figure 8, where ε � 10.
From top to bottom are the spectrogram of original utterance,
perturbed utterance, and perturbation. As can be seen from
the �gure, the di�erence between the original utterance and
the adversarial utterance is tiny. Most areas of the spectro-
gram of perturbation are very low in energy, which shows the
imperceptibility of perturbation.

5.3.5. �e Joint Attacks versus the Step-by-Step One. In
addition, to verify that a joint attack is really e�ective, the
performance of a step-by-step adversarial attack utilizing

PGD-100 is evaluated. �e step-by-step adversarial attack is
divided into two situations: (1) ASV system is attacked �rst,
and CM system is attacked again (ASV⟶CM; i.e., �rst
α � 1 and β � 0, and then α � 0 and β � 1). (2) CM system is
attacked �rst, and ASV system is attacked again
(CM⟶ASV; i.e., �rst α � 0 and β � 1, and then α � 1 and
β � 0). �e results of experiments are shown in Table 3.
Because the number of labels {target, nontarget, spoof} in
protocols (ASVSpoof 2019.LA.asv.dev.gi.trl.txt and ASV-
Spoof2019.LA.asv.eval. gi.trl.txt) is not balanced, the per-
formances of the two kinds of step-by-step attacks are
di�erent.�e total number of trials is 132,127, the number of
target trials is 6,854, nontarget is 39,095, and spoof is 86,178.

Table 2: �e performance of ASV-S, CM, and tandem systems.

System
ε � 0.1 ε � 1

FGSM PGD-100 FGSM PGD-100
FAR (%) t-DCF FAR (%) t-DCF FAR (%) t-DCF FAR (%) t-DCF

ASV-S 20.1 — 23.4 — 46.4 — 82.9 —
CM 15.6 — 18.9 — 38.7 — 73.6 —
Tandem 10.2 0.213 14.3 0.369 32.5 0.675 69.9 0.852

System
ε � 5 ε � 10

FGSM PGD-100 FGSM PGD-100
FAR (%) t-DCF FAR (%) t-DCF FAR (%) t-DCF FAR (%) t-DCF

ASV-S 64.2 — 92.4 — 91.0 — 97.3 —
CM 59.6 — 90.7 — 87.3 — 98.1 —
Tandem 55.4 0.807 87.1 0.964 81.0 0.928 96.7 1.000
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Figure 6: �e score histogram of ASV and CM. (a) Score histogram of original utterances. (b) Score histogram of adversarial utterances.
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Sample analysis in Table 4 showed that almost all trials
labeled spoof were accepted in the ASV⟶CM attack,
while trials labeled nontarget were almost rejected. �e
opposite phenomenon was found in the CM⟶ASV attack.

It can be seen that the labels of trials have a strong corre-
lation with the results of step-by-step attacks. We believe
that the reason for this phenomenon may be that the ob-
jective functions of attacking CM and ASV are not exactly
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the same. Since the production of adversarial samples is to
add perturbation in the whole time and frequency bands, the
perturbation added later will cover the perturbation added
before. �erefore, an adversarial sample that is e�ective for
one system is invalid for another. But whether it is
ASV⟶CM or CM⟶ASV, the performance of a joint
attack is far better than that of a step-by-step attack.

5.3.6. Parameter Sensitivity. In equations (6) to (10), α and β
are introduced to adjust the weight of the loss function for
ASV and CM systems, respectively. In order to explore the
e�ect of changing α and β during joint adversarial attacks, a
series of experiments are deployed. Since α + β � 1, if one of
the two parameters is adjusted, the other will change as well.
�e variation of FAR is shown in Figure 9. By studying the
FAR curves of the tandem system in Figure 9, we see that
when α is close to 0 (ASV subsystem has a small weight) or 1
(CM subsystem has a small weight), the e�ect of adversarial
attacks is not satisfactory, when α � β � 0.5, the best attack
result can be obtained. �e experiments show that the attack
ability of subsystems with lower weight will be signi�cantly
reduced when the weight of ASV or CM loss function is

reduced. �e performance degradation when reducing α is
more gradual than when reducing β. �is phenomenon may
be due to the uneven distribution of trials belonging to
di�erent labels. Trials labeled spoof are more numerous than
nontarget. Modifying α and β shows that when attacking a
tandem system, a drop in the weight of either loss function is
not tolerated. It is not desirable to sacri�ce the performance
of one subsystem for the performance of the other. Because
both subsystems play a vital role in the tandem system, it is
critical to keep both subsystems performing well.

6. Conclusion

In this paper, an attack method for the tandem system of
ASV and CM is proposed. PGD and FGSM are utilized to
implement attacks on the tandem system. �rough the
proposed attack method, the tandem system can be attacked
successfully. �e vulnerability of the tandem system to
adversarial attacks is revealed. In the future, black-box at-
tacks against tandem systems will be explored, and adver-
sarial defense and detection methods will also be utilized to
improve the robustness and security of the tandem system.
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