Hindawi

Security and Communication Networks
Volume 2024, Article ID 9827176, 1 page
https://doi.org/10.1155/2024/9827176

Retraction

WILEY | Q@) Hindawi

Retracted: Software Security Testing through Coverage in Deep

Neural Networks

Security and Communication Networks

Received 8 January 2024; Accepted 8 January 2024; Published 9 January 2024

Copyright © 2024 Security and Communication Networks. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. This in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research
reported

(3) Discrepancies between the availability of data and
the research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Manipulated or compromised peer review

The presence of these indicators undermines our con-
fidence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] W. Fu and L. Wang, “Software Security Testing through
Coverage in Deep Neural Networks,” Security and Commu-
nication Networks, vol. 2022, Article ID 2834982, 7 pages, 2022.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9827176

Hindawi
Security and Communication Networks W l L E Y @ Hindawi
Volume 2022, Article ID 2834982, 7 pages

https://doi.org/10.1155/2022/2834982

Research Article

Software Security Testing through Coverage in Deep
Neural Networks

Weiyu Fu®"? and Lixia Wang ®>*

!School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
*Jiangsu Vocational College of Finance and Economics, Huai'an, Jiangsu 223003, China

?School of Management, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

4School of Business Administration, Henan Polytechnic University, Jiaozuo, Henan 454003, China

Correspondence should be addressed to Weiyu Fu; 19800341 @jscj.edu.cn and Lixia Wang; wanglx@hpu.edu.cn
Received 6 July 2022; Revised 7 August 2022; Accepted 13 August 2022; Published 31 August 2022
Academic Editor: Zhiping Cai

Copyright © 2022 Weiyu Fu and Lixia Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the continuous progress of society, computer technology and information technology are also experiencing rapid de-
velopment. Especially in recent years, the application of computer technology has rapidly entered into people’s daily life. As
people’s lives become richer, these applications have become particularly complex. For some large software, tens of thousands of
function points or millions of lines of source code may be triggered to support it when performing related tasks. As a result, the
security of such a complicated and excellent software becomes quite essential. The most effective way to ensure software security is
to test the security of software products during the development process. A precise and effective security testing process is the basis
for ensuring that software is tested for security. Without a detailed scientific software security testing model to guide software
development for security testing, software security testing will become very difficult. This not only wastes more time and money
but also does not guarantee the security of the software. A great security testing methodology should be able to find security
problems that may be hidden deep within the software. In addition, a scientific process management can greatly facilitate the
implementation of software security testing. As a result, it is relatively meaningful to establish a complete software security testing
process model, generate excellent security test cases, and develop security process management tools for software security testing.
At the same time, in recent years, deep learning has gradually entered more and more people’s lives. However, the widespread
application of deep learning systems can bring convenience to human life but also bring some hidden dangers. Hence, deep neural
networks must be adequately tested to eliminate as many security risks as possible in some safety-critical software that involves
personal and property safety. As the foundation of deep learning systems, deep neural networks should be adequately tested for
security. However, deep learning systems are fundamentally different from traditional software testing, so traditional software testing
techniques cannot be directly applied to deep neural network testing. In recent years, many scholars in related fields have proposed
coverage guidelines based on deep learning testing, but the usefulness of these guidelines is still debatable. Based on the complexity of
the large software development process and the fact that the interrelationship between nodes often constitutes a complex network of
collaborative relationships, this study applies coverage-based testing in deep neural networks to test the security of software. To be
specific, this research applies metrics such as peak coverage, speed to peak, and computational speed to evaluate coverage criteria and
to investigate the feasibility of using coverage to guide test case selection to select solutions for security testing.

1. Introduction technology has changed the traditional production, life, and

communication methods of human beings [1]. However, the
With the rapid development of information technology, the  rapid development and unprecedented prosperity of the
third technological revolution has led mankind into the information industry have also brought negative effects [2].
information age. In this context, the pervasive information  Software security incidents have occurred more frequently
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in recent years, bringing not only a lot of inconvenience to
the country and people’s lives but also a lot of damage. What
is worse, the rate of such incidents is also increasing [3].
Nowadays, the security of software is more important than
ever, so it is necessary to ensure and use secure software.
How to ensure the security of software products has become
an important issue that people must address [4]. Software
testing is a key technology to ensure the software security
and an important method to ensure software quality and
reliability. To be specific, software testing is the process of
manually or automatically analyzing software to check
whether it meets design requirements [5]. As the complexity
of software increases and the scale of software expands, the
importance of software testing grows. Software security
testing is a crucial way to ensure the quality and safety of
software and to reduce its own instability [6]. It can prevent
security incidents from occurring or minimize damage in
the event of an incident. For technical and cost reasons, the
focus has been solely on the usability of computers and
networks, with no consideration given to security from
design to implementation [7]. This has proven to create a
variety of security risks for information infrastructures.
After all, software is the soul of the information infra-
structure [8]. Due to the historical lack of security and the
reality of increasingly complex functional requirements,
software designs often fail and malfunction, causing huge
losses to society and users. Software testing is the process of
manually or automatically analyzing software to check
whether it meets design requirements [9]. Static source code
analysis and dynamic target code runs are used to determine
whether the software has the expected functions and
properties. Security is a nonfunctional attribute of software,
and software testing can identify, locate, and then eliminate
software security risks [10]. As a result, software testing is a
key technology to ensure the software security and is a
necessary security tool in software development and
maintenance.

Currently, software security testing is treated the same as
regular software testing [11]. Most of the software security
testing is done in the context of general software testing. As a
result, there is a lack of a specific software security testing
process model to guide the security testing process [12]. In
addition, there is a lack of tools to manage the security
testing process. This is obviously unfair and unscientific for
both software security testing and software security quality
assurance [13]. As security testing cannot be standardized
scientific guidance, then the software security testing cannot
be fully carried out, and the quality of software security
cannot be strongly guaranteed. A precise security testing
process is the basis for ensuring that software is tested for
security [14]. Specifically, it not only ensures that software
security testing is performed efficiently, saving time and
costs but also further improves the security quality of the
software. A great security test case can find the security
problems that may be hidden in the software, it is the most
basic guarantee and basis for security testing [15]. The
analysis and design of the security test cases are based on the
hazard analysis of the entire software requirements, which is
fundamental to the quality of the security test cases.
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Excellent use cases can be used several times, which can also
improve the efficiency and quality of testing [16]. A scientific
process management can bring great convenience to the
software security testing work and can also improve the
efficiency of software security testing, saving manpower and
material resources.

In terms of computer system framework, information
security includes four levels: physical security [17], opera-
tional security [18], data security [19], and content security
[20], as shown in Figure 1. Physical security refers to
hardware security, which is mainly ensured by the security of
the power supply system, hardware reliability, electromag-
netic shielding, and personnel management [21]. Opera-
tional security refers to software security such as operating
systems and application software. To be specific, this in-
cludes intrusion detection, vulnerability scanning, virus
prevention and control, and emergency response [22]. Data
security refers to the security of information in processing,
storage, transmission, and use. This process can take au-
thentication, cryptographic encryption, integrity verifica-
tion, digital signature, and other algorithms and protocols
for security reinforcement. Content security refers to the
concealment and discovery of the true content of infor-
mation to ensure its security [23]. This can be achieved
through information identification, data mining, informa-
tion filtering, and information hiding.

With the rapid development of computer technology,
more and more software and applications are taking a
significant place in human life [24]. These applications not
only bring a lot of convenience and efficiency in doing
various things but also bring a lot of possibilities to people.
In recent years, deep learning and machine learning systems
have gained great popularity in various applications, such as
speech processing [25], building construction [26, 27, 28],
image processing [29, 30], and human traffic detection [31].
Deep neural networks as a deep learning system are the key
driver behind the recent success. However, while software
systems based on deep neural networks bring convenience to
humans, they also bring many serious problems. For ex-
ample, a few years ago, there was a car accident involving a
Google self-driving car in which people lost their lives, and
several cases in which self-driving vehicles were unable to
handle accidents and corner situations with varying degrees
of consequences. All were misbehaviors exhibited by deep
neural network software that led to serious consequences. In
security-critical and other critical domains, deep neural
networks exhibit misbehavior that can lead to irreversible
and serious consequences. Therefore, it is necessary to ad-
equately test deep neural networks to avoid misbehavior as
much as possible.

At this stage, traditional software testing techniques have
gradually matured. However, because of the fundamental
difference between traditional software and neural networks,
traditional software testing techniques cannot be directly
applied to deep neural network testing [32]. In traditional
software, each statement in a program performs certain
operations that either transform the output from the pre-
vious statement to the next statement or change the state of
the program. For traditional software, scholars have defined
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Figure 1: Computer system framework.

many coverage criteria at different levels in order to analyze
the runtime behavior of the software from different per-
spectives. At the code level, there are now statement cov-
erage, branch coverage, data flow coverage, and mutation
testing [33]. Among them, statement coverage measures
whether the target has executed every instruction. Branch
coverage puts the target to test whether each branch of the
control structure is covered. Both of these tests are based on
control flow statements. Data flow coverage counts whether
the definition of each variable is covered and thus detects
data flow anomalies. At the model level, there are state
coverage and transformation-based coverage. The model-
based coverage criterion aims to cover more program be-
havior through abstract models. The many and varied
coverage criteria above can be adapted to different testing
methods and granularity.

The objective of testing deep neural networks is to
identify potential errors, i.e., erroneous behaviors exhibited
at runtime, and correct them in time [34]. In the test ex-
periments, some counter samples are usually artificially
added. In other words, samples that cause the model to give
incorrect outputs with high confidence should be added to
the data set by deliberately adding subtle disturbances. If
these adversarial samples are well picked out by the ex-
periment, it can be of great help to the deep neural network
testing technique. In order to improve the efficiency of
software testing as soon as possible, it is necessary to execute
important test cases as early as possible so that defects in the
system to be tested can be detected as soon as possible [35].
There are many criteria to measure the importance of a test
case, including coverage, runtime, and how well the test case
meets the requirements. If the coverage rate of a coverage
criterion is used as the measure for test case selection, and
more adversarial samples can be found in the selected test
cases than in the random selection, then the coverage test
can well guide the selection of adversarial samples to better
find faults and defects.

As a result, it is of great theoretical and practical sig-
nificance to establish a scientific and detailed software se-
curity testing process model to guide the software security
testing in the development process. In the development-
oriented process, it can improve the quality of software
security testing and ensure that software security testing is
carried out smoothly and efficiently, thus further improving
the security quality of software. At the same time, based on

the established software security testing process model, we
design and implement software security testing process
management tools, which have important engineering sig-
nificance. In these contexts, this study investigates coverage
testing in deep neural networks. First, some recently pro-
posed coverage criteria will be evaluated, followed by a series
of experiments to assess the efficiency of using coverage to
guide the selection of test cases for testing the security of
software development.

2. Deep Neural Network

Deep learning is a new field in machine learning research,
which is motivated by the creation of neural networks that
simulate the human brain for analytical learning. The
“depth” of deep learning refers to the properties of the flow
graph. In a deep neural network, data are input from the
input layer and output from the output layer after passing
through the hidden layer of the neural network. As a result,
the computation involved in the data can be represented by
the flow direction, and the property of this flow graph is the
depth. Neural networks are the basis of deep learning, which
is a technology that simulates the neural network of the
human brain in order to achieve machine learning for ar-
tificial intelligence.

2.1. Framework of Deep Neural Network. A deep neural
network consists of many neurons in several layers. That is,
a deep neural network can connect multiple neurons to
form a network. Figure 2 shows the most common model
of a fully connected neural network. In Figure 2, there is
one neuron in the input layer, one neuron in the output
layer, and six neurons in the hidden layer. The hidden layer
has two layers, each containing three neurons. In general,
the number of neurons in the input and output layers is
fixed and is determined by the input data and the format of
the output. In contrast, the number of hidden layers and
the number of neurons in each hidden layer are variable
and can be defined by the training programmer. The
neuronal interconnections represent the interactions of
the neurons, and each connection corresponds to a weight.
Therefore, a layer in which all neurons in the graph are
connected to all neurons in the neighboring layers is called
a fully connected layer.
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FIGURe 2: Fully connected neural network.

2.2. Calculation Process of Deep Neural Network. Neural
network technology is a simulation of the human brain’s
nervous system, which consists mainly of neurons and a
large number of synapses. As a result, a neuron can be
understood as a function containing weights. The neuron in
the upper layer passes the data to the neuron, which then
performs the computation and passes the result to the
neuron in the next layer. After multiple layers of compu-
tation, the result is abstracted to a higher level and finally, a
computational result is an output based on the processing of
multiple layers of neurons. Therefore, the calculation process
of a deep neural network can be seen in Figure 3.

2.3. Adversarial Sample. Adversarial samples are mainly
used for deep neural network testing. In fact, an adversarial
sample is an input sample composed by intentionally adding
a very small amount of interference to the data set. Although
this sample is only slightly different from the original input
sample, the model gives a completely wrong output with a
high confidence level. In practice, the error rate of the test set
can be reduced by adversarial training. That is, neural
network training can be performed on the training set
samples of the adversarial perturbation.

For example, in Figure 4, both the left and right images
appear to be cats to the human eye, and humans cannot tell
the difference between them. However, the right image is
actually a sample image obtained by artificially changing a
few pixels in the left image. For the model, the left image
gives a 43.6% confidence level that it is a cat, while the right
image gives an 89.6% confidence level that it is a dog. This is
a completely different confidence result. The main reason for
the formation of the adversarial sample is the excessive
linearity of the model. Neural networks are mainly con-
structed from linear blocks. In some experiments, the overall
function they implement is highly linear. If a linear function
has many inputs, then its value can change very quickly. In
deep neural networks, if a particular input is changed, even
though the change is very small, it can have a huge impact on
the result after a multidimensional computation.

2.4. Coverage in Deep Neural Network. In recent years, many
deep neural network-based coverage criteria have been
proposed by scholars in related fields. These criteria are
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FIGURE 4: Example of adversarial sample.

either for the activation state of a single neuron or for the
state of a combination of neurons in the same layer.

This research assumes that the set of neurons in the
neural network is M = {m,, m,,, ...}, defines the set of test
inputs as K = {k;, k,,...}. The value of neuron m at the
input k is recorded as w (m, k). The threshold of activation is
set to 0.

A neuron m is an active neuron if it is active under one of
the test case inputs. The neuron coverage is the percentage of
activated neurons to the total neurons. Therefore, the neuron
coverage can be defined as follows:

{m|3k € S: w(m, k) >0}
|M| '

MCov (S, k) = (1)

When training the model, each neuron m can calculate
its upper bound value based on the analysis of the training
set data. As a result, the strong activation neuron coverage
criterion can be defined as follows:

[{m|3k € S: w(m, k) € (high, oo}
M|

SMACov(S, k) = . (2)

With the widespread use of deep learning, adversarial
samples are an increasing threat to deep learning systems. By
continuously feeding new types of adversarial samples and
performing adversarial training, the robustness of the net-
work can be continuously improved. This method is called
brute force adversarial training because of the large amount
of training data required. In addition, input gradient reg-
ularization can improve the robustness of adversarial at-
tacks. The combination of this method and brute force
adversarial training has good results, but there is still the
problem of high computational complexity.

3. Software Security Testing

Software security is an engineering approach that enables
software to continue to function correctly in the face of
malicious attacks. In other words, software security is a
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systematic, quantitative, and disciplined approach to guid-
ing the construction of secure software. Software security is a
key issue in information security. Due to the complexity of
software functions and the inherent characteristics of pro-
gramming languages, software flaws and vulnerabilities are
inevitable. With the worldwide availability of the Internet,
there have been numerous incidents of hackers exploiting
software vulnerabilities to compromise systems via the
network. As a result, there are high-risk security vulnera-
bilities in application and system software. By exploiting
these vulnerabilities, attackers are often able to perform a
range of unauthorized actions such as system access without
local access to the computer. The knowledge architecture of
software security is shown in Figure 5.

3.1. Principle of Software Security Testing. Software testing is
a complicated system engineering. During software testing,
the tester must be well aware of the basic principles of
software testing. Inadequate testing is a foolish act, while
excessive testing of software is a sin. In general, the basic
principles of software security testing are as follows.

Firstly, the most serious mistake made during software
development is the failure of a software system to meet user
requirements. Problems identified during system develop-
ment can occur at some point in the early stages of de-
velopment, so correcting errors must be done retroactively.
In addition, software testing should be implemented early,
preferably in the requirements phase. After all, the most
unacceptable error is the failure of a system to meet user
requirements. Figure 6 represents the general pattern of
software vulnerabilities.

Therefore, if problems are identified in a timely manner,
the smaller the cost of solving the problem, which is the
golden rule of software development.

3.2. Requirement of Software Security Testing. Software se-
curity testing is a specific process for solving problems that
has been developed and tested over a long period of time in
software development practice. It can guide the software
development process from a macro perspective, control the
risks in the software development process, shorten the
software development cycle, and improve the quality of
software. It is with the software security testing model that
the cost of software can be predicted scientifically and the
quality of software can be controlled reasonably. As a result,
the software security testing should have the requirements as
shown in Figure 7.

3.3. Trajectory Model Design. The design of the software
security testing process model aims to improve the confu-
sion and confusion of software security testing in the
software development process, and thus improve the effi-
ciency of software security testing in the software devel-
opment process. Based on the idea of the software
development process and common testing model, as well as
the analysis of software security and security testing content,
a scientific security testing process model needs to be

A 4
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[

[ Attack mode ]4—[ Attack program }—‘

FiGure 5: Knowledge architecture of software security.
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FIGURE 7: Requirements of software security testing.

designed. The model starts from the perspective of software
engineering and system security and links the software
development process to the system security testing process.
Then, the development process is analyzed and prepared
accordingly, and security testing is performed for each of its
process hazards.

In each subprocess of the software development process,
its security is first analyzed. Once the security analysis is
complete and ready, security testing is performed on it. This
is a good way to deal with the security testing lag that can
occur in software security testing. Each subprocess of the
security testing process consists of several small cycles of
testing activities, which can well solve the problem of fre-
quent alternation and iteration of security testing.



Software security testing activities exist throughout the
life cycle of software product development and are con-
ducted simultaneously with the development process. The
model is characterized by its ability to show not only the
software development process but also to support the in-
dependence of the software development process from the
software security testing process. Thus, the software devel-
opment process and the software security testing process can
be performed independently of each other. The development
activity is an iterative process, and the security testing ac-
tivity is an iterative security testing process that follows the
development activity.

4. Conclusion

With the rapid development of computer technology, deep
learning and deep neural networks are becoming more and
more important in people’s daily life. As deep learning
systems are used in critical areas where security is important,
it is even more necessary to test their security. Obviously, if
the system behaves completely wrongly due to some errors
in the neural network in critical areas such as autonomous
driving, automatic medical diagnosis, and face recognition
systems, the results would be unthinkable. Although the
testing of traditional software has become increasingly so-
phisticated, there are fundamental differences between deep
neural networks and traditional software. As a result, tra-
ditional software testing techniques cannot be directly ap-
plied to deep neural network testing. In this context, how to
test deep neural networks and how to judge the adequacy of
a test has become a recent challenge. In this context, this
paper introduces the basic concepts of neural networks from
the structure, computational process, and adversarial sam-
ples. Then, this research introduces the testing of artificial
neural networks, focusing on the testing framework of deep
learning systems.

Although some theoretical and technical progress has
been made in this study, there are still many problems that
need to be further investigated. The following work needs
to be further developed and studied in depth. For the
dynamic knowledge base, the number of samples in the
database should be expanded to improve the accuracy of
behavior determination. The attack tree model is further
refined to be closer to the realistic attack situation in terms
of weight setting. Also, in addition to finding adversarial
samples, efforts can also be focused on generating adver-
sarial samples. Knowing which samples make the system
make wrong judgments and thus improve the system is also
a possible direction to improve the robustness of deep
neural networks.
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