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Federated learning (FL) has nourished a promising method for data silos, which enables multiple participants to construct a joint
model collaboratively without centralizing data. 'e security and privacy considerations of FL are focused on ensuring the
robustness of the global model and the privacy of participants’ information. However, the FL paradigm is under various security
threats from the adversary aggregator and participants.'erefore, it is necessary to comprehensively identify and classify potential
threats to provide a theoretical basis for FL with security guarantees. In this paper, a unique classification of attacks, which reviews
state-of-the-art research on security and privacy issues for FL, is constructed from the perspective of malicious threats based on
different computing parties. Specifically, we categorize attacks with respect to performed by aggregator and participant,
highlighting the Deep Gradients Leakage attacks and Generative Adversarial Networks attacks. Following an overview of attack
methods, we discuss the primary mitigation techniques against security risks and privacy breaches, especially the application of
blockchain and Trusted Execution Environments. Finally, several promising directions for future research are discussed.

1. Introduction

'e rapid development of cloud-centric machine learning
has witnessed a new round of artificial intelligence out-
breaks that rely on continuous breakthroughs in algo-
rithms and computing capabilities [1]. Simultaneously,
modern mobile devices empower to generate massive data
suitable for machine learning in the big data era, which
significantly improves the training model accuracy [2].
Obviously, such an unprecedented amount of data col-
lection in a cloud server for model training is expensive
and time-consuming [3]. In addition, the direct access of
training datasets also raises public concerns about privacy
and confidentiality [4]. As a result, increasingly stringent
regulations are ensuring the protection of users’ sensitive
data against general violation of privacy [5]. However,
such invisibility property of training data would induce
data silos to impede the advancement of machine
learning. Federated learning (FL) has been introduced to

get rid of the aforementioned constraints by avoiding
direct access to the original datasets while collaboratively
building high-quality global models.

'e FL paradigm has a collaborative training process
that performs model training by distributing datasets over
massive participants. In the FL setting, each participant
benefits from the datasets of other participants only through
the shared global model in the federation without explicitly
accessing their sensitive data. With its unique feature of
collaborative training that distributes models and makes
predictions by participants, FL has various substantial ad-
vantages as follows:

1.1. Enhanced Data Protection. 'e overall learning process
only transmits model updates calculated on local datasets
instead of raw datasets to the aggregator. 'erefore, the
training data do not leave the location where it is generated,
which provides a degree of data protection [6].

Hindawi
Security and Communication Networks
Volume 2022, Article ID 2886795, 24 pages
https://doi.org/10.1155/2022/2886795

mailto:zhuhui@xidian.edu.cn
https://orcid.org/0000-0003-0386-0025
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0001-8310-7169
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2886795


1.2. Decreased Energy Consumption. 'e distributed data
architecture always keeps training data locally rather than
transferring it to the cloud for centralized storage and
processing [7], which significantly reduces network band-
width and energy consumption, especially in tasks involving
unstructured data.

1.3. Reduced Latency. In realistic scenarios, the latency of
inferring directly from participants is much lower com-
munication than predicting in the cloud and then trans-
ferring to participants [8, 9]. 'e implementation of FL in
mobile edge networks accelerates content delivery and
improves mobile service quality by reducing unnecessary
system communication load [10]. 'e model inference is
completed locally without a cloud round-trip that avoids
propagation delay caused by transferring data, and thus
latency-sensitive applications can benefit from such a
solution.

Because of the aforementioned advantages, FL has been
widely used in many areas such as finance, healthcare, smart
city, edge computing, IoT, etc. For example, FL is helpful to
provide the assisted diagnosis service of intelligent health-
care by collaborative modeling across medical institutions
[11–13]. Apparently, more patient records would be re-
quired to support high-quality predictive models for pre-
cision diagnosis. By deploying FL, hospitals can train
predictive models locally instead of exchanging their original
healthcare data. 'e approach also alleviates concerns about
the absence of standardized electronic medical records,
which only requires transmitting calculated local updates to
the aggregator rather than considering the local data
structure of medical records. Moreover, in smart city ser-
vices, FL provides an opportunity for ride-hailing applica-
tions to reduce latency and mitigate data leakage [14]. Each
ride-hailing acts as a participant to perform FL that makes
intelligent decisions instantly for resource allocation in
urban vehicular networks. It indicates that many industries
and areas can benefit from FL deployments to facilitate the
rapid development of artificial intelligence applications.

To make the FL a better application prospect, it is sig-
nificant to be at the forefront of this research field to explore
all potential security threats. 'e existing FL protocols do
not provide sufficient security and privacy guarantees in the
presence of adversary participants. Recent researches
demonstrate that an adversarial attacker may raise privacy
concerns by launching inference attacks contra other par-
ticipants, even when the iterations are performed only a few
times [15]. Specifically, the adversary participant steals other
participants’ sensitive information from shared parameters
since the transmitted gradient value is transformed from the
original training data. Recently, security and privacy issues
have become critical concerns due to potential security
attacks and internal theft [16].

Currently, existing FL surveys tend to classify attacks
according to security and privacy without considering dif-
ferent computing parties. 'is work is motivated by the lack
of a comprehensive survey of the performed attacks from
different computing parties. Compared with the existing

surveys on FL-based topics, our work starts with an in-
troduction to recent advances in FL and offers a state-of-the-
art overview of security and privacy issues with the following
contributions:

(1) We introduce the fundamentals of FL and present in
detail various categorizations and their corre-
sponding natures from different perspectives.

(2) We provide a novel threat classification of the ef-
fective attacks arising from the untrusted aggregator
and malicious participants from the perspective of
different computing parties.

(3) We discuss the most advanced mitigation techniques
for security vulnerabilities to analyze their perfor-
mance and limitations in the FL environment and
provide taxonomy tables to help to have an insight
into defense strategies. In particular, we focus on the
utilized effects and prospects of blockchain and TEEs
for FL security defense.

(4) We put forward current trends and challenges to
facilitate FL that can be implemented on a large scale
in realistic scenarios.

'is survey structure is shown in Figure 1. 'e rest of
this survey is outlined as follows. Section 2 provides a
concise description of the FL concept and categorizations.
We subsequently present research issues about privacy risks
and security breaches of FL in Section 3, including various
attacks from different computing parties. 'e mitigation
techniques for security vulnerabilities in FL are shown in
Section 4. Section 5 sketches some potential research di-
rections for security and privacy in the FL field. Finally,
Section 6 concludes this survey.

2. Preliminaries and Overview

Motivated by minimizing user privacy leakage, we assume
that the central entity can accomplish model learning
without collecting original training data from data owners. It
naturally triggers the idea of distributed learning solutions in
which all training data is kept in the place where it is
generated. In this context, McMahan et al. [17] proposed the
concept of FL. FL is a collaborative machine learning par-
adigm that carries out data utilization and model learning by
asking participants to share local training model parameters.
Consequently, each participant benefits from the datasets of
other participants only through the global shared model in
the federation, without explicitly accessing their privacy-
sensitive information. 'e background and features of FL
are presented in this section. 'e taxonomies with different
perspectives are also discussed.

2.1. Fundamentals of FL. 'e FL architecture has salient
advantages over conventional cloud-centric training ap-
proaches, including distributed storage and computing,
reduced latency, suitable for massive datasets, etc. Given the
learning process, the comparison between FL and cloud-
centric training is as follows:
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Consider a group of n ∈ N participantsN � 1, 2, . . . , n{ }

such that each participant has its data, respectively. Tradi-
tional machine learning collects these data to the cloud
server, D � D1 ∪D2 ∪ · · · ∪Dn with d � |D| training sam-
ples. 'en, the training dataset D is used as input data to
execute machine learning algorithms, e.g., Deep Neural
Networks (DNN). Formally, a typical supervised machine
learning objective function can be expressed as:

arg minθL(θ) �
1
d

􏽘
i∈d

L f xi, θ( 􏼁, yi( 􏼁, (1)

where a learning algorithm is stated as f and its corre-
sponding parameters θ are estimated from the dataset D

with a total sample size of d by minimizing the loss function
L between the predictions on input xi and the actual label yi

in the training set.
While traditional cloud-centric training relies on the

assumption of collecting participants’ data, this is not always
feasible in practice because increased awareness of privacy-
preserving leads to the inaccessibility of private data. In
addition, massive communication loading is required to
transfer the original training dataset to the cloud server. It is
thus particularly appealing for FL to use the participants’
local data to learn a model Mfed collaboratively rather than
putting all training data together.

In the FL, data are assumed to be distributed over a set of
N participants, and the training data of each participant can
be considered as P with m � |P|. 'e objective in this setting
evolves to minimize the aggregated loss

g(θ) � 􏽘
n∈N

mn

d
F Pn, θ( 􏼁, (2)

where F is the local loss defined by

F Pn, θ( 􏼁 �
1

mn

􏽘
j∈Pn

L f xj, θ􏼐 􏼑, yj􏼐 􏼑, (3)

Take the parallel gradient descent algorithm as an example;
the FL training process usually contains the following steps:

2.1.1. Initialization. Participants receive the initial global
model parameter θ from the aggregator;

2.1.2. Distributed Learning. Participants train the model
with global model parameter θ and their training data,
respectively;

2.1.3. Update. 'e ith participant computes training gra-
dient gi and transfers gi to the aggregator;

2.1.4. Aggregation. 'e server aggregates all gradients g �

g1 + · · · + gn without learning any information about par-
ticipants, updating global model parameters θ←θ − η · g

(where η represents the learning rate) to transfer it for
participants.

Steps 2–4 are repeated multiple iterations until the loss
function converges to achieve a learning objective. 'us, a
desired set of model Mfed is obtained. Figure 2 visualizes the
typical FL training process in the above steps. In summary,
the FL learning framework eliminates the need to have
learning data centralized in a server. It learns a global model
over distributed participants, transfers the computed update
parameters to the aggregator, and enhances training quality
by aggregating updates with the aggregator.
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Figure 1: Organization of this survey.
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2.2. Categorization of FL. 'e introduction of FL would be a
better choice for traditional centralized learning to advance
the further widespread application of Artificial Intelligence
(AI). For an emerging distributed AI framework, the precise
classification of FL is the key initial stage to help investigate
and understand it. Next, we gather and summarize internal
works from different perspectives to understand privacy and
security concerns in the following sections.

2.2.1. Data Availability. FL was initially introduced for
large-scale distributed clients with a focus on mobile edge
computing and then gradually extended to other scenarios,
such as containing only a few stable clients. FL can be either
cross-device FL or cross-silo FL based on data availability
and different participant entities.

(1) Cross-Device FL (CDFL). CDFL is a large-scale distrib-
uted system that allows mobile terminals or IoT devices to
freely join or leave the training process with absolute control
over one’s data. In this form of learning, communication
costs are higher than computation costs because such huge
numbers of devices are usually joined to the learning process
over Wi-Fi. 'erefore, it necessitates choosing a fixed
number of participants to join in each training round.
Moreover, participants involved in the training are unstable
due to battery power or wireless network connection [23]. It
is worth noting that the local training data possessed by
participants are nonidentically and independently distrib-
uted (non-IID) and are severely imbalanced, which directly
affects training quality for the global model.

(2) Cross-Silo FL (CSFL). In contrast to CDFL, the clients of
CSFL are geographically distributed data centers with lim-
ited numbers but high computing power and network speed.
CSFL expands the method of dividing training data based on
features, which is more meaningful for solving practical

problems such as supporting VFL. In addition, participants
who work in this FL setting may have competitive rela-
tionships with others, so it is vital to establish incentive
mechanisms to motivate participants to join learning.

Intuitively, CDFL refers to the fact that data owners
consist of a large number of edge devices with limited
computing resources and offline issues. In contrast, CSFL
means that the data owners involve some relatively stable
data centers with rich computing resources and limited
quantity. Moreover, in CDFL, the aggregator obtains the
final global model through FL to provide prediction services
for users, while participants only collect data (e.g., mobile
crowdsensing). 'erefore, there is no requirement to protect
the global model parameters against the aggregator. In CSFL,
participants (i.e., data centers) possess the final global model
and provide prediction services, while the aggregator only
assists in this process. As a result, in this case, it is thus
necessary to ensure the global model cannot be perceived by
the aggregator. As shown in Table 1, both cross-device FL
and cross-silo FL have salient features different from
datacenter distributed learning.

2.2.2. Data Composition. According to how training data
are distributed among the features and samples of various
participants, FL can be split into three subcategories: hor-
izontal federated learning, vertical federated learning, and
federated transfer learning [24]. Table 2 summarizes these
three FL frameworks and their associated characteristics.

(1) Horizontal Federated Learning (HFL). HFL is suitable for
collaborative learning with similar features but different
samples that refer to sample-partitioned FL. 'erefore, all
participants are allowed to use the same learning model for
their local training due to the same data features. Mobile
keyboard prediction is an instance of HFL, which demon-
strates the benefits of training language models on mobile

...
Local Model 2 Local Model n Local Model 1

Broadcast Global Parameters
Update Local Parameters

Global Model

➀

➀

➀

➂
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➃

Figure 2: 'e representative FL training process. Each participant downloads incipient parameters from the server and trains the model
locally. 'e server receives participants’ model updates to aggregate and subsequently feedback new global model parameters to the
participants for their use.
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devices without exporting sensitive user data [25]. In this
case, different users (sample space) enter input texts (feature
space) on their smartphones, and the cloud server aggregates
local updates to create a federated language model for next-
word predictions. Note that HFL can be realized with
various machine learning algorithms without changing the
central structure of the algorithm.

(2) Vertical Federated Learning (VFL). Contrary to HFL,
VFL enables collaborative learning over participants with
the same sample space and different data features [26]. It can
be called feature-partitioned FL since each participant shares
a common set of samples to divide data in feature dimension
[6]. For instance, banks and retail companies may have the
same users in a city. More specifically, they keep records of
payments and purchases with the same user, respectively.
'erefore, VFL can leverage purchase records from retail
companies to train a prediction model for credit rating. In
VFL, overlapping data samples of multiple participants
conduct sample alignment through an encryption approach
to build a model.

(3) Federated Transfer Learning (FTL). FTL considers sce-
narios where participants do not have many overlapping
samples and features to overcome the data scarcity problem
[27]. Inspired by transfer learning, FTL allows comple-
mentary data to communicate across fields in a federated
manner that uses the source domain with rich labels to build
a practical model for the target domain [28, 29]. In realistic
scenarios, the server can indirectly take advantage of more
information frommultiple participants by using FTL to get a
more generalized global model. On the other hand, par-
ticipants can leverage the global model to get a more per-
sonalized local model.

2.2.3. Network Structure. FL framework can be deployed in
collaborative learning environments with distinct network
topologies. According to the underlying architecture, it

can be divided into centralized FL and decentralized FL.
Figure 3 visualizes the FL model of two network
structures.

(1) Centralized Federated Learning (CFL). CFL is a general
architecture that takes massive decentralized participants to
connect with a centralized server (i.e., aggregator). As shown
in Figure 3(a), the participants download the incipient
parameters and learn a model with their training data, re-
spectively, e.g., via Federated Averaging (FedAvg) [30], and
transfer local model updates to the aggregator. Finally, each
participant obtains a shared model as well as a personalized
model. In CFL, the aggregator is ordinarily regarded as a
crucial component for planning and coordinating partici-
pants to accomplish learning tasks, which is prone to the
problem of single-point-of-failure.

(2) Decentralized Federated Learning (DFL). DFL does not
require a centralized server to collect all training data, nor
does it need an aggregator that maintains the global model
on the network by aggregating the model updates of all
participants, as shown in Figure 3(b). DFL is designed to
replace CFL fully or partially when the aggregator is un-
available, or the topology is highly scalable [31, 32]. In DFL,
each participant distributed on a network that only com-
municates with neighbor nodes can be selected as an
aggregator in a polling manner. However, given the system
security, this is more relaxed and inserts a backdoor to
increase the risks of potential threats accordingly. Some
peer-to-peer schemes are presented based on verified
strategies such as belief [33], consensus mechanisms [34] to
perform model learning.

Regardless of the FL type, they have a common feature to
push the model training to the device by requiring partic-
ipants to share local model parameters instead of raw data.
Unfortunately, FL protocol does not always provide suffi-
cient security and privacy guarantees that malicious attacks
and data leakage yet exist. Next, we present security and
privacy issues in the following section.

Table 1: Comparative analysis among CDFL, CSFL, and datacenter distributed learning.

Category Datacenter distributed learning Cross-device FL [8, 18, 19] Cross-silo FL [20–22]
Server role Model training Parameter aggregation Parameter aggregation
Client composition In a single cluster Mobile or IoT devices Geo-distributed data nodes
Client scale General quantity Huge quantity General quantity
Data distribution Centrally stored and IID Imbalance and non-IID Imbalance and non-IID
Data availability Almost always available Client unstable Almost always available
Data partition Arbitrary partition Example-partition Example-partition or feature-partition
Primary bottleneck Computation Communication Computation or communication

Table 2: Taxonomy for FL frameworks and salient features.

Category Sample overlap Feature overlap Dataset partition Applicable scenario
HFL Less More Sample dimension Same features but different samples
VFL More Less Feature dimension Same samples but different features
FTL Less Less Without dividing Different features and samples

Security and Communication Networks 5



3. Security Threats and Privacy Risks

FL gives a privacy-aware learning framework that does not
require sharing the original training data and allows each
participant to enter or leave the training process freely.
However, the distributed strategy with frequent data in-
teraction for collaborative learning is vulnerable tomalicious
attacks due to the open training environment and exposed
model parameters [35]. After introducing the FL concept
and its distinct categories, we focus on security and privacy
issues in this section.

'e attack types in the FL system can be commonly
divided into model threats for robustness and data leakage
for privacy. Specifically, model threat attacks that violate FL
system integrity lead to incorrect predictions. In addition,
attacks on model availability induce misclassification of the
FL system, which is broader and more damaging than in-
tegrity breaches. Data leakage attacks that violate training
data confidentiality give rise to the disclosure of privacy data,
which is a major privacy concern for illegally obtaining
sensitive information.

3.1.6reatModel. In the FL scenario, various attacks can be
carried out by the untrusted aggregator and malicious
participants. At present, research works on the threat
model involve the semi-honest adversary and malicious
adversary.

3.1.1. Semi-honest Adversary Model. In the semi-honest
adversary setting (resp. honest-but-curious), an attacker is
considered to passively attempt to infer sensitive informa-
tion about a specific participant through exposed parameters
while not deviating from the protocol [36]. It is worth noting
that passive attacks are performed by observing results
calculated from the aggregator instead of obtaining training
data or gradients directly from participants. For security

solutions of FL, how the aggregator provides secure ag-
gregation upon received model updates is always the focus of
researchers.

3.1.2. Malicious Adversary Model. In the malicious adver-
sary setting, an attacker can actively perform arbitrary at-
tacks in an attempt to steal sensitive information from global
model parameters shared during the training process.
Moreover, the malicious attacker can also conduct devas-
tating attacks on the global model by deviating from the
protocol or tampering with data.

Attacks on the FL system can occur at any stage that
involves global model training and inference. In general, the
goal of attacks in the training phase is to compromise the
global model, reveal training samples, or both. 'e typical
attack methods principally consist of a series of poisoning
attacks, inference attacks, free-riding attacks, generative
adversarial networks (GAN) attacks, etc. Intuitively, data
poisoning can undermine the integrity of training data,
while model poisoning can violate the target model avail-
ability. In practice, the ultimate goal of both poisoning at-
tacks is to reduce the global model quality. Inference attacks
serve as a major privacy leakage concern of FL, e.g., user-
level training samples can be revealed through inferring
gradients. Free-riding attacks can benefit from the global
model without providing any actual samples. In the model
inference stage, commonly used attack methods include
evasive attacks that produce wrong output and model re-
versal attacks that violate data privacy. Note that the ef-
fectiveness of these attacks depends on the available model
information to the attacker. In this survey, we focus on
attacks during the training phase specifically.

Next, various attacks on FL are summarized from the
perspective of different computing parties. According to
the FL system category in Section 2, computing parties in
the learning process consist of the aggregator and
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Figure 3: FL model for taxonomy based on network structure. (a) CFL involves a server (i.e., aggregator), which trains the global model
through the iterative exchange of global aggregation updates and local model updates between the aggregator and participants. (b) DFL
carries out collaborative learning by establishing a model parameter exchange between two participants in point-to-point communication.
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participant, both of whom can adopt certain strategies to
perform effective attacks.

3.2. Attacks by Aggregator. 'e central intuition is that a
malicious (or at least honest-but-curious) aggregator aims to
reveal record-level training samples of a specific target from
received model updates while pretending to be a benign
server to provide computing services for aggregation. It is
worth mentioning that the aggregator potentially has power
attack capabilities with a global view of all participants’
model updates, even directly determining the participant
involved in each training iteration. In fact, the adversary
aggregator attempts to completely steal record-level samples
by updating the victim’s view from the aggregated model.
Furthermore, an adversary aggregator can recover the
original training data without any prior knowledge. More
precisely, the shared local model is updated according to
those private data, whose pattern is encoded into the model
parameters. 'erefore, if a corresponding decoder could be
constructed, private data or statistics will be recovered in-
versely. In addition, such privacy violations may occur in the
aggregator for CFL or any neighbors in DFL, which chal-
lenges the fundamental privacy assumption.

'e adversary aggregator can passively analyze periodic
updates of participants or actively isolate the shared model
trained by the victim to perform more powerful attacks.
Active attacks by the aggregator can be divided into three
categories based on attack strength.

(i) Gradient Ascent: 'e first is to apply the gradient
ascent strategy to the local model of the attack target,
which triggers the loss minimization of the target
model. In contrast, for nonattack targets, the model
does not change the gradients to keep the quality of
the main task. 'is approach also applies to attacks
performed by participants.

(ii) Isolating:'e second is to isolate the attack target by
creating a local view of the training process rather
than providing the attack target with an aggregated
model that induces the target’s local model to store
more of one’s own training data.

(iii) Isolating Gradient Ascent: 'e third attack serves as
the gradient ascent algorithm combined with the
isolating strategy.

Unlike participants who perform attacks with good
stealth, the malicious aggregator cannot perform poisoning
attacks, given that updating the aggregation model through
mislabeled training samples would significantly influence
the global model accuracy. Due to the powerful attack ca-
pabilities of the aggregator, our discussion of aggregator
attacks primarily focuses on the ways of stealing record-level
training data, which can occur in the following manner.

3.2.1. Deep Leakage from Gradients. Gradient Leakage at-
tacks, e.g., deep leakage from gradients (DLG), refer to one
of the critical privacy threats in both CFL and DFL systems.

'e DLG attacks serve as gradient-based feature attacks that
can extract ground-truth samples from shared gradients. By
using DLG attacks, the aggregator of CFL can steal the
private data of all participants, while any participant in DFL
can obtain the training samples of its neighboring nodes.

Given the model architecture and weights that are
usually shared in most FL settings, dummy samples can be
used to calculate dummy gradients on intermediate local
models. 'erefore, as shown in Figure 4, the adversarial
aggregator starts from an initial random sample and iter-
atively updates its dummy inputs and corresponding labels
to minimize the distance between the dummy gradient and
the victim. When the gradient distance loss optimization is
completed, the constructed dummy data also converge to the
victim’s training samples with high confidence.

DLG attacks have shown powerful attack performance
over both natural language processing and image classifi-
cation tasks [37–42]. However, it requires the model
structure to be twice differentiable, which is a challenge for
neural networks of ReLU units with discontinuous high-
order derivatives.

3.2.2. Generative Adversarial Networks Attacks. 'e state-
of-the-art generative adversarial networks (GAN) method is
utilized for adversary aggregator attacks, which can invisibly
reconstruct the victim’s participant-level samples through
discrimination of the participant’s identity.'eGAN attacks
from the aggregator are primarily inspired by the decoder.
Model updates calculated based on participants’ local private
data are encoded into the model parameters. In addition, the
aggregator can obtain model updates directly from the
victim. 'erefore, once the GAN generator for a victim is
constructed, the corresponding private data would be re-
covered in reverse. More specifically, the adversary aggre-
gator aims to reconstruct the training samples of a specific
target, which pretends to be a benign server to provide
computing services. After obtaining local updates of all
participants, the adversary aggregator adds local updates of
the attack target to the current global model while generating
a copy of the local updates. Finally, local updates of the
attack target are used to reconstruct the corresponding data
sample through GAN. It is worth noting that the adversary
aggregator trains GAN to achieve stealth attacks without
modifying the shared model.

To be effectively resilient against GAN attacks, partici-
pants can transmit model updates via an anonymity network
(e.g., Tor) to safeguard their identities in the FL setting,
which increases the difficulty for an adversary aggregator to
recognize participant-level privacy. However, the adversary
aggregator can correlate data representatives of different
participants to re-identify anonymized model updates. More
specifically, trained GAN combines identification and ver-
ification models to measure the similarity of two repre-
sentatives. In this way, FL learns a discriminative embedded
class representative, which helps to match more accurately.
A novel GAN framework is proposed to explore an ad-
versary aggregator, which utilizes a multi-task discriminator
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to distinguish input samples to calculate local updates of the
attack target [43, 44]. 'e adversary aggregator measures the
similarity of associated client representatives from periodic
model updates to identify anonymized updates. Figure 5
illustrates the GAN-based attack framework from the
aggregator. GAN attacks are considered high impact and
priority threats since the GAN-based generative model
cannot be easily identified.

It is inherently a stronger threat that the adversary
aggregator precisely recovers raw training samples from a
specific participant. However, when an adversary aggregator
trains a GAN, the participants’ identity requires periodic
updates.'erefore, the dynamic participation of participants
with frequent drop-in and drop-out in FL would violate the
attack performance, especially under the non-IID assump-
tion of data distribution. In addition, an auxiliary dataset
needed for training GAN is also a limitation.

3.3. Attacks by Participant. Considering that the aggregator
in real scenarios is commonly credible, more challenging
attacks in FL come from an attacker who pretends to be a
benign participant to carry out various attacks. Obviously,
an adversary participant can only access the global model
parameters instead of the victim’s local model when per-
forming attacks. Unlike adversary aggregator attacks that
solely attempt to steal victim samples, adversary participants
can compromise global model availability and training data
confidentiality due to their learning process without su-
pervision. Next, we discuss various threats introduced by
participants.

3.3.1. Poisoning Attacks. Poisoning attacks are considered
severe security threats that increase the risk of the hypothesis
produced to induce the FL system more likely to fail on a
particular instance. Attackers can implicitly influence local
training samples to mislead learning model output by
embedding crafted samples, submitting specific gradient
updates, or both. Depending on the goal of attacks, poi-
soning attacks can be divided into objective-driven data
poisoning andmodel-targetedmodel poisoning. Specifically,
data poisoning occurs in the data gathering phase, while
model poisoning occurs in the model learning phase. Both
poisoning methods attempt to tamper with the global model

to reduce global model accuracy. Figure 6 illustrates the two
poisoning attacks at different stages.

(1) Data Poisoning. Objective-driven data poisoning has a
specific attack objective, which enforces the model to per-
form well overall while degrading the victim model’s ac-
curacy. 'rough injecting specially crafted training samples,
data poisoning manipulates the distribution of training data
to affect learning model results, which compromises the
availability and integrity of the global model. 'e local
optimization strategy based on gradients is generally used to
construct poisoning points [45, 46]. By defining test loss
related to attacker objective, gradient-based attacks can
modify candidate poisoning points iteratively in the dataset.

Several researchers present the clean label approach to
replace the particular local datasets during model training,
which involves correctly labeled training samples that do not
reduce the performance of nontarget samples [47, 48]. label-
flipping [49] is a typical approach of data poisoning attacks,
which changes the labels of honest training samples to
another class while retaining data features unchanged. It is
more accessible to perform label-flipping attacks because no
technical experience is required. An attack method of gra-
dient ascent strategy is proposed, in which the gradient
calculation is based on the properties of SVM’s optimal
solution, and the core processing can significantly increase
the test error of the classifier [50].

Another type of attack objective increases the probability
of bad property for the final attack hypothesis, while the
hypothesis has a negligible chance of happening without
attacks [51]. 'ese attacks are not feasible in model-oriented
attacks since there are no known means to build a target
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Dummy Gradient

Victim Real InputAttacker

[0.3,0.6,0.2]
Dummy Label

[0,0,1]
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Dummy Input
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ⅅ=||▽W−▽W'||2

∂ⅅ/∂Y
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Figure 4: Overview of DLG attacks against FL based on an image classification task.'e adversary aggregator constantly updates its dummy
inputs and labels to minimize gradient distance from the calculated gradient of a victim.
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Figure 5: Overview of GAN attacks from the aggregator. On the
adversary aggregator, a discriminator and generator are trained
based on local updates from the victim.
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model with the required properties. In addition, the attacker
manipulates the training dataset to perform the data poi-
soning under its control, which is ineffective against the
Byzantine-robust FL that applies the Krum [52], Bulyan [53],
trimmed mean, and median aggregation rules.

(2) Model Poisoning. Model-targeted attacks result in a
victim model as close as possible to a specific model in
mind that satisfies some attacker objectives [54]. Model
poisoning attacks are carried out by transferring incorrect
update parameters to the aggregator or inserting a con-
cealed backdoor into the final model, which disrupts the
secure aggregation process more effectively than data
poisoning [55]. By sending corrupted model updates, the
attacker affects the convergence direction of global model
parameters and slows down the convergence speed of the
loss function.

In the semi-honest threat model, the deviated model due
to incorrect update parameters can help identify model
poisoning. 'e alternate minimization strategy can be used
to improve stealth and evasion detection for the attacker
[56]. However, this strategy performs model poisoning
based on the assumption of the IID dataset, which is in-
consistent with realistic scenarios. To provide robustness
against Byzantine failures of certain participants, Byzantine-
robust FL provides multiple aggregation rules (e.g., Krum,
Bulyan), which can asymptotically limit the error rates of the
global model under certain assumptions of the loss function.
Nevertheless, they are vulnerable to new local model poi-
soning attacks formulated as an optimization problem.
Aiming at the Byzantine-robust FL attacks, a local model
parameter optimization approach was introduced in Ref-
erence [57]. 'e attacker manipulates the local model pa-
rameters of the controlled terminal and crafts the local
model by optimizing directed deviation in each iteration,
which significantly reduces the accuracy of the target model.
Based on this work, another general framework suitable for
the FL model poisoning was also considered in Reference
[58]. 'e attacker calculates the malicious disturbance along
with participant update parameter information and server
aggregation algorithm. 'e method generates a unit vector

in contrast to the optimal aggregation direction and disturbs
the optimal aggregation in the malicious direction to cal-
culate its model update.

'is poisoning update can be generated by injecting a
concealed backdoor, and even a single attacker can intro-
duce the backdoor into the final model, which corrupts the
trained model performance [59]. Moreover, the perfor-
mance of model poisoning primarily depends on the fraction
of attackers and the task complication. Multiple attackers
can collude to carry out distributed poisoning attacks to
improve the accuracy and effectiveness of backdoor attacks,
whichmay intuitively lead to enormous disasters. Obviously,
the attack success rate is linearly proportional to the number
of poisoned samples. When the number of poisoned samples
does not change, the attack success rate increases with the
increase in the number of attackers [60].

In summary, data poisoning is a subset of model attacks
since data poisoning ultimately changes model parameters
that are sent incorrectly in any given iteration. Generally, in
order not to be identified by participants with the shared
model, poisoning attacks do not significantly alter the
predicted results of other categories. In addition, distributed
poisoning attacks colluded by multiple attackers have be-
come a direction of interest to researchers because of their
greater destructiveness.

3.3.2. Inference Attacks. While FL significantly reduces
users’ concerns about uncontrollable data cloud processing,
private training data can still be disclosed through adversary
inference attacks. Inference attacks refer to attackers in-
ferring training data from revealedmodel updates during the
FL learning process. In fact, both the honest-but-curious
aggregator and the participant can perform inference attacks
on the training data of other participants. In this section, we
focus on effective inferences initiated by adversary partici-
pants. A brief illustration of inference attacks against FL is
provided in Figure 7. Inference attacks can be divided into
membership inference attacks (MIA) and property inference
attacks (PIA) based on the correlation between extracted
information and training tasks.

Local Model n 
Local Data Collection Local Model Training

Poisoned Model Aggregate

´=+ℱ(△*+△1+···+△
n
)

Clean Label
Flip Label

Participant n

Backdoor

Participant 1 Local Model 1

Model PoisoningData Poisoning

△*

△1

△n

Attacker

. . .

. . .

Figure 6: Overview of the poisoning attacks against FL.'e attacker pretends to be a benign participant, and shares crafted training data or
deliberately tainted model updates to the aggregator.
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(1) Membership Inference Attacks (MIA). As a privacy vi-
olation, the MIA judges whether a specific data point is used
to model training while maintaining the high quality of main
tasks in FL [61]. 'e aggregator can directly receive model
updates based on local data training in any given iteration.
'erefore, an adversary aggregator can easily infer whether a
particular data point is involved in the training process
through server-based MIA. Most researchers pay attention
to client-based MIA because it complies with stronger se-
curity assumptions (i.e., trusted aggregator) and higher
complexity of privacy attacks. For client-based MIA, given
that each training sample can affect the gradients of the loss
function recognizably, i.e., an attacker takes advantage of the
Stochastic Gradient Descent algorithm (SGD) to judge
whether a targeted sample exists from other participants.

MIA can be divided into passive and active ones [62]. In
passive MIA, the attacker only observes the aggregated
model updates and extracts information about the union of
the training dataset of all other participants without influ-
encing the FL training process, such as the shadow model
that mimics the behavior of the target model.'e activeMIA
injects adversarial model updates to perform more powerful
inference attacks on target training data. In this case, the
attacker can implement a gradient ascent attack to update
the model parameters on the contrary direction of the loss
gradient, which forces the target model to minimize the loss
by descending in the direction of its local model’s gradient.

(2) Property Inference Attacks (PIA). In the context of FL,
PIA tries to extract valuable properties that other partici-
pants do not intend to share, and are even uncorrelated to
the main task.'ose properties hold in specific subsets of the
participants rather than global properties of the training
data. For instance, when Alice’s photos are used to train a
gender classifier, the attacker may infer whether a person in
Alice’s photos wears glasses through the PIA. In particular, it
can reveal changes about when properties emerge and
disappear in training data during learning, e.g., when a
person first appears in photos during the training of a gender
classifier [63].

'e active and passive attackers can perform PIA, both
of which require auxiliary data generation and attack model
training. 'e passive attacker with auxiliary data similar to
the training data distribution of participants trains the
specific property classifier to infer information [64]. 'e
auxiliary data are correctly labeled for the attacker desired
properties and main task labels. 'e active attacker need not

strictly follow the main task’s procedure, which aims to
identify a set of participants with a specific property by
modifying the model updates to separate data with (or
without) properties.

Recent research shows that even with the employment of
secure aggregation schemes, PIA can still infer a subset of
participants with desired properties through aggregated
global model while maintaining the high quality of the main
task [65]. However, the attack relies on the assumption that
the attacker has white-box knowledge of the learning model.

In general, both MIA and PIA reveal some information
about the victim but have certain limitations, respectively.
Essentially, member inference requires an existing data sample
for attacks, which is challenging to get when the input data are
not text, e.g., image or voice. While property inference is
relaxed that requires only a label, attack results reduce the
scope and do not provide record-level identification.

3.3.3. Model Inversion Attacks. Model inversion attacks
exploit the real-time nature of the training process to re-
construct the victim’s prototype samples in which access to
the model is abused to infer information about the training
data [66]. Generative Adversarial Networks (GAN) com-
monly learn private training data for model inversion based
on the gradient and confidence of predicted results [67].
Note that the predictive power of the model and its ro-
bustness to inversion attacks are negatively correlated, as
highly predictive models are able to establish strong cor-
relations between features and labels, which is perfectly
consistent with exploitation by malicious attackers. 'ere-
fore, model inversion attacks are also called generative
model inversion attacks, which can invert complex models
with high success rates, e.g., DNN [68]. As aforementioned,
poisoning attacks and inference attacks combined with GAN
attacks can construct more powerful attacks to threaten
federated learning security. By using GAN, the mode in-
version can simulate the training samples almost identical to
the original data of the victim as the samples reconstructed
expect to meet the distribution of the victim’s data. Figure 8
illustrates the framework of GAN-based model inversion
attacks.

'e user-side GAN attacker exploits the shared model
as the discriminator to train a GAN, which induces the
victim to release more sensitive information [69, 70]. With
the continuous injection of mislabeled training samples,
the victim has to provide more training data to distinguish
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Figure 7: Overview of inference attacks in FL. 'e attacker saves the snapshots of the aggregated model parameters in each round and
performs inference attacks by employing the difference between the continuous snapshots.
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the correct and wrong about it, which has significant
benefits for the iterative improvement of the discriminator.
'e power of user-side GAN attacks lies in that an attacker
can invisibly complete all malicious acts and simulate as a
normal participant to follow the FL protocol successfully
without violating the victim directly. However, the simu-
lated samples generated by model inversion attacks using
GAN are general samples with characterized class prop-
erties rather than accurate samples from the victim. More
specifically, GAN-based attacks require beforehand class
labels to be known and can only perform well on simple
samples, such as MNIST with clean backgrounds. It is
worth noting that the performance of the GAN-based
model inversion introduced by the adversary participant
would decrease when FL is attacked since the adversarial
influence becomes weaker after aggregation.

3.3.4. Watermark Attacks. By exploiting the perplexity of
the language model, watermark attacks extract text records
of training data even without access to the victim’s local
model in federated natural language processing (NLP) tasks
[71, 72]. With a character sequence as input, the FL model
that aggregates the local model from the participants’ private
records can predict the next word. Unlike image classifi-
cation tasks, the training data of NLP tasks are independent
records composed of sequential text without class repre-
sentatives. Note that most attacks performed by injecting
data (e.g., data poisoning, backdoor attacks) compromise the
global model robustness, while watermark attacks result in
privacy leakage. Specifically, the attacker injects the water-
mark into the victim’s dataset rather than accessing it and
then extracts the interest records by comparing the exposure
rates’ changes between the watermark and potential records.
'e distinctive watermark attacks performed in an invisible
fashion do not affect the global model’s overall performance.

To explore the privacy leakage of the NLP task, a unified
framework for record-level privacy attacks was introduced
in [73]. By tracking the victim’s training footprints exposed
in the asynchronous aggregation process, the victim’s text
records are accurately extracted with the calculated exposure
rate. 'e watermark is injected as random data records to
avoid detection. 'erefore, in this way, watermark attacks
with perfect invisibility and poses a challenge to intrusion
detection identification.

3.3.5. Free-Riding Attacks. 'e free-riding attacks serve as
dissimulated participation in learning to benefit from the
global model but do not contribute to the training process
[76]. It is critical for sensitive applications of FL to identify
this attack type when there is training data scarcity. Given
data privacy concerns and computational overhead in the
local training process, the adversary participant, i.e., free-
rider, refuses to utilize its training dataset for honest local
model training. It is more serious that the adversary free-
rider does not even have local training data on learning tasks,
and its purpose is only to benefit from the global model for
free. To avoid being identified, typical free-riding attacks
send generated false weight reports (e.g., additive Gaussian
noise with zero mean and one standard deviation based on
stochastic updates) to the aggregator. Besides, the free-riding
attacks also need to ensure that the whole training process
converges to the desired goals represented by honest par-
ticipants. To bring the result closer to the aggregated model
that only considers honest participants, the total number of
samples declared by free-rider will be smaller. Moreover, to
synchronize the evolution of more reasonable parameters in
FL, the disturbance of free-riding should follow time-
varying asymptotic behavior.

In summary, FL faces the challenges of unique security
threats and privacy issues compared with traditional ma-
chine learning due to its distributed nature. 'e various
attacks show that FL has weaknesses in both robustness and
privacy. Depending on different computing parties, we list
the various attack approaches of security threats in taxon-
omy Table 3 to summarize each attack approach of severity,
strategy, and description. Compared with various targets of
attacks initiated by participants, the adversary aggregator
exploits DLG, GAN, etc., to perform attacks solely for the
goal of stealing private data. However, adversary aggregator
attacks may produce serious record-level data leakage.
Adversary participants are allowed to perform attacks from
both dimensions of security and privacy. 'e goal of poi-
soning attacks is to decrease the availability of the shared
model, which leads to system classification errors or pre-
diction failures. Inference attacks focus on the confidenti-
ality violation of training data to induce the disclosure of
sensitive information. Model inversion attacks based on
GAN are more invisible and pose a more significant threat to
FL systems. In the following section, we focus on defense
approaches for privacy and security issues in FL.
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Figure 8: By using the client-side GAN attacks, the attacker can reconstruct sensitive information from the victim.
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4. Security Defense and Privacy-Preserving

FL system has some weak phases about the security aspect,
e.g., model distribution, interactive training, and pa-
rameter aggregation. In this section, we discuss a series of
security defense approaches of FL with different tech-
niques, including Differential Privacy, Secure Multi-Party
Computation, Homomorphic Encryption, Trusted Exe-
cution Environments, blockchain, etc. Table 4 summarizes
the defense approaches and associated features in this
section.

4.1. Differential Privacy. Differential Privacy (DP) adopts
obfuscated mechanisms with perturbed noise without re-
vealing privacy-sensitive data at individual levels to realize
lightweight privacy-preserving. It can be quantified by

privacy loss parameters (ϵ, δ ), where ϵ is the privacy budget,
smaller ϵ tightens the standard for privacy protection, and
lower δ signifies greater confidence. More formally, given a
randomized algorithm A: D⟶R with domain D and
rangeR, for any two adjacent datasetsD,D′ and any set of
outcomesS⊆R, theA is said to be (ϵ, δ)-differential privacy
if the following equation is satisfied:

P(A(D) ∈ S)≤ e
ε
P A D′( 􏼁 ∈ S( 􏼁 + δ. (4)

Intuitively, it is difficult for a potential attacker to infer
whether a specific data point has been added to the inputD
based on the change in the output distribution. 'erefore,
the information of any single data point is protected. By
using the randomized algorithm output, DP provides sta-
tistical guarantees to defend against the attacker from
stealing data during the learning process.

Table 3: Taxonomy of adversary attacks in the FL system.

Attack types Attacker Severity Target Approach Strategy Description Ref.

DLG Aggregator High Record-level
privacy

Calculate partial
derivatives based on
gradient distance

Isolating

'e attacker creates a local view
of the victim’s training process,
dummy inputs, and labels to

minimize the gradient’s distance.

[38, 42]

GAN Aggregator High Record-level
privacy

Incorporate GAN
with a multi-task
discriminator

GAN

'e attacker correlates data
representatives of different
participants to identify

anonymous model updates, and
trains the GAN by fusing the
recognition and verification

models.

[43, 44]

Data
poisoning Participant Medium Specific

objective
Gradient-based local

optimization
Clean-label,
label-flipping

Clean-label attacks can only
perturb features of the training
sample. Label-flipping attacks are

allowed to change labels.

[46, 74]

Model
poisoning Participant High Desired

model

Hand-crafted
heuristic, bi-level
optimization

Embed
backdoor

'e inner level training on a
poisoned dataset and the outer
level corresponds to updating
these poisons to achieve the

desired model.

[54, 74, 75]

MIA Both Medium Participant
privacy

Determine whether a
specific data point is

used to model
training

Gradient
ascent attack

'e attacker performs a gradient
ascent attack to update model
parameters in the opposite

direction of the loss gradient.

[61, 62]

PIA Both Medium Participant
privacy

Extract valuable
properties

uncorrelated with the
main task

Separate data

'e attacker identifies a set of
participants with a specific

property by modifying model
updates to separate data with (or

without) property.

[63, 65]

Model
inversion Participant High Record-level

privacy

Exploit the shared
model as the
discriminator

GAN

'e attacker utilizes the real-time
nature of the training process to

reconstruct the victim’s
prototype samples.

[69, 70]

Watermark
attacks Participant High Record-level

privacy

Extract the interest
records by comparing
the exposure rates’

changes

Watermark

'e attacker tracks the victim’s
training footprint exposed during
the asynchronous aggregation

process.

[72, 73]

Free-riding Participant Low Shared
model

Send generated false
weight reports

Time-varying
noise

'e attacker utilizes additive
Gaussian noise with zero mean
and one standard deviation based

on stochastic updates.

[76, 77]
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4.1.1. Noise Property. 'ere are several factors that affect DP
noise property, such as data types and processing capabil-
ities. 'e continuous noise for numerical data is particularly
appealing, while discrete noise for nominal data is generally
adopted. Perturbed noise is less related to the noise types
(e.g., Gaussian noise, Laplace noise) on the premise that
acceptable utility loss can produce the indistinguishability of
protected objects. In FL, DP adds noise to the gradient to
provide participant-level or record-level training data
resilience, thereby effectively avoiding inverse data retrieval
to defend against DLG attacks and MIA. Based on the lo-
cation and whether the noise disturbance is performed on
per-participant gradient updates after completing local
training or per-example gradient updates during local
training, the noise added to FL can be categorized into three
types. (1) Server-side participant-level gradient: per-partic-
ipant shared model updates intercepted by the adversary
aggregator (e.g., DLG attacks). (2) Client-side participant
gradient: gradient updates after participants complete local
training. (3) Client-side sample gradient: the gradient of
each training example during local training. Moreover, the
results obtained from simulations show that Laplace noise
tends to be a slightly better defense than Gaussian noise with
the same distribution variance [37].

4.1.2. Central and Local Differential Privacy. DP can be
classified into two categories based on the location of per-
turbed noise added that consist of central differential privacy
(CDP) [101, 102] and local differential privacy (LDP) [78].
Figure 9 illustrates that CDP restricts the information
learned about a specific participant, while LDP does so for
local sample-level training data in a participant’s dataset.
Specifically, CDP implements noise perturbation on cen-
trally collected results to provide privacy guarantees for the
participant-level data, while LDP performs a random per-
turbed algorithm to add noise locally before sending results
to the server by each participant. Interestingly, LDP is
implemented at the sample-level to hide the contribution of
specific samples in a participant dataset, which allows
participants to customize their privacy budget [79]. 'e
noise of LDP can be injected over local update parameters or
calculated gradients, e.g., differentially private stochastic
gradient descent (DP-SGD) [103]. It is worth noting that
gradient noise can refine the privacy budget cost through
moments accountant to help researchers evaluate the per-
formance of DP. Compared with LDP, CDP is generally
insufficient to protect the participant training data from
sample-level gradient leakage [39]. In addition, a limitation
of CDP in practice is needed for a trusted server because of
noise disturbance after receiving the participant’s model
update.

4.1.3. Defense against Attacks. DP can effectively mitigate
against poisoning attacks to increase system robustness.
Researches show that CDP is more effective than LDP in
reducing the accuracy of backdoor attacks while providing
better utility.

To prevent inferring uncorrelated properties, Naseri
et al. [80] evaluated the DP scheme to mitigate PIA for
gender classification on the LFW face dataset. Experimental
results demonstrate that LDP is ineffective against PIA since
it only provides privacy guarantees at the sample-level but is
not directly applicable to defend the leakage of population-
level properties. Similarly, CDP is also not feasible in defense
against PIA because of significant utility loss.'erefore, both
CDP and LDP fail to mitigate PIA effectively.

To defend against GAN attacks, Xu et al. [104] presented
a gradient-pruning approach to enhance the scalability and
stability of data training, which allowed that users could use
GAN to generate large amounts of synthetic data without
disclosing private data. A new method of FL based on LDP
and Paillier homomorphic encryption in a fog computing
environment was proposed to defend against GAN attacks
[81].

DP commonly introduces noise into the data, which
inevitably leads to the loss of model accuracy, and the trade-
off between availability and privacy is complicated. In ad-
dition, under the assumption of a large number of partic-
ipants with poor amounts of training data, DP can also give
rise to lower accuracy.

4.2. Secure Multi-Party Computation. Secure Multi-Party
Computation (SMC) refers to the collaborative calculation
of a model or function by multiple participants without
revealing their private inputs to other participants for pri-
vacy-preserving. 'erefore, a secure aggregation protocol
constructed by SMC in the FL framework protects partic-
ipants’ security updates [82]. In this protocol, each partic-
ipant masks local updates through Secret Sharing and
pairwise masking, for example, using the weighted average
of update vectors from a random subset. In this way, ad-
ditional random factors would be canceled out when the
masked updates are aggregated to the aggregator. 'erefore,
the aggregator can only learn about the aggregation of
participant models rather than any information about an
individual model since they are covered by random factors
unknown.

4.2.1. Secret Sharing. Secret Sharing refers to an encryption
method in which a secret divided by multiple shares is
distributed to various parties. When the parties put the
shares together, the secret can be recovered. Secret Sharing
applies consistency checks to verify correctness to ensure
each participant follows protocol. 'erefore, the privacy-
preserving based on the Secret Sharing mechanism realizes
secure aggregation of gradient updates by each participant
securely sharing its local update with others [83]. Figure 10
illustrates the model aggregation process by calculating the
gradient’s average value through secret sharing in DFL. 'e
Secret Sharing protocol used in FL includes additive Secret
Sharing and Shamir ones. Specifically, additive Secret
Sharing utilizes random numbers from each party to gen-
erate corresponding secrets, while Shamir Secret Sharing
applies polynomial interpolation with safety in the finite
field. Note that although the security level and computation
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cost of the Shamir Secret Sharing protocol is much higher
than additive Secret Sharing, the number of messages ex-
changed remains the same. Moreover, the dropped partic-
ipant can be recovered through Secret Sharing to solve
offline issues when a participant leaves learning. However,
although Secret Sharing can protect model update param-
eters, it cannot defend against poisoning attacks.

4.2.2. Pairwise Masking. Pairwise Masking is an approach in
which mutually distrustful participants utilize Diffie–Hell-
man key exchange to generate pairwise masks. It has a
unique property in that paired masks would cancel out when
the masking models of whole participants are aggregated
[84]. In fact, when the aggregator attacks a victim for ap-
plying Secret Sharing, other honest participants will supply
all secret shares to the aggregator to eliminate the inter-
ference of model updates masked for the victim, which leads
to victim data leakage. As a result, Pairwise Masking can
thwart model updates from being revealed when the ad-
versary aggregator reconstructs the participant’s perturba-
tion [85]. Unfortunately, with a massive number of
participants, the aggregated results are generally insufficient
to provide reasonable privacy-preserving for an individual
participant. 'erefore, Pairwise Masking is generally not
suitable for CDFL scenarios.

Generally, the MPC protocol inevitably leads to higher
communication overhead. For example, in Secret Sharing,
all shares generated by one participant require to interact
with other participants. 'is overhead increases exponen-
tially with the number of participants joining the FL.
'erefore, how to design an optimized communication
overhead SMC solution for FL is a hot topic for researchers.

4.3. Homomorphic Encryption. Homomorphic Encryption
(HE) is a security defense technique based on cryptology,
which can perfectly prevent data breaches in theory. 'is
technique does not require access to the plaintext directly
since the decrypted operation results of the ciphertext are

equal to the plaintext operation results. 'e homomorphic
operation can be expressed as Enc(m1)⊕Enc(m2) �

Enc(m1 ⊗m2), where an encryption algorithm is stated as
Enc and its corresponding plaintexts m1, m2, ⊕, and ⊗
represent operators. 'e encryption operation can be an
addition (e.g., Paillier algorithm) or multiplication (e.g.,
RSA, ElGamal algorithm) operation that belongs to semi-
HE, while encryption algorithms that satisfy both addition
and multiplication are fully homomorphic encryptions
(FHEs). 'e industrial FL frameworks allow participants to
use additive HE tomask local gradient updates to ensure that
local updates are not revealed during aggregation.'erefore,
the FL process based on HE can directly calculate the
encrypted model parameters to ensure the security of
model updates. Moreover, the training model accuracy is
almost not impaired since HE has no obfuscation and
distortion operation. As shown in Figure 11, HE is used in
FL to provide a security guarantee that encrypted model
updates are transmitted between the aggregator and
participants.

In the FL setting, it is essential to consider the high
communication cost between the aggregator and partici-
pants due to the network bandwidth limitation. In fact, since
the data transfer amount of HE operation would be sig-
nificantly inflated, the introduction of HE into FL would be
bound to increase the communication overhead substan-
tially. Moreover, HE may bring large computational over-
head to FL and even dominate the training time. To
overcome these challenges, it is necessary to optimize the
operation of HE and aggregation strategy.

4.3.1. Batch Encryption. To improve the encryption effi-
ciency, a batch of quantized gradients encoded into a long
integer was encrypted at one time instead of individual
gradient encryption [20]. 'e batch encryption scheme al-
lows parallel encryption, decryption, and homomorphic
operations on multiple plaintexts. 'erefore, it can carry out
a substantial training acceleration, while the accuracy loss
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caused by quantization errors is acceptable. At present, batch
encryption is the most advanced optimization direction for
general HE schemes in CSFL. However, batch encryption is
not compatible with sparsification techniques. Furthermore,
even with the aid of batch encryption, the large commu-
nication overhead caused by message inflation remains a
concern.

4.3.2. Secure Aggregation Strategy. Additive HE (such as
Paillier mask technology) is more utilized to protect the
privacy of training datasets and the global model in FL ag-
gregation due to relatively better efficiency than other al-
ternatives. A scheme to defend against model inversion
caused by the adversary aggregator and colluding parties was
considered in Reference [86], where ElGamal encryption
protocol was used to provide provable privacy protection.
However, although this scheme effectively mitigates the
communication overhead, the lightweight Paillier encryption

can be used instead of the ElGamal encryption to enhance
learning efficiency. A regressionmodel trainingmethod based
on Paillier encryption was proposed in Reference [87], which
realizes the security training of the noninteractive regression
model with gradient descent. During the training process,
there was no required interaction between the aggregator and
participants. Similarly, based on the idea of modules, a
noninteractive FL framework was designed in Reference [88].
'e scheme reframes the Paillier by involving the modular
addition of random numbers to avoid multiple rounds of data
interaction between the aggregator and participants. A pri-
vacy-preserving FL scheme based on HE was proposed in
Reference [89] while applying asynchronous SGD to neural
networks and combining with additive HE to prevent the
aggregator from contacting the participant’s model gradient
plaintext to ensure the global model security.

In summary, most defense schemes based on HE have
certain limitations due to the encryption and decryption
process. Cloud servers for outsourced computation generally
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support limited operations without meeting the HE calcu-
lation requirement. In addition, it is not compatible with
most CNNs directly that the secure aggregation strategy
based on the HE requires the gradient values to be an integer.
Finally, given that the HE generally involves a large number
of complex operations, this is less suitable for resource-
constrained CDFL scenarios.

4.4. Anomaly Detection. In the context of FL, anomaly de-
tection is a defense approach primarily meant to exploit
specific judgment algorithms to identify outliers. In this
approach, the outliers provide attackers identification asso-
ciated with attack strategies to defend against poisoning at-
tacks. Furthermore, anomaly detection can mitigate the free-
riding attacks that obtain the final global model without
actually providing any data. By using model parameters far
away from other local models, an individual Byzantine at-
tacker can prevent the convergence of any traditional average-
based aggregation. However, such attacks can be detected by
employing simple countermeasures at the server level. Indeed,
anomaly detection cannot just identify abnormal poisoning
points that exceed a predetermined threshold, as an attacker
can ensure that every update is returnedwithin that threshold.
'erefore, some anomaly detection schemes have been
proposed to deal with Byzantine attacks.

4.4.1. K-Means. 'e K-means clustering method utilizes
Euclidean distance to group parameter updates to distin-
guish between malicious and benign models. K-means rule
selects the local models closest to the barycenter among the
proposed local models for grouping. For example, take a
local model, which is the minimum sum of the squared
distances to other local models. In short, larger clusters are
considered benign, while smaller clusters are judged to be
malicious [93]. However, this aggregation rule tolerates only
an individual Byzantine attacker without defense against
collusion attacks.

4.4.2. Krum. 'e Byzantine resilience scheme, namely
Krum, essentially combines the majority-based and dis-
tance-square-based outlier removal mechanism to remove
the influence of potential attackers [52]. Specifically, when f

Byzantine attackers appeared among n participants par-
ticipating in FL training, the majority-based approach selects
the subset with the smallest diameter by looking at the subset
of n − f local models. Although this approach is more robust
to Byzantine attackers, the exponential computation cost is
unacceptable. Combining the majority-based method with
the distance-square-based method can achieve a lower time
complexity (O(n2 · d)), where d is the dimension of local
model due to the linear gradient dimension. In addition, the
Krummethod to resist collusive Byzantine attackers requires
2f + 2< n.

4.4.3. Bulyan. A high-dimensional malicious model may
severely affect the Euclidean distance between two local
models, which can be maintained close to benign

parameters. To address this issue, Bulyan uses a variant of
trimmed mean to aggregate local models to optimize the
Krum method [94]. Specifically, Bulyan first iteratively se-
lects n − 2f local models in the same way as Krum. 'en,
Bulyan sorts the i th parameter of the selected local models to
find the parameters closest to the median. Finally, the pa-
rameters’ mean can be computed as ith parameter of the
global model. Moreover, Bulyan requires n≥ 4f + 3 for
robustness guarantee and the convergence of the objective
function. In addition, the Bulyan Based on Krum has a
nonscalable constraint since Krum calculates the pairwise
distance between local models, which would be performed
many times in each iteration.

Overall, data poisoning attacks can be mitigated strongly
by the Byzantine resilient aggregation. Currently, optimal
data poisoning has not been found to circumvent an
individual Byzantine resilient aggregation scheme to the best
of our knowledge, which is an interesting concern for
researchers. Moreover, model poisoning may break the
Byzantine resilient aggregation achieved by anomaly
detection [57].

4.5. Blockchain. Blockchain has the advantage of data
confidentiality and computing auditability to provide secure
solutions for input verifiability problems in decentralized FL
scenarios. 'e blockchain network can replace the aggre-
gator to exchange and verify local updates in the FL system
to filter out unreliable participants while providing corre-
sponding rewards. Moreover, model updates stored on a
tamper-proof distributed ledger allow authorized partici-
pants to retrieve it to improve training efficiency.

4.5.1. Coupled Architecture. FL architecture combines the
blockchain network to indicate the integration of two net-
works. As shown in Figure 12, according to the coupling
degree and miner role, integrated networks can be catego-
rized into fully coupling, standard coupling, and loosely
coupling.

(1) Full Coupling. By deploying blockchain and FL in the
same network, the full coupling architecture allows FL
participants to play the role of miners in the blockchain and
generate new blocks through local model update verifica-
tion. In other words, every miner on the blockchain has the
opportunity to participate in local training and global ag-
gregation, while the aggregator in CFL is entirely replaced by
the blockchain, as shown in Figure 12(a). In the full coupling
architecture setting, each miner avoids single-point-of-
failure through its distributed ledger copy without trans-
ferring data to the aggregator, minimizing the risk of privacy
breaches [95, 96]. However, blockchain and FL work on the
same network, which requires more computational re-
sources to satisfy participants’ operations.

(2) Standard Coupling. When blockchain and FL are
deployed on separate networks, the architecture in which
blockchain miners replace the central aggregator belongs to
the standard coupling architecture suitable for DFL, as
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shown in Figure 12(b). Specifically, participants who per-
form local training calculate model updates, which are
verified and aggregated by blockchain miners [34, 99]. It is
worth noting that standard coupling architecture deploys FL
and blockchain on different networks to reduce certain
communication delays, but coordinated management be-
tween networks increases potential risks.

(3) Loose Coupling. 'e loose coupling architecture of
blockchain utilizes verified local model updates to manage
the reputation of participants without aggregation opera-
tions, as shown in Figure 12(c). Traceable distributed
ledger records reputation-related data of participants as a
critical criterion to measure the reliability and credibility
of participants [97, 98]. A loose coupling architecture
compatible with CFL that includes a central aggregator
allows participants to retain their data better. Moreover,
the reputation management mechanism ensures sub-
mitted data quality during model training to improve the
global model’s accuracy. Since blockchain solely performs
model validation and reputation management, FL still
relies on a central aggregator, which may lead to a single-
point-of-failure.

At present, it is a challenge to point out which coupling
architecture is the most reliable. 'e system designer should

evaluate specific application scenarios to select the appro-
priate coupling architecture.

4.5.2. Consensus Mechanism. 'e consensus mechanism
deals with scenarios in which participants’ model updates
are exchanged and verified without centralized data. Re-
cently, a series of solutions based on consensus mechanisms
have been proposed to find untrusted and unreliable local
model updates from the adversary participant, e.g., proof-of-
work (PoW) consensus mechanism [34, 100], reputation
evaluation mechanism [98], committee consensus mecha-
nism [96], etc. Figure 13 illustrates the consensus mechanism
between miners, which introduces the blockchain into the FL
training process with the standard coupling architecture. 'e
verification process of local model updates can prevent poi-
soning attacks and free-riding attacks, and the results can also
be used for reward allocation guidance. In this way, validated
model updates and aggregated models would be added as new
blocks to the immutable distributed ledger, which provides an
accessible platform for qualified participants to download
data. Note that each participant calculates shared model
updates from the new block to overcome the single-point-of-
failure problem. More precisely, the malfunction of each
miner only affects the shared model update of its associated
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participants, which can be recovered by other participants
associated with the miner in normal operation.

4.5.3. Incentive Mechanism. Blockchain network provides
mining rewards proportional to the training sample size,
encourages participants to provide reliable local updates,
and facilitates more participants’ federation [105]. In fact, a
participant with a tremendous number of data samples
contributes more to global training and is less desirable to
federate with other participants without rewards. Moreover,
besides data sample size, the sample quality also affects the
global model accuracy that adversary participants may use
arbitrary model updates to inflate the number of samples
and even deploy free-riding attacks. 'e application com-
pares the sample size with its corresponding calculation time
to verify truthful local updates to overcome this problem.
'erefore, the incentive mechanism encourages participants
in distributed learning to provide more effective samples to
support the model training process.

Overall, it is costly to realize and maintain miners’
operations in the blockchain network, which is unsuitable
for resource-constrained devices. Moreover, consensus
protocols (e.g., PoW) on the blockchain network also induce
a certain degree of information exchange delay and even
cause errors. For example, when a certainminer generates its
block within the propagation delay of a generated block,
other miners may add a second generated block to their local
ledger to form an incorrect global model update. In sum-
mary, resource allocation and communication delays arising
from blockchain networks impede the efficient operation of
blockchain in FL, which future research needs to address.

4.6. Trusted Execution Environments. 'e hardware-based
trusted execution environments (TEEs) have become a
promising way to prevent attacks on private information by

allowing secure data storage and code execution on
untrusted devices. Intuitively, TEEs present an isolated
environment parallel to the operating system to ensure the
confidentiality of loaded data and code. 'rough the privacy
strength based on hardware-backed cryptographic keys
stored in TEEs, FL can securely aggregate and iteratively
train models to hide model parameters and gradient updates
against the attacker [90]. Moreover, the TEEs currently
deployed on almost all mobile phones and tablets execute
arbitrary code at nearly native speed through the secure
memory component, whichmakes TEEs a suitable candidate
for model training with complete privacy protection [91].
However, limited memory due to keeping the Trusted
Computing Base (TCB) small has become a bottleneck for
TEEs applications.

In general, to overcome constraints posed by the
limited memory size of TEEs, the idea of greedy layer-wise
training in DNN is considered for training in the trusted
area until convergence [92]. Figure 14 illustrates the system
architecture of FL with the introduction of TEEs, which
allows the aggregator and participants to collaboratively
train the DNN model layer by layer within TEEs during
learning. Specifically, by using greedy layer training, each
DNN layer is trained in TEEs of each participant. In ad-
dition, the greedy added layer constructs a new classifier to
output predictions that can be personalized by participants
and calculates the training loss. Finally, all layers are se-
curely trained in TEEs one by one to protect sensitive data
fromMIA and PIA. However, TEEs rely on the assumption
that the aggregator is trusted, while the adversary aggre-
gator is able to perform Denial-of-Service (DoS) attacks by
refusing to forward data to its TEEs to affect system
availability.

Because the model training method and network
structure of FL are different from traditional machine
learning, some threat mitigation techniques in machine
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learning may not be applicable to FL, e.g., whether
Adversarial Training (AT) with IID dataset in machine
learning is also suitable for the FL framework. In addition, as
another common defense strategy for machine learning,
Data Sanitization filters abnormal training samples before
training. However, due to participants’ private data inac-
cessibility, Data Sanitization cannot be performed in FL.

5. Challenges and Future Directions

FL serves as an emerging distributed ML paradigm that
allows cross-domain and cross-platform training models
without sharing actual datasets. 'erefore, FL has obvious
advantages over traditional machine learning. However,
research on FL is still in its incipient stage, and some key
challenges in practice affect the availability and robustness of
FL. Some challenges and future research directions are
discussed next.

5.1. Utility andCost Trade-Off. It is inevitable with increased
cost to deploy a defense mechanism for checking whether
the system is under attack. All defense schemes for im-
proving FL security have a common feature to increase
overhead or reduce data utility and model accuracy.
Moreover, even with the same defense strategy, various
protection levels have different overheads. 'erefore, the
trade-off between protected levels and related costs has been
a hot research topic. 'e game theory method is a promising
solution, which has emerged in the resource management of
FL to provide practical ideas. 'e resource management in
the FL system is formulated into a Nash equilibrium
problem to minimize the time taken for a calculation under
the constraints of energy consumption, communication
resources, and trainingmodel performance [106]. Moreover,
the Stackelberg game model can formulate a market-ori-
ented architecture to analyze and solve the optimal behavior
of all participants in the system. To balance the payoff and
energy consumption to reveal the optimal utility of all
participants, the trade-off between satisfaction and cost of
participants is measured through a predetermined pricing
scheme to find a unique Stackelberg equilibrium point [107].

5.2. FL in Heterogeneous Scenarios. Currently, FL research
on shared model updates and security protection algorithms
is usually limited to a homogeneous architecture that shares
the same model with all participants. Unfortunately, most
training data and model parameters that require collaborative
training in realistic scenarios are multi-source and hetero-
geneous. It is thus essential for exploring learning solutions
that efficiently extend FL to collaboratively train models with
heterogeneous architecture [108–110]. In addition, whether
current defense attacks and privacy-preserving techniques
adapt to this paradigm is another interesting research topic.

5.3. Security6reats toDFL. As aforementioned, the DFL is a
potential peer-to-peer learning framework suitable for
participants to collaborate with learning without an

aggregator. In this paradigm, each participant can be se-
lected as an aggregator in a polling manner. It is natural to
consider whether the existing threats in centralized FL still
apply to this scenario. More importantly, a decentralized FL
system may add new attack surfaces. For example, an at-
tacker can effectively compromise the training model by
easily inserting a backdoor if an attacker is selected as an
aggregator.

5.4. Traceable Detection of Adversary. FL allows participants
to join and leave a federation freely during the learning
process without participating from the beginning to end,
which leads to the complexity of tracking adversary par-
ticipants. 'is problem is expected to be solved by intro-
ducing a comprehensive application of credit evaluation,
smart contracts, and threshold normalization. For example,
through multiple rounds of dynamic measurement to de-
termine the reputation of all participants, credit evaluation
can follow up and identify traceable violations in FL.

6. Conclusion

Security and privacy considerations of FLmainly focus on two
seemingly independent directions, i.e., ensuring the global
model’s robustness and individual participants’ privacy.
'erefore, in a secure FL system, the participants’ local model
updates need to be securely masked without being identified
by the aggregator, and the aggregator should identify different
model updates and eliminate outliers. In this paper, we firstly
conduct a comprehensive study of state-of-the-art potential
threats and attack approaches from the perspective of dif-
ferent computing parties. 'en, we elaborate on a detailed
summary of the defense mechanisms against the above attack
approaches. It is worth noting that a combination of these
defense mechanisms will achieve a more satisfactory result.
Finally, several open challenges in FL which require further
in-depth research in this direction are discussed.
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[85] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient
secure federated learning,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 7, pp. 2168–2181, 2021.

[86] C. Fang, Y. Guo, N. Wang, and A. Ju, “Highly efficient
federated learning with strong privacy preservation in cloud
computing,” Computers & Security, vol. 96, Article ID 10188,
2020.

[87] F. Wang, H. Zhu, R. Lu, Y. Zheng, and H. Li, “A privacy-
preserving and non-interactive federated learning scheme
for regression training with gradient descent,” Information
Sciences, vol. 552, pp. 183–200, 2021.

[88] L. Tong, L. Jin, and X. Chen, “NPMML: a framework for
non-interactive privacy-preserving multi-party machine

learning,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 6, pp. 2969–2982, 2021.

[89] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving deep learning via additively homo-
morphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2018.

[90] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu, and J. Li, “A training-
integrity privacy-preserving federated learning scheme with
trusted execution environment,” Information Sciences,
vol. 522, pp. 69–79, 2020.

[91] X. Zhang, F. Li, and Z. Zhang, “Enabling execution assurance
of federated learning at untrusted participants,” INFOCOM,
pp. 1877–1886, IEEE, 2020.

[92] M. Fan, H. Haddadi, and K. Katevas, “PPFL: privacy-pre-
serving federated learning with trusted execution environ-
ments,” in Proceedings of the 19th Annual International
Conference on Mobile Systems, pp. 94–108, ACM,Wisconsin,
USA, June 2021.

[93] P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning at-
tacks on federated learning-based iot intrusion detection
system,” in Workshop on Decentralized IoT Systems and
Security (DISS), pp. 1–7, United States, February 2020.

[94] E. Mahdi El Mhamdi, R. Guerraoui, and S. Rouault, “'e
hidden vulnerability of distributed learning in byzantium,”
in ICML, vol. 80, pp. 3518–3527, PMLR, 2018.

[95] H. Chai, S. Leng, Y. Chen, and K. Zhang, “A hierarchical
blockchain-enabled federated learning algorithm for
knowledge sharing in internet of vehicles,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 22, no. 7,
pp. 3975–3986, 2021.

[96] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A
blockchain-based decentralized federated learning frame-
work with committee consensus,” IEEE Network, vol. 35,
no. 1, pp. 234–241, 2021.

[97] K. Salah, E. Damiani, and D. Svetinovic, “Towards block-
chain-based reputation-aware federated learning,” in
INFOCOM, pp. 183–188, IEEE, 2020.

[98] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and
M. Guizani, “Reliable federated learning for mobile net-
works,” IEEE Wireless Communications, vol. 27, no. 2,
pp. 72–80, 2020.

[99] S. R. Pokhrel and J. Choi, “Federated learning with block-
chain for autonomous vehicles: analysis and design chal-
lenges,” IEEE Transactions on Communications, vol. 68,
no. 8, pp. 4734–4746, 2020.

[100] X. Qu, S. Wang, Q. Hu, and X. Cheng, “Proof of federated
learning: a novel energy-recycling consensus algorithm,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 8, pp. 2074–2085, 2021.

[101] Y. Lei, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differ-
entially private model publishing for deep learning,” in
Science Progress, pp. 332–349, IEEE, 2019.

[102] H. Brendan McMahan, D. Ramage, K. Talwar, and L. Zhang,
“Learning differentially private recurrent language models,”
in ICLROpenReview.net, 2018.

[103] M. Abadi, A. Chu, and J. Ian, “Deep learning with differential
privacy,” CCS, pp. 308–318, ACM, 2016.

[104] C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, and K. Ren,
“Ganobfuscator: mitigating information leakage under GAN
via differential privacy,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 9, pp. 2358–2371, 2019.

[105] Y. Zhao, J. Zhao, L. Jiang et al., “Privacy-preserving
blockchain-based federated learning for iot devices,” IEEE
Internet of 6ings Journal, vol. 8, no. 3, pp. 1817–1829, 2021.

Security and Communication Networks 23



[106] C. Wutyee Zaw and C. Seon Hong, “A decentralized game
theoretic approach for energy-aware resource management
in federated learning,” in Proceedings of the IEEE Interna-
tional Conference on Big Data and Smart Computing,
pp. 133–136, IEEE, Jeju Island, Korea, January 2021.

[107] J. Lee, D. J. Kim, and D. Niyato, “Market analysis of dis-
tributed learning resource management for internet of
things: a game-theoretic approach,” IEEE Internet of 6ings
Journal, vol. 7, no. 9, pp. 8430–8439, 2020.

[108] C. Li, G. Li, and K. Varshney, “Federated Learning with Soft
Clustering,” IEEE Internet 6ings J., vol. 9, 2021.

[109] J. Pang, Y. Huang, Z. Xie, Q. Han, and Z. Cai, “Realizing the
heterogeneity: a self-organized federated learning framework
for IoT,” IEEE Internet of 6ings Journal, vol. 8, no. 5,
pp. 3088–3098, 2021.

[110] P. Zhang, C. Wang, C. Jiang, and Z. Han, “Deep rein-
forcement learning assisted federated learning algorithm for
data management of iiot,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 12, pp. 8475–8484, 2021.

24 Security and Communication Networks


