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Deep neural networks (DNNs) have profoundly changed our lifeways in recent years. 'e cost of training a complicated DNN
model is always overwhelming for most users with limited computation and storage resources. Consequently, an increasing
number of people are considering to resort to a cloud for an outsourced DNNmodel training. However, the DNNmodels training
process outsourced to the cloud faces privacy and security issues due to the semi-honest and malicious cloud environments. To
preserve the privacy of the data and the parameters in DNN models during the outsourced training and to detect whether the
models are injected with backdoors, this paper presents DeepGuard, a framework of privacy-preserving backdoor detection and
identification in an outsourced cloud environment for multi-participant computation. In particular, we design a privacy-pre-
serving reverse engineering algorithm for recovering the triggers and detecting the backdoor attacks among three cooperative but
non-collusion servers. Moreover, we propose a backdoor identification algorithm adapting to single-label and multi-label attack
detection. Finally, extensive experiments on the prevailing datasets such as MNIST, SVHN, and GTSRB confirm the effectiveness
and efficiency of backdoor detection and identification in a privacy-preserving DNN model.

1. Introduction

Deep neural networks (DNNs) have made outstanding
achievements in many fields and the DNNs-based appli-
cations are profoundly changing the aspects of our lives,
such as medical diagnosis [1], autonomous driving [2], and
image processing [3]. Most of the DNNmodels are generally
obtained by training or refining existing models. In order to
obtain a more accurate DNN model, it is often necessary to
use a large amount of data for the model training [4]. Due to
the limited capability of personal computers in model
training, it is difficult for individual users to complete DNN
training on personal computers. 'us, the users always
outsource the model training to a cloud. However, out-
sourcing the training process of DNN models to cloud
servers also risks privacy and security issues. It is well known

that the training process of the DNN model consists of
several steps, such as data collection, data processing, data
training, storage, and use of model parameters. 'e more
steps the training process of DNNmodels involves, the more
significant privacy and security risks arise [5].

According to the privacy risks, the data may not be
collected or used smoothly during data collection and data
training due to sensitive data such as identity ID, health,
property, and other information, or laws and regulations like
the European Union General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA). In
addition, the parameters of the trained DNN models are a
great asset to the model owner after spending lots of time
and money without privacy revealing [6]. According to the
security risks, some recent studies have shown that the
outsourced DNN models may be injected with backdoors

Hindawi
Security and Communication Networks
Volume 2022, Article ID 2985308, 20 pages
https://doi.org/10.1155/2022/2985308

mailto:lfwei@shou.edu.cn
https://orcid.org/0000-0002-1716-1332
https://orcid.org/0000-0002-0243-9995
https://orcid.org/0000-0002-1458-2297
https://orcid.org/0000-0001-8190-8309
https://orcid.org/0000-0001-7165-398X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2985308


[7–9]. 'e DNN models injected with backdoors appear
normal with a high probability to classify the clean data (i.e.,
no effect on classification accuracy). However, it misclas-
sifies the poisoned data (clean data with triggers attached) as
the prespecified label (target attack) or any incorrect label
(untargeted attack). Backdoor attacks can be extremely
damaging by identifying anyone as a specific person in the
security guard systems. Moreover, backdoor attacks can also
lead to significant risks in areas such as autonomous driving,
voice recognition, and text recognition [10–12].

Many defense strategies have been proposed against
backdoor attacks. 'ere are two major types of defense
strategies, model-based and data-based [9].'e former checks
whether the model has been injected with a backdoor [13, 14]
and the latter detects whether the input data has contained
triggers [15]. 'ese defense strategies have proven to be ef-
fective in detecting, identifying, and mitigating backdoor
attacks in the plaintext domain, that is, directly in the data.
However, these defense strategies may not work well in the
ciphertext domain due to privacy-preserving requirements in
the data and the DNN models. Secure multi-party compu-
tation (SMPC) seems to provide a possible solution for
preserving data privacy, which originates from Yao’s mil-
lionaire problem [16], allowing multiple participants to co-
operatively calculate arbitrary functions without revealing the
private input of the participants. Much previous work has
focused on this area such as SecureML [17], Chameleon [18],
ABY3 [19], Falcon [20], MP-SPDZ [21]. However, most of the
schemes focus on the computation’s privacy without con-
sidering backdoor defense strategies.

'erefore, there is a big gap between the backdoor attack
in the plaintext and ciphertext domains. Figure 1 illustrates
the scenarios between the backdoor attacks in different
domains. In the plaintext domain, all computations are
visible. While in the ciphertext domain, all computations are
encrypted, this paper uses a three-participant secret sharing
technique to preserve data and model privacy, where each
participant holds a fragment of the data. Since the data is
invisible, it brings many difficulties for backdoor defense.

Motivated by the above discussions, in this paper, we
present, DeepGuard, a framework for privacy-preserving
backdoor detection and identification in an outsourced
cloud environment for multi-participant computation. We
propose a model-based defense strategy that can detect
backdoors in the ciphertext domain. In addition, most of the
existing backdoor attack defense strategies are designed for
single-label attacks and might be invalid for multi-label
attacks. To detect these various attacks, we propose a novel
backdoor identification algorithm. In summary, the con-
tributions of this paper are summarized as follows:

(i) A defense strategy for backdoor attacks that works
effectively in the ciphertext domain. We propose a
backdoor attack detection algorithm based on MP-
SPDZ [21] and NC [13] that can work in the ci-
phertext domain, which performs detection of
backdoor attacks and ensures that the privacy of
training data and DNN models are not
compromised.

(ii) A backdoor identification algorithm for single-label
and multi-label attacks. We propose a novel iden-
tification algorithm for single-label and multi-label
attacks based on the forementioned backdoor de-
tection results, which can effectively identify the
specific attacked label.

(iii) Evaluating the effectiveness and efficiency of the
proposed schemes.We validate the effectiveness and
efficiency of our proposed schemes against both
single-label and multi-label attacks by conducting
extensive experiments on DNNs and state-of-the-
art attack methods on the prevailing datasets such as
MNIST, SVHN, and GTSRB.

2. Related Work

2.1. Backdoor Attacks. To the best of our knowledge, two
advanced backdoor attack approaches are widely used to
inject backdoors into target models. 'ese two backdoor
attack schemes are BadNets [7] and Trojan Attack [11]. Gu
et al. [7] proposed BadNets to inject backdoor attacks by
poisoning a training dataset. BadNets constructs a poisoned
training dataset by adding triggers to randomly selected
clean data and modifying its label to the target label. 'e
Trojan Attack proposed by Liu et al. [11] differs from
BadNets, i.e., the Trojan Attack does not allow the attacker to
access clean datasets but can access pretrained DNNmodels.
'e Trojan Attack generates trojan triggers and training data
by reverse engineering pretrained DNN models, and then
uses the generated trojan triggers and training data to retrain
the DNN model to inject the backdoor.

Besides, some more advanced backdoor attack ap-
proaches have been proposed in the past few years, Saha et al.
[8] proposed a hidden random backdoor trigger injection
technique. However, they required a larger trigger size to
achieve a better attack effect. Gong et al. [9] proposed a
backdoor attack approach that can resist four advanced
defense strategies in an outsourced cloud environment.
Bagdasaryan and Shmatikov [22] proposed blind backdoors
that require neither access to the training data nor themodel.
Shokri [23] designed an adaptive adversarial training al-
gorithm that optimizes the raw loss function of the model
and maximizes indistinguishability of the poisoned data and
clean data. Liu et al. [24] proposed a backdoor attack on
DNNmodels with a high success rate by using mathematical
modeling of the physical reflection model. Salem et al. [25]
proposed a triggerless backdoor attack against deep neural
networks based on the dropout technique, i.e., the attacker
does not need to modify the input that triggers the backdoor.
Yao et al. [26] consider backdoor attacks in transfer learning,
in which all “student” models can inherit backdoors hidden
in the “teacher” model, which poses a significant security
threat.

2.2. Backdoor Defenses. Liu et al. [27] proposed the first
effective defense scheme for DNN backdoor attacks, Fine-
Pruning, which successfully defended against backdoor at-
tacks using a combination of pruning and fine-tuning. In
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2019, Wang et al. [13] constructed triggers by reverse en-
gineering methods and analyzed their outliers through the
triggers and eventually pruned neurons based on this
constructed trigger to reduce the success rate of backdoor
attacks. Liu et al. [14] analyzed internal activation values by
introducing different levels of stimulation to neurons to
detect whether the DNN model is being attacked by a
backdoor. Gao et al. [15] detected triggers by overlaying
input samples and measuring the entropy distribution of
output results. Chen et al. [28] used a conditional generative
model to learn the probability distribution of potential
triggers from the model to detect and defend against
backdoor attacks. Du et al. [29] demonstrated the effec-
tiveness of differential privacy for outlier detection and
extended the technique to backdoor attack detection. Qiu
et al. [30] applied a data augmentation policy to eliminate
the effectiveness of backdoor attacks and an augmentation
policy to preprocess the input samples to invalidate the
triggers in the inference phase. Shen et al. [31] found that the
defense complexity of existing methods is quadratic with the
number of class labels.'ey propose a more efficient scheme
that reduces the complexity of the defense method by the K-
Arm optimization method, allowing to handle models with
many classes. Wang et al. [32] found that the representations
of authentic and poisoned data against the target class are
embedded in different linear subspaces. 'erefore, based on
the coherence optimization problem, they proposed the
PiDAn algorithm to detect backdoors.

2.3. Privacy-Preserving Machine Learning. Mohassel and
Zhang [17] present SecureML, the first privacy-preserving
machine learning training scheme in a two-party computation
model. Chameleon [18] used a semi-honest third party to
replace Beaver triples to reduce the amount of communication.
In addition, they greatly improved the practicality and scal-
ability of ABY [33]. ABY3 [19] proposes a new scheme in semi-
honest and malicious environments that allows arithmetic
sharing, Boolean sharing, and Yao sharing to be efficiently
converted among the three cooperative and non-collusion
participants. Zhang et al. [34] proposed DeepPAR and
DeepDPA protocols to preserve the input privacy and model
parameter privacy of models in deep learning. MP-SPDZ [21]
proposes an SMPC framework that greatly simplifies the cost of
comparing different protocols and security models. Its un-
derlying cryptographic primitives include secret sharing,
oblivious transfer, homomorphic encryption, and garbled
circuits. Subsequently, a series of efficient approaches such as
Falcon [20], ASTRA [35], FLASH [36], Trident [37], and ABY2
[38] have focused on privacy-preserving machine learning.

2.4. ComparisonwithOtherDefense Strategies. A comparison
with other defense strategies against backdoor attacks is shown
in Table 1. FLGUARD [44] requires submodel clustering to
exclude submodels with high attack rates, while Safe Learning
[45] excludes anomalous submodels by user random combi-
nation. 'ey are partially compliant with the white-box item.
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Figure 1: 'e difference between the backdoor attacks in the plaintext and ciphertext domains.
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DeepInspect [28] is used to invert a subset of the training data
through the model inversion, which can be seen as partially
preserving the privacy of the data. SentiNet [39], Strip [15], NC
[13], DeepInspect [28], and TABOR [42] can be seen as
partially preserving model privacy because they are black-box
access. NC [13] may not succeed for multiple target labels. ABS
[14] and DeepInspect [28] have shown that a small number of
multi-label attack detectionmay fail. Auror [43] andCRFL [46]
are considered for backdoor defense in federated learning but
are not applicable in privacy-preserving outsourced machine
learning. MP-BADNet [47] can resist backdoor attacks against
privacy-preserving DNNmodels but only supports single-label
attacks and cannot effectively defend against multi-label at-
tacks. Besides, an additional secondary server is required to
participate in the computation.

3. Overview

3.1. Key Ideas. It is known from the previous discussion that
many backdoor defense strategies and privacy-preserving
machine learning schemes have been proposed, respectively.
To better explain the motivation for this paper and the
challenges in the ciphertext domain, we give the answers to
the following questions for further elaboration.

(1) Why do we need to preserve privacy? Nowadays, the
data is always distributed among different data

owners, such as different companies, organizations,
and individuals, who need to train a model together
for practical reasons. However, with the increasing
privacy awareness, the data owners are reluctant to
disclose their sensitive data or restrict sharing their
sensitive data due to the laws and regulations (e.g.,
GDPR and CCPA). Moreover, these data owners
often have limited computing and storage resources
for economic reasons and prefer to outsource their
models to cloud servers for training. As a result, the
ownership and management of the data are sepa-
rated. Meanwhile, cloud service providers are usually
untrustworthy and try to find out private data.
'erefore, how to use private data in the DNNs
model training while keeping the data available and
invisible has become an urgent problem.

(2) Why choose SMPC? Generally speaking, the tech-
niques such as homomorphic encryption (HE) and
SMPC are always used to preserve the privacy of data
and models in an outsourcing environment. How-
ever, HE is unsuitable for training DNN models due
to its vast computational burdens. 'at is why this
paper prefers to use the SMPC technique for the
privacy preservation of data and models. Apart from
smaller computation, SMPC is naturally suitable for
multiuser participation scenarios.

Table 1: Comparison with other backdoor defense strategies.

Approaches
Privacy

protection
approach

Model access Privacy Backdoor
detection type

Backdoor attack
defense types

Black-box White-box Data
privacy

Model
privacy Model-based Data-based Single-label

attacks
Multi-label
attacks

SentiNet [39] None ● ○ ○ ◐ ○ ● ● ●
Strip [15] None ● ○ ○ ◐ ○ ● ● ●
NIC [40] None ○ ● ○ ○ ○ ● ● −

AC [41] None ○ ● ○ ○ ● ○ ● −

NC [13] None ● ○ ○ ◐ ● ○ ● ◐
ABS [14] None ○ ● ○ ○ ● ○ ● ◐
DeepInspect
[28] None ● ○ ◐ ◐ ● ○ ● ◐

TABOR [42] None ● ○ ○ ◐ ● ○ ● ●

Auror [43]
Differential

privacy, Federal
learning

● ○ ● ● ○ ● ● −

FLGUARD [44] Secret sharing,
Federal learning ○ ◐ ● ● ● ○ ● ●

SAFELearning
[45]

Secret sharing,
Federal learning ○ ◐ ● ● ● ○ ● −

CRFL [46]
Differential

privacy, Federal
learning

○ ● ● ● ● ○ ● −

MP-BADNet
[47]

Replicated secret
sharing, SMPC ● ○ ● ● ● ○ ● ○

Ours Replicated secret
sharing, SMPC ● ○ ● ● ● ○ ● ●

Note. ‘●’ indicates that the itemmeets, ‘○’ indicates that the item does not meet, ‘◐’ indicates that the item partially meets, and ‘− ’ means that the item has not
been experimentally proven and it is not possible to determine whether the itemmeets.'e model access indicates the level of access to the model parameters
of the backdoor attack detection approach. 'e privacy indicates the level of privacy preservation of the backdoor attack detection approaches. 'e backdoor
detection type indicates whether it is data-based or model-based, with the former detecting whether the data contains triggers and the latter detecting whether
the model is injected with backdoors. And the backdoor attack defense types indicate whether the approach is resistant to single- or multi-label attacks.
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(3) Why choose the SMPC technique with three par-
ticipants? 'e SMPC technique between two par-
ticipants is more suitable for two data owners to
jointly train models without compromising privacy
due to the underlying technology and is not suitable
for outsourced computation scenarios. In addition,
the time and communication overhead over three
participants grows linearly with the number of par-
ticipants.'e SMPC technique with three participants
is the best choice for our outsourced computing.

3.2. 5reat Model. In this paper, we assume that three
participants cooperatively train a DNN model using SMPC
based on replicated secret sharing technique [48]. We
consider the passive adversary model, which means that the
corrupted participant is semi-honest and will not actively
deviate from the protocol and launch a maliciously active
attack but might try to snoop and obtain the private data
from the other participants. It is a common adversarial
setting considered in previous SMPC schemes [17–19].
Moreover, we assume that the participants do not collude
since if the collusion appears, the colluding participants
could recover private data through the fragments they hold.

For the backdoor attack, we assume that malicious users
can modify their data before training the model. However,
malicious users cannot modify other users’ data and cannot
manipulate the DNN training process. 'e goal of the
malicious user is to embed a backdoor in the DNNs model

when it is trained. A DNNs model with an embedded
backdoor will output normally for clean data but will output
malicious behavior specified by the malicious user for
poisoned data. 'e defenders (the three participants in this
paper) can access the data fragments andmodel fragments in
the ciphertext domain, but not the complete data and model.

'e experiments in [9] demonstrate that a certain ratio
of data is sufficient for the trained DNN model to be
backdoor attacked. Our basic attack model, named as
single-label attacks, is consistent with [7, 13] in which it
uses a white square as a trigger attached to the bottom right
corner in a clean image to produce a poisoned data (the
clean image is attached with a trigger) as shown in Figure 2.
We believe that a successful backdoor attack does not affect
the classification accuracy of the clean data, but it has a high
probability to misclassify for the poisoned data. In the
advanced attack model, named as multi-label attacks, we
implement in this paper considering that the triggers ap-
pear at different locations in one image as shown in
Figure 2.

3.3. Framework of DeepGuard. As shown in Figure 3, we
assume that users want to outsource training the DNNmodel
to the cloud servers due to the limitation of time or economic
cost, and at the same time, do not want the cloud servers to
learn the private data and parameters from the DNN model.

It is assumed that data are from different users or belongs
to different data owners. Some of the data might be poisoned

Deep Neural Networks
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Trigger 2
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Label 6
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Label 6
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…
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Deep Neural Networks with Backdoor

Multi-label Backdoor Attacks
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Figure 2: 'e single-label and multi-label backdoor attacks. 'e single-label attacks can classify arbitrary images into target labels. 'e
multi-label attacks can hide multiple backdoors in the complicated DNN models, with different triggers corresponding to different target
labels.
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in the source by malicious users and used in the model
training to inject a backdoor into the model.

'e cloud server consists of P1, P2, and P3, referred to as
the participants in this paper. Each of these three partici-
pants holds the private data shares by the replicated secret
sharing from the users and wants to collaborate to train a
DNN model. In the trained DNN model, no specific pa-
rameters are accessible to any parties.

As the backdoored model has a high classification ac-
curacy for clean datasets, it is difficult for the users to detect
that the model is subject to a backdoor attack only by
themselves. According to the privacy-preserving require-
ments, the honest users need to turn to all three participants
simultaneously to perform the detection of the backdoor
attack in the ciphertext domain to detect whether the DNN
model is injected with a backdoor.

4. Concrete Construction

4.1. List of Symbols. Table 2 describes the symbols used in
this section.

4.2. Overall Design. We define the poisoning data as follows:

x
∗����
���� � T(‖x‖, ‖mask‖, ‖pattern‖)

� (1 − ‖mask‖) · ‖x‖ +‖mask‖ · ‖pattern‖,
(1)

where ‖ · ‖ denotes that the private data are held by three
participants through replicated secret sharing technique
[48] and thus single party is not able to access the private
data. x∗ denotes poisoned data, and T(·) denotes a function
that attaches a trigger to the original image x. We use mask
to denote a 2D matrix that determines the size and position
of the trigger over the original image, which takes values in
the range (0, 1). We use pattern to represent the trigger
pattern, which is a matrix of the same size as the original
image. 'e parameters maski,j and patterni,j represent the
mask and pattern values of row i and column j, respec-
tively. When maski,j equals to 1, it means that the value of
row i and column j in the original image are completely
covered by those row i and column j in the pattern. When
maski,j equals 0, it means that the original image is not
covered at all.

Output
Replicated
secure share

SMPC

P2 P3

P1

Model training and backdoor detection Private model without backdoorData collection

Data x1

Data x2

Data y1

Data y2

Data xn

Data yn

...
User 1

...
User n

...

Backdoor
detected

Stop

Figure 3:'e framework of DeepGuard.'e data are from different users or belong to different data owners.'e triggers may be attached to
the original data, which is trained in an SMPC-based DNNmodel through replicated secret sharing in three servers.When a backdoor attack
is detected, the training is stopped, and the user is warned. Otherwise, a privacy-preserving DNN model is output.

Table 2: List of symbols.

Symbol Description

Δ When the target label corresponds to a backdoor, the minimum perturbation is required to map the other dimensional space to
the target dimensional space.

δ When the target label corresponds to a nonbackdoor, the minimum perturbation is required to map the other dimensional space
to the target dimensional space.

π 'e trigger was used to construct the poisoned data.
α 'e attack threshold, i.e., the backdoor attack success rate, takes the value from 0 to 1.
η 'e parameter MinSamples in the DBSCAN algorithm.
ϵ 'e parameter epsilon in the DBSCAN algorithm.
β 'e threshold is used to adjust the larger mean value.
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As in [13], we consider the classification problem as the
creation of partitions in a multidimensional space in ciphertext,
where each dimension contains certain features, i.e., each di-
mension can be considered to represent a label. Embedding
backdoors in DNN models is to create a “shortcut” from other
dimensional spaces to the target dimensional space. Detecting
backdoors in a DNN model can be thought of as detecting the
minimum perturbation needed to get from the other dimen-
sional space to the target dimensional space. If the target label
corresponds to a backdoor, then let the minimum perturbation
required to map the other dimensional space to the target
dimensional space corresponding to the backdoor be Δ. If the
target label corresponds to a no backdoor, then let the mini-
mumperturbation required tomap the other dimensional space
to the corresponding target dimensional space be δ.

Let the trigger used to construct the poisoned data be π.
Since the trigger needs to be as inconspicuous as possible
(e.g., a white square in the corner of the image) in order to
avoid being easily detected, it is natural to have that
size(π)≪ size(δ). For single-label attacks, since Δ is the
smallest perturbation, i.e., the corresponding valid part of
the trigger, we can derive size(Δ)< size(π). For multi-label
attacks, we can draw similar conclusions.'us, we only need
to analyze size(Δ) to know whether the model is attacked by
a backdoor.

4.3.5eReverse Engineering Algorithm. To obtain Δ for each
label, we designed an SMPC-based reverse engineering al-
gorithm for obtaining triggers based on a clean dataset.
'ere are three targets in this algorithm, that is, (1) to
preserve data and model parameter privacy, (2) to find the
shape of the trigger by backdoor attacks, i.e., (mask, pattern)

that can misclassify other labels as the target label, and (3) to
find the smallest possible trigger, i.e., to find the smallest
(mask, pattern) that can produce a misclassification. To
further achieve the third goal, we use the L1 − norm of the
mask to measure the size of the potential trigger. 'e ob-
jective function can be defined formally as follows:

h(‖x‖) � min(‖mask‖),(‖pattern‖)L(‖y‖), f(‖x‖),

(‖mask‖, ‖pattern‖) + cost · |mask|,
(2)

where L(·) denotes the loss function, which is the cross-
entropy loss function used in this paper. y is the ground
truth, f(·) denotes the DNN model, and cost denotes the
coefficient of the third objective of the optimization. To
speed up the convergence of reverse engineering, we use the
Adam Optimizer [49] to obtain the optimal mask and
pattern.

Algorithm 1 describes the process of recovering potential
triggers. Step 1 is the initialization operation. Steps 2–18 are
to reverse the model using clean dataset to obtain mask and
pattern. Steps 4–8 are executed by splitting the clean dataset
into several batches, which number isminiBatch. Step 5 is to
construct the poisoned data, and step 6 is to take the poi-
soning data into the model to calculate the loss and the
accuracy. Step 10 is to update the learning rate of the Adam

optimizer, and steps 12–15 to determine whether it achieves
the optimal for (mask, pattern). Step 16 detects whether the
algorithm stops, which is determined by the accuracy of the
algorithm reaches the threshold several times.

In Algorithm 1, ‖ · ‖ indicates that the value is in the
ciphertext domain. When α is set to 1, it means that the
trigger is capable to cause all clean images to be misclassified
as target label. α affects the effectiveness of the backdoor
attack and the final size of the recovered trigger. lossBest

denotes the optimal value of equation (2). When the trigger
is recovered for a potential label, the value cost is first
initialized to 0. If the recovered trigger causes other labels
to be classified as the potential label with a success rate
higher than the threshold α, the cost is adjusted upward to
reduce the size of the trigger. Otherwise, the cost value is
adjusted downward to enlarge the size of the trigger. In
short, the larger cost, the lower the success rate of the attack
and the smaller the trigger. 'e algorithm stops until the
success rate of classifying other labels as potential labels are
relatively stable. In this paper, the values mask and pattern
are initialized with random values, and then optimized
according to equation (2). To enable the reverse engi-
neering algorithm to accommodate a certain amount of
error, α is set to 0.99. lossBest is initialized to infinity
because the loss needs to be updated according to the
calculation of Equation (2).

4.4. 5e Backdoor Identification Algorithm. In backdoor
identification, we analyze the size of the trigger by the L1 −

norm of mask. 'e idea is to use an efficient clustering
algorithm to classify the labels into two categories: benign
and poisoned, since the potential triggers corresponding to
the labels might be benign or poisoned. Naturally, we first try
to use the K-means clustering algorithm for classification. It
was found through experiments that the K-means clustering
algorithm could not identify clean models (i.e., only one
class of benign labels) and could not correctly classify
scenarios in which the sizes of the triggers corresponding to
the labels differed significantly. Since the recovered trigger
sizes are relatively dense, we consider using the density-
based classification algorithm. 'e Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
[50] is one of the typical algorithms based on density
clustering. 'e DBSCAN algorithm assumes that the
closeness of the sample distribution determines the cate-
gories and does not require prespecifying the cluster size for
clustering, which performs better than K-means in backdoor
identification.

Since the value mask computed by the reverse engi-
neering algorithm is relatively dense, we chose to use the
DBSCAN algorithm for outlier analysis. 'e parameters
(epsilon,MinSamples) in the DBSCAN algorithm describe
the closeness of the sample distribution in the neighbor-
hood. Where epsilon describes the neighborhood distance
threshold for a given sample and MinSamples describes the
threshold for the number of samples in the neighborhood for
a given sample with distance epsilon. 'us, it is crucial to
determine the parameters (epsilon,MinSamples). In the
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Input: ‖x‖, ‖target‖
Output: min(‖mask‖, ‖pattern‖)

(1) Initialize ‖mask‖, ‖pattern‖, let α � 0.99, lossBest �∞.
(2) while 1 do
(3) Initialize LossList � [], LossAcc � [];
(4) for i in mini Batch do
(5) ‖TrojanInputi‖ � (1 − ‖mask‖) × ‖xi‖ + ‖mask‖ × ‖pattern‖;
(6) Calculate ‖loss‖ and ‖acc‖ based on ‖target‖ and ‖TrojanInputi‖;
(7) Update ‖mask‖, ‖pattern‖;
(8) LossList.append (‖loss‖), Loss Acc.append (‖acc‖);
(9) end for
(10) Update Adam learning rate LR;
(11) ‖accAvg‖ � mean(LossAcc), ‖lossAvg‖ � mean(LossList);
(12) if (‖accAvg‖> α) and (‖lossAvg‖< lossBest) then
(13) min(‖mask‖, ‖pattern‖) � (‖mask‖, ‖pattern‖);
(14) lossBest � ‖lossAvg‖;
(15) end if
(16) Check whether the algorithm ends early;
(17) Update cost;
(18) end while
(19) Return min(‖mask‖, ‖pattern‖).

ALGORITHM 1: Reverse engineering algorithm.

Input: ListMask, Labels
Output: Targetlabel

(1) Initialize ϵ, η, β � 4∗ ϵ, TargetLabel � [];
(2) Calculate mean � mean(ListMask);
(3) if mean > β then
(4) for i in Labels do
(5) while ListMask[i]/β> 1.1 do
(6) ListMask[i] � ListMask[i]/1.1;
(7) end while
(8) end for
(9) else
(10) for i in Labels do
(11) while ListMask[i]> β do
(12) ListMask[i] � ListMask[i]/1.1;
(13) end while
(14) end for
(15) end if
(16) outlier_detection �DBSCAN(min_samples � η, eps � ϵ);
(17) clusters � outlier_detection.fit_predict (ListMask);
(18) a � [], b � [];
(19) for i in Labels do
(20) if clusters[i] �� 0 then
(21) a.append (i, ListMask[i]);
(22) else
(23) b.append (i, ListMask[i]);
(24) end if
(25) end for
(26) if len(a)> 0 and len(b)> 0 then
(27) TargetLabel � mean(a)<mean(b)?a: b;
(28) end if
(29) Return TargetLabel.

ALGORITHM 2: Backdoor identification algorithm.

8 Security and Communication Networks



following, we use ϵ to denote epsilon and η to denote
MinSamples for short.

Algorithm 2 is the backdoor identification algorithm.
Step 1 is to initialize the parameters (ϵ, η) and the threshold
β. Step 2 is to calculate the mean value of the mask. Steps
3–15 are to prevent larger mask values from being identified
as outliers. If the mean value is greater than β, the values
mask greater than the mean value are reduced to around the
mean value to increase the density of the data. Steps 16–17
are used for clustering analysis using the DBSCAN algo-
rithm. Steps 18–25 correspond to the clustering result
analysis. 'e clustering results are generally classified into
(− 1, 0), (0, 1), and (− 1, 0, 1), where − 1 represents the
anomaly, 0 represents the first category of clustering results,
and 1 represents the second category of clustering results.
When the backdoor attack is a kind of single-label attack or
multi-label attack with a relatively small number of labels,
the classification result is generally (− 1, 0). When the multi-
label attacks have a large number of labels, the classification
result is generally (0, 1) or (− 1, 0, 1). 'erefore, in steps
26–28, we analyze the specific attacked labels by comparing
the mean of the two categories of classification results.

4.5. Security Analysis

4.5.1. Channel Security. We assume that a secure channel is
established among the three participants by each other to
ensure that the transmitted information is not corrupted.
'e communication private key in this secure channel is
securely stored and cannot be easily disclosed.

4.5.2. Privacy-Preserving. In this scheme, we assume that the
participants (i.e., the cloud servers providing computing
services) are semi-honest, and do not actively deviate from
the protocol. Different users or data owners provide the
datasets used for model training and backdoor detection.
'ey send the datasets to the participants via replicated
secret sharing technique. Eventually, each participant only
holds fragments and is assumed not to collude with others to
recover the data. 'erefore, the different users or data
owners cannot have access to the private data of other users
and the participants cannot have access to the complete
private data. Moreover, the privacy-preserving DNN model
is trained by the interaction between participants using
replicated secret sharing technique, and does not reveal the
privacy of the model parameters.

5. Experiment and Evaluation

We evaluate the effectiveness and efficiency of the proposed
framework by training a DNN model and embedding two
types of backdoor attacks (single-label and multi-label at-
tacks). 'e experiment performed all the benchmarks on a
server with two 16-core 2.10GHz Intel(R) Xeon(R) Gold
6130 CPUs, 256GB RAM, and Ubuntu 16.04.4 LTS.

As shown in Figure 4, in the single-label attacks scenario,
a trigger is targeted at one label and thus there exists only one
trigger in the DNN model. 'e model makes classification

normally for a dataset with all clean data. However, for the
poisoned data (those data with a trigger), the model always
classifies it to the prespecified label regardless of the original
label. In the multi-label attacks, a DNNmodel is attacked by
a backdoor containing multiple attacked labels representing
the backdoor attacks against different labels at different
locations.'e trigger is squares of 3 × 3 pixels or 4 × 4 pixels.
To make the multi-label attacks effective, the poisoning rate
of each poisoned label is about 25%. 'e following equation
defines the proportion Rpoison of the total poisoned data to
the dataset.

Rpoison �
Rlabel × Nlabel

Rlabel × Nlabel + 1
, (3)

where Rlabel denotes the poisoning rate of each poisoning
label and Nlabel denotes the number of poisoning labels.
Based on the above settings, the steps of each epoch when
training the DNN model is as follows:

Strain �
1

1 − Rpoison
×|D|, (4)

where Strain denotes the number of training steps per epoch
during the DNN model training and |D| denotes the size of
the dataset.

5.1. Backdoor Detection in the Ciphertext Domain

5.1.1. Experimental Setup. 'e experimental is built on the
primitive provided by the MP-SPDZ [21] library, and all
arithmetic sharing of secret data is performed on modulo
2128. For the ciphertext, we use three different processes to
simulate three participants, and they perform calcula-
tions through the replicated secret sharing technique. In
this section, we only consider using the MNIST dataset
[51] and single-label attacks (supposing that the target
label is 6). 'e architecture of the DNN model we
evaluated is consistent with [17], which is a simple
network consisting of 3 fully connected layers with a
Rectified Linear Unit (ReLU) activation function. Finally,
the softmax function is used to calculate the output
probability of the labels. During training, the basic
learning rate is set to 0.1, the number of epochs is set to
15, the batch size is 128, and the stochastic gradient
descent (SGD) momentum is set to 0.9. 'e accuracy of
the clean model is approximately 97%, both in the ci-
phertext and plaintext domains. Furthermore, in this
network structure, we use triggers that are 4 × 4 pixel
squares, as shown in Figure 4(a).

5.1.2. 5e Effectiveness of Backdoor Detection. Figure 5
shows the trigger sizes calculated by the reverse engineer-
ing algorithm from the different models, such as (a) the clean
model and (b) the injected backdoor model, with Plaintext
and Ciphertext representing the trigger sizes in plaintext
(NC [13]) and ciphertext (ours), respectively.'e sizes of the
plaintext and ciphertext datasets used in our reverse
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engineering experiments are 6400, 1280, and 640, respec-
tively. In this section, we only show the results of single-label
attacks (the target label is 6) for comparison. 'e experi-
mental results show that the trigger size of label 6 can be

found to be significantly smaller than the other labels, al-
though the difference between the trigger sizes calculated by
the reverse engineering algorithm from the plaintext and
ciphertext is relatively large.

(a)

1 2 3

4

5
6

7 8 9

(b)

Figure 4: 'e trigger used in the paper. (a) Denotes the trigger in single-label attacks located at the bottom right corner and (b) denotes the
possible attack locations of the trigger in multi-label attacks.
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Figure 5: Trigger sizes calculated by reverse engineering algorithms. (a) Denotes the trigger size in the clean model and (b) denotes the
trigger size in the poisoned model (assuming the target label is 6).

Table 3: 'e running time for reverse engineering algorithm in the ciphertext domain.

Time (s)
Reverse engineering

Clean model Poisoned model
6400 1280 640 6400 1280 640

Average 27952.00 6041.90 3015.50 31886.80 6638.60 2896.40
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Figure 6: Continued.
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5.1.3. 5e Efficiency of Backdoor Detection. Table 3 com-
pares the time cost of the reverse engineering algorithm
in the ciphertext domain with different clean MNIST
dataset sizes 6400, 1280, and 640 for reverse engineering,
respectively. Compared with the plaintext [13], the time
cost of performing reverse engineering algorithms in the
ciphertext domain is greater according to the privacy
requirement. Moreover, there is a significant commu-
nication cost in the ciphertext domain due to the three-
party interaction required.

5.2. 5e Backdoor Identification

5.2.1. Experiment Setup. According to experience, we set η
to 3 in both plaintext and ciphertext domains. 'e value ϵ
depends on the dataset used. In the plaintext domain, when
the mean value of the triggers computed by the reverse
engineering algorithm is greater than 50, we set ϵ to 10.
Otherwise, ϵ is 5. Meanwhile, the value ϵ in the ciphertext
domain is generally three times higher than that in the
plaintext domain. Moreover, we consider the three of the
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Figure 6:'e trigger size before/after the backdoor identification algorithm on theMNISTdataset. (a)'e number of attacked labels is 0. (b)
'e number of attacked labels is 1. (c)'e number of attacked labels is 2. (d)'e number of attacked labels is 3. (e) 'e number of attacked
labels is 4. (f )'e number of attacked labels is 5. (g)'e number of attacked labels is 6. (h)'e number of attacked labels is 7. (i)'e number
of attacked labels is 8. (j) 'e number of attacked labels is 9.
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Figure 7: Continued.
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most common datasets to measure the effectiveness of
backdoor identification algorithms. 'e network structure
settings for these datasets are described as follows:

(i) MNIST. 'e DNN structure used for MNISTdataset
is shown in Table 4. In the training phase, the base
learning rate is set as 0.001, epochs are 10, the batch
size is 32, and we use the Adam optimizer to optimize
with a learning rate decay of 1 × 10− 5. 'e trained
clean model achieved an accuracy of 99.25%. In this
scenario, we use triggers that are 3 × 3 pixel squares.

(ii) SVHN [52]. We train a street view house number
classifier on the DNN structure as in Table 5. We
trained the model using the Adam optimizer with
15 epochs. 'e base learning rate is 0.001, the
batch size is 32, and the learning rate decay is
1 × 10− 5. 'e final accuracy achieved for the
trained clean model was 93.53%. Moreover, the

trigger we used for this dataset is a 3 × 3 pixel
square.

(iii) GTSRB [53]. We assume that the user specifies the
structure of the trained deep neural network
consists of 6 convolution layers and 2 dense layers,
as shown in Table 6. We trained a traffic sign
classifier using the same Adam classifier with 10
epochs. 'e base learning rate is 0.001, the batch
size is 32, and the learning rate decay is 1 × 10− 5.
'e obtained clean model has a prediction accu-
racy of 96.53% on the test dataset. Moreover, the
trigger we used for this dataset is a 3 × 3 pixel
square.

5.2.2. 5e Effectiveness of Backdoor Identification.
Figure 6 shows the trigger sizes for the different numbers of
attacked labels before/after the backdoor identification
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Figure 7: 'e identification results for different number of attacked labels. If the DNN model is not embedded with backdoors, the
identification result is only one category (one color in the figure). Otherwise, the backdoors are embedded (two colors in the figure). (a) 'e
number of attacked labels is 0. (b)'e number of attacked labels is 1. (c)'e number of attacked labels is 2. (d)'e number of attacked labels
is 3. (e) 'e number of attacked labels is 4. (f ) 'e number of attacked labels is 5. (g) 'e number of attacked labels is 6. (h) 'e number of
attacked labels is 7. (i) 'e number of attacked labels is 8. (j) 'e number of attacked labels is 9.
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algorithm. In this section, we only show the trigger size
calculated by the reverse engineering algorithm in plaintext
for comparison. 'e location of the backdoor attack is
shown in Figure 4(b). Experimental results show that the
trigger size is smoother after our backdoor identification
algorithm, thus greatly reducing the probability of the
DBSCAN algorithm identifying the labels with large
trigger sizes as outliers. In multi-label attacks, our
backdoor identification algorithm does not process the
trigger size of the normal label to be about the same size
as the trigger of the attacked label, as shown in
Figures 6(i) and 6(j).

'e identification results for different numbers of
attacked labels are depicted in Figure 7. 'e backdoor
identification algorithm classifies normal labels and target
labels into two categories. It can identify the specific label
being attacked by analyzing the values of the two categories.
For the clean model, i.e., Figure 7(a), the classification result
is for only one category. For the poisoned model, Algorithm
2 can classify the results into two categories, as shown in
Figures 7(b)–7(j), where the blue color represents the normal
label, while the red color represents the poisoned label. 'e

experimental results show that our backdoor identification
algorithm can effectively detect whether the model is in-
jected with a backdoor and can identify the specific attacked
labels.

5.2.3. Comparison with NC. To further compare with the
most related work [13], Figure 8 gives the results after re-
covering triggers in the plaintext domain (NC [13]) and in
the ciphertext domain (this paper) on the MNIST dataset
[13]. We can observe from Figure 8 that NC [13] and our
algorithm can detect the target labels in the plaintext and
ciphertext domains, respectively. Figure 8(g) shows the
trigger corresponding to the target label 6 recovered by the
reverse engineering algorithm, where the result in the
plaintext domain is shown on the left, and the result in the
ciphertext domain is shown on the right. Although the
triggers recovered from the ciphertext domain are more
complicated than those recovered from the plaintext do-
main, we can get the same results. 'at is, the size of the
recovered trigger corresponding to the target label is much
smaller than that of other normal labels.

Table 5: 'e DNN structure used for SVHN dataset.

Layer Type # of Channels Filter Size Stride Activation
Conv 32 3× 3 1 ReLU
MaxPool 32 2× 2 2 —
Conv 64 3× 3 1 ReLU
MaxPool 64 2× 2 2 —
FC 512 — — ReLU
FC 10 — — Softmax

Table 6: 'e DNN structure used for GTSRB dataset.

Layer Type # of Channels Filter Size Stride Activation
Conv 32 3× 3 1 ReLU
Conv 32 3× 3 1 ReLU
MaxPool 32 2× 2 2 —
Conv 64 3× 3 1 ReLU
Conv 64 3× 3 1 ReLU
MaxPool 64 2× 2 2 —
Conv 128 3× 3 1 ReLU
Conv 128 3× 3 1 ReLU
MaxPool 128 2× 2 2 —
FC 512 — — ReLU
FC 43 — — Softmax

Table 4: 'e DNN structure used for MNIST dataset.

Layer Type # of Channels Filter Size Stride Activation
Conv 16 3× 3 1 ReLU
MaxPool 16 2× 2 2 —
Conv 32 3× 3 1 ReLU
MaxPool 32 2× 2 2 —
FC 512 — — ReLU
FC 10 — — Softmax
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Figure 8: Continued.
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Figure 8: Triggers recovered by reverse engineering algorithm on MNISTdata. 'e left side of each subgraph is recovered in the plaintext
domain (NC [13]), while the right side of each subgraph is recovered in the ciphertext domain (this paper), which is close to NC [13]. Label 6
is the target label. (a) Label 0. (b) Label 1. (c) Label 2. (d) Label 3. (e) Label 4. (f ) Label 5. (g) Label 6. (h) Label 7. (i) Label 8. (j) Label 9.

Table 7: Comparison on MNIST, SVHN, and GTSRB datasets.

Dataset Target labels Attack location Classification
accuracy (%)

Attac success
rate (%)

Backdoor detection and identification
NC [13] Ours

MNIST

− − 99.25% — 2 —
6 9 9.30% 100.00% 6 6

6, 1 9, 1 99.35% 100.00% 6, 1 6, 1
6, 1, 2 9, 1, 7 99.38% 100.00% 6, 1,2 6, 1, 2

6, 1, 2, 3 9, 1, 7, 6 99.34% 100.00% — 6, 1, 2, 3
6, 1, 2, 3, 4 9, 1, 7, 6, 2 99.31% 100.00% — 6, 1, 2, 3, 4

6, 1, 2, 3, 4, 5 9, 1, 7, 6, 2, 3 99.27% 100.00% — 6, 1, 2, 3, 4, 5
6, 1, 2, 3, 4, 5, 0 9, 1, 7, 6, 2, 3, 5 99.27% 100.00% — 6, 1, 2, 3, 4, 5, 0

6, 1, 2, 3, 4, 5, 0, 7 9, 1, 7, 6, 2, 3, 5, 8 99.29% 100.00% — 6, 1 2, 3, 4, 5, 0, 7

6, 1, 2, 3, 4, 5, 0, 7, 9 9, 1, 7, 6, 2, 3, 5,
8, 4 99.20% 100.00% — 6, 1, 2, 3, 4, 5, 0, 7, 9

SVHN

— — 93.53% — — —
0 94.56% 98.67% 0 0

0, 1 1, 2 94.25% 98.97% 0, 1 0, 1
0, 1, 2 1, 2, 3 94.26% 99.03% — 0, 1, 2

0, 1, 2, 3 1, 2, 3, 4 94.11% 99.39% — 0, 1, 2, 3
0, 1, 2, 3, 4 1, 2, 3, 4, 5 94.25% 99.16% — 0, 1, 2, 3, 4

0, 1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6 94.17% 98.98% — 0, 1, 2, 3, 4, 5
0, 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7 94.11% 99.25% — 0, 1, 2, 3, 4, 5, 6

0, 1, 2, 3, 4, 5, 6, 8 1, 2, 3, 4, 5, 6, 7, 8 93.78% 99.36% — 0, 1, 2, 3, 4, 5, 6, 8

0, 1, 2, 3, 4, 5, 6, 8, 9 1, 2, 3, 4, 5, 6, 7,
8, 9 93.83% 99.25% — 0, 1, 2, 3, 4, 5, 6, 8, 9

GTSRB

— — 96.53% — — —
28 1 96.54% 92.64% 28 28

28, 33 1, 2 97.09% 96.00% 28, 33, 20 28, 33
28, 33, 1 1, 2, 3 96.63% 95.36% 28, 33, 1 28, 33, 1

28, 33, 1, 7 1, 2, 3, 4 95.75% 95.97% 28, 33, 1, 7 28, 33, 1, 7
28, 33, 1, 7, 11 1, 2, 3, 4, 5 95.61% 95.50% 28, 33, 1, 7, 11 28, 33, 1, 7, 11

28, 33, 1, 7, 11, 16 1, 2, 3, 4, 5, 6 96.04% 96.27% 28, 33, 1, 7, 11, 16 28, 33, 1, 7, 11, 16
28, 33, 1, 7, 11, 16, 23 1, 2, 3, 4, 5, 6, 7 96.15% 96.03% 28, 33, 1, 7, 11, 16, 23 28, 33, 1, 7, 11, 16, 23
28, 33, 1, 7, 11, 16, 23,

39 1, 2, 3, 4, 5, 6, 7, 8 95.39% 97.08% 28, 33, 1, 7, 11, 16,
23, 39

28, 33, 1, 7, 11, 16,
23, 39

28, 33, 1, 7, 11, 16, 23,
39, 42

1, 2, 3, 4, 5, 6, 7,
8, 9 96.05% 97.59% 28, 33, 1, 7, 11, 16,

23, 39, 42
28, 33, 1, 7, 11, 16,

23, 39, 42
Note. Target labels denote the target labels of the attack. Attack location denotes the trigger location of the attack target labels, as shown in Figure 4(b).
Classification accuracy and Attack success rate are the classification accuracies for the clean and poisoned images. 'e last two columns are the target labels
detected and identified by related work NC [13] and our algorithm.
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Table 7 demonstrates the effectiveness of the backdoor
identification algorithm on the MNIST, SVHN, and GTSRB
datasets. We suppose to attack each of the 9 different labels
of the above datasets. 'e experiments show that the clas-
sification accuracy and the attack success rate are at a high
level. Moreover, NC [13] and our algorithm both detect and
identify the clean model and the poisoned model by single-
label attacks, whereas NC [13] fails in the multi-label attacks
by regarding the poisoned model as a clean model.

6. Conclusions

'is paper presents a framework, DeepGuard, which con-
siders both privacy-preserving and backdoor defense for
DNNs in an outsourced cloud environment. We design an
effective and efficient reverse engineering algorithm that
enables to keep the confidentiality of the data and model
parameters in the DNN training.We also propose a practical
backdoor identification algorithm that achieves to detect
both single-label and multi-label attacks. Finally, the ex-
tensive experiments on the various datasets validate the
effectiveness and efficiency of our backdoor detection and
identification algorithm.

In future, we will pay attention to the backdoor miti-
gation in the ciphertext domain, which is quite different
from that in plaintext due to privacy-preserving DNNs. It is
challenging to implement the existing backdoor mitigation
scheme for the plaintext domain directly to those in the
ciphertext domain. We believe that the efficient privacy-
preserving backdoor detection, identification, and mitiga-
tion framework in ciphertext will be the future work in the
research direction.
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GTSRB.
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