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Anomaly detection models based on deep learning come up against difficulties on the deployment in real scenarios such as
generalization problem. -e performance of the model based on specific dataset is not as good as expected in other scenarios. In
order to avoid this problem, it is a feasible solution to collect network data from the target environment to train the model. -is
paper proposes a network data reinforcement method based on the multiclass variational autoencoder to complete training tasks
with little amount data. In this paper, anomaly detection models based on MLP and CNN are designed, respectively, and
validation experiments are carried out on the CICIDS-2018 dataset. Compared with unreinforced models, models based on this
method get faster convergence speed during training. During evaluation, models based on this method achieve an average
accuracy of 93.69%, while unreinforced models only get an average accuracy of 55.63%. In addition, this method provides
competitive results on insufficient data compared with those existing models on sufficient data.

1. Introduction

In order to deal with the increasing network threats,
a variety of network security technologies have emerged,
such as vulnerability detection technology and anomaly
detection technology [1]. -e network anomaly detection
system (NADS) is one of the most popular network
security measures in the field. It reduces the impact of
network security events by monitoring abnormal be-
haviour in the network and linking with other security
systems [2]. In recent years, the relevant technologies
of the system have been deeply integrated with
deep learning (DL), and a variety of network anomaly
detection methods based on deep learning have been
derived [3, 4].

However, in most of related papers, the imple-
mentation of DL solution is not performed in real network
scenarios, and they normally show a proof of concept [5].
Generalization performance of models based on DL is the
leading reason, which means that the model trained on

dataset A cannot run as expected on dataset B. -is
problem gets worse in NADS based on DL for the fol-
lowing reasons.

(1) -e lack of unified representation. -e models are
deeply coupled with data. For image, the N-Dmatrix
has become a recognized choice. For text, word
vector is widely adopted. For network, there is no
widely accepted representation. In reference [6], the
whole packet is regarded as the input of the model.
But in reference [7], the statistics of network flow
becomes the input. Even among public network
datasets, there is a gap in the selection of features,
such as CICIDS [8] and NSL-KDD [9].

(2) Environmental fingerprint effect. -e detection
model based on DL depends on data distribution. In
different network environments, due to factors such
as country, network scope, and network equipment,
the data distribution will be quite different, thus
contributing worse generalization performance.
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In order to make the detection model achieve ideal
performance in real network scenarios, there are some
further studies in the field, such as transfer learning [10].
-ere is no doubt that the model trained with the data
collected in the target environment gets closer to the ideal
performance. However, due to the need to simulate a lot of
network attacks and the technical barriers of network
equipment, the collection of large-scale and high-quality
network security dataset is difficult and costly.

In this paper, we propose a network data reinforcement
method based on the multiclass variational autoencoder
(MCVAE).-e reinforcement method can be divided into two
dimensions: quantity and quality. In terms of quantity, the data
volume is expanded through the deep generation model,
similar but not the same [11]. In terms of quality, the MCVAE
can control the proportion of different classes by adjusting
parameters, thus solving the unbalance problem in network
data [12].-is method lowers data requirement of the network
anomaly detection model based on DL and facilitates the
training, making the rapid iteration of relevant work possible.
Meanwhile, it is a feasible practice for few-shot learning.

-e rest of the paper is organized as follows. Section 2
depicts the theory, involved technology, and implementation
process of this method. -is part focuses on the design and
construction of MCVAE and detection models. Section 3
provides the dataset, experimental environment, and exper-
imental results. Finally, the paper is concluded in Section 4.

2. Materials and Methods

-e network anomaly detection system based on DL has
gradually become the mainstream to sense cyberspace threats.
Nowadays, there have been a variety of excellent imple-
mentations. In reference [13], HongYu Yang proposed a
network intrusion detection model IBIDM based on improved
convolutional neural network (IDNN), reaching 92.94% on
precision and 0.76% on FPR in five-classification on NSL-
KDD. In reference [14], Shone N et al. constructed a very
successful network intrusion detection system using a stacked
network based on the nonsymmetric deep autoencoder
(NDAE) as a feature extractor, and achieved 87.37% F-score,
85.42% recall rate, and 100% precision rate in five-classification
tasks on NSL-KDD. Based on autoencoder, Bovenzi G et al.
proposed a hierarchical hybrid intrusion detection approach in
IoT scenarios, getting advantage on F1-score than the tradi-
tional method [15]. To avoid ambiguity, the above metrics’
expression is shown in equation (1)–(4) and the meaning of
important parameters is provided in Table 1.

Precision �
TP

TP + FP
, (1)

FPRate �
FP

FP + TN
, (2)

Recall �
TP

TP + FN
, (3)

F − score � 2∗
Precision∗Recall
Precision + Recall

. (4)

Although a series of research and experiment shows that
this technology is mature enough, its deployment in real
scenarios grapples with problems [16]. Different from image
data and text data, network security data gets some charac-
teristics. For image, the RGB value of pixels is usually regarded
as features, and theN−Dmatrix is a recognized choice. For text,
word vector encoded by various embedding algorithms is
widely adopted. However, network data gets more various, and
there is no suitable feature engineering for most tasks. -e
complexity is getting worse with the development of novel
network-related applications. In addition, the environmental
fingerprint effect of network security data greatly affects the
migration and application of model in the network field and
limits the practical deployment of related technologies.

In the case that traditional methods are used to enhance the
generalization performance such as dropout [17] and transfer
learning [18] which do not work well in the network field, in
order to make full use of the advantages of deep learning, it is a
feasible scheme to collect the training data in the target en-
vironment where the system is to be deployed. -is paper
utilizes the deep generative model to reduce the workload of
data collection and complete data reinforcement and organi-
cally combines the generative model with the recognition
model to complete the construction of an anomaly detection
model. -e construction process is shown in Figure 1.

2.1. Data Collection. In order to facilitate reproduction,
CICIDS-2018 [8] is selected for experiments. We are aware
of the limitations of these public dataset, but CICIDS-2018
remains widely used benchmarks amongst these works,
enabling us to draw credible conclusion. CICIDS-2018 gets
traffic diversity and sufficient volumes, providing both
feature set and metadata. Meanwhile, they have identified
eleven criteria [19] that are necessary for building a reliable
benchmark dataset. -e details of experiment dataset will be
shown in the section Results and Discussion.

2.2. Data Preprocessing. In order to avoid the influence of
different value ranges among features, a dimensionless
method is necessary.Min-Max scaling, shown as equation (5),
is widely adopted because of the outstanding performance in
terms of image data [20]. All pixels of image have a unified
value range [0–255].-rough linear scaling, Min-Max scaling
can efficiently fulfil data preprocessing. However, Z-score

Table 1: -e meaning of TP, FP, TN, and FN in this paper.

Name Meaning

True positive (TP) -e number of malicious samples classified
as malicious

False positive (FP) -e number of benign samples classified as
malicious

True negative (TN) -e number of benign samples classified as
benign

False negative (FN) -e number of malicious samples classified
as benign
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scaling, shown in equations (6)–(8), may become a more
suitable algorithm in network for the following reasons.

(1) Z-score scaling is nonlinear, reducing the loss of
information carried by raw data during the operation.

(2) Z-score scaling is compatible with outliers. For
network data, the value range among features varies
greatly. Under the circumstance, the impact of
outliers on Min-Max scaling is destructive.

xnew �
xold − xmin

xmax − xmin
, (5)

xnew �
xold − mean

s
, (6)

mean �
1
n



n

i�1
xi, (7)

s �

�����������������

1
n − 1



n

i�1
xi − mean( 




. (8)

In addition, the training phase in Figure 1 focuses on
binary classification, that is, to judge whether the network
behaviour is benign or not. -e labels on CICIDS-2018 are
various. -erefore, label encoding is a necessary step before
the training phase, mapping all nonbenign labels to mali-
cious ones. -e overall pseudocode of data preprocessing is
shown in Algorithm 1.

2.3. MVAE-Reinforcement. In 2012, Krizhevsky achieved
great success in the field of approximating functions using
deep learning and made a great performance breakthrough
in ImageNet dataset, namely, Alexnet [21]. -en, deep
learning has ushered in a new upsurge of development.

-e generative model is a novel area of deep learning
which learns to approximate distribution, defined data in
high-dimensional space [22]. Variational autoencoder
(VAE) is one of the most recognized generative models,
which can perform efficient approximate inference and
learning for intractable distributions based on Variational
Bayes (VB) [23]. In order to effectively reinforce data, more
examples that are like those already in training datasets is in
demand but not the same ones. For example, if several birch
trees are the input of the model, a birch forest with diversity
is expected to output.

According to latent variable theory, network data can be
defined in a high-dimensional latent space Z, as the fol-
lowing equations

Data field: X � xi 
N

i�1,

Latent field: Z � zi 
M
i�1.

(9)

xi � f z1, . . . , zM(  , xi ∼ Pϑ(x|z), zj ∼ Pθ(z). (10)

VAE utilizes deep neural network to infer the intractable
distribution of latent variable z and generates target data by
randomly sampling on the distribution. Its basic structure is
shown in Figure 2. -e model adopts encoder–decoder
architecture, in which the encoder layer approximates the

Data
Collection

Data
Preprocessing

...

MVAE-Reinforcement

IVAE-I

IVAE-II

IVAE-N

Data
Balancing

Model
Training

Figure 1: -e construction process. IVAE-N means improved variational autoencoder for class-N.

def pre_processing (phase):
if (phase� � ‘before MCVAE’):
data� get_data() # get the dataset to be processed
data� features_selected (data, features) # select features uses for training
data� z_score (data) # scale data with z_score algorithm

elif (phase� � ‘before Model Training’):
data� label_encode (data) # map labels to 0 (benign) and 1 (nonbenign)

else:
print (‘error’) # if the function is used in other phases, an
return 0 error will return

return data # output the processed dataset

ALGORITHM 1: Data Preprocessing.
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distribution of latent variable and the decoder layer is re-
sponsible for inferring the data defined by latent variable.

At present, VAE has been successfully applied in some
fields, and its mathematical principle and generation ef-
fect are recognized [24]. Based on the theory of VAE, this
paper improves traditional VAE and proposes improved
variational autoencoder (IVAE) for network data. -e
difference lies in the selection and connection of layers.
Meanwhile, a dense layer is connected after the decoder
layer to realize the data generation without constraints
such as sigmoid [25]. -e details of IVAE are shown in
Figure 3.

Among them, the function of encoder is to reduce feature
dimensions and approximate the distribution of latent vari-
able z via inferring statistical mean and variance. A decoder is
responsible to generate target data according to the randomly
sampled z. Reparameterization is a trick to realize sampling
from distribution, as shown in equation (10).

z � mean + σ ∗
�������
variance

√
, σεN(0, I). (11)

-e goal of the model is to obtain approximate data in
the same space as original data. In order to achieve this goal,

the loss function, as shown in equation (10), is composed of
reconstruction loss (equation (11)) and KL loss (Equation
(12)). -e reconstruction loss, mean square error function
(MSE), is to calculate the difference between the input and
output. -e KL loss is to measure the distance between the
distribution of the latent variable z fitted by the encoder and
the standard normal distribution. -ere is a hyperparameter
before the KL loss term to get a balance between the two loss
functions and prevents the occurrence of unilateral con-
vergence. In this paper, the hyperparameter is 1, referring
the research [23]

Loss � Reconstruction Loss + weight∗KLLoss, (12)

Reconstruction Loss � E(output − input)2. (13)

KLLoss � −
1
2



J

j�1
1 + log σ(i)

j 
2

  − μ(i)
 

2
− σ(i)

k 
2

 .

(14)

After the training, the whole architecture is truncated.
-e encoder is discarded, and the generation of network data
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Figure 3: Basic structure of the IVAE.
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Figure 2: Basic structure of VAE.
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is realized by randomly sampling on distribution and
decoding, as shown in Figure 4. -e generation amount of
various data can be adjusted as needed, thus balancing the
proportions of different classes and completing data
reinforcement.

According to different purposes and attack methods,
network behaviour can be classified into different classes.
MVAE-reinforcement constructs specific IVAE for various
network behaviour, thus gaining excellent perception to all
the kinds of behaviour. Our method effectively prevents the
confusion of network security data, avoids the problem of
data unbalance [26], and provides a feasible solution for few-
shot learning.

2.4. Model Training. In order to enhance the persuasion of
the experiment, this paper designs the corresponding neural
networks based on two widely used algorithms, multilayer
perception (MLP) and convolutional neural network
(CNN). In this paper, network data is trained in the form of
feature set, which belong to tabular data. MLP gets a good
learning ability for tabular data, which is an important
reason for choosing it as the benchmark model. As for CNN,
it stands out in dimension compression and feature ex-
traction. Meanwhile, it realizes the sharing of learning pa-
rameters through convolution kernel, greatly reduces the
number of parameters of the model, and improves the
generalization performance of the model [27]. -e special
channel mechanism makes this network structure have the
ability to learn multiple potential patterns from the same
local information.

-e design of MLP in this paper is designed as Figure 5,
and the structure of CNN-based neural network is shown in
Figure 6. -e other hyperparameters used in these two
models are the same, as shown in Table 2.

3. Results and Discussion

In order to verify the effect of MCVAE-reinforcement, we
design validation experiments as shown in Figure 7.

Based on raw data and reinforced data, the same DL
algorithm is used to train anomaly detection models. -en,
these models are evaluated by the same dataset to quantify

their performance. Finally, the effectiveness of the rein-
forcement method is proved by comparative analysis. At the
same time, in order to improve the reliability of the ex-
periment, this paper conducts experiments, respectively,
based on two algorithms, MLP and CNN, to eliminate the
specificity brought by the selection of algorithms and draws
a universal conclusion.

All experiments were conducted in the following envi-
ronments, TensorFlow 2.4.0, keras-applications 1.0.8, keras-
preprocessing 1.1.2, and scikit-learn 1.0.1.

3.1. Experiment Data. -e experiment in this paper is based
on CICIDS-2018 [8], which is developed by the Commu-
nications Security Establishment (CSE) and the Canadian
Institute for Cybersecurity (CIC), including a variety of
attack scenarios, which has high authenticity and reference
value. In the CSV-format data, the research team divides
network traffic data by Src IP, Dst IP, Src Port, Dst Port,
Protocol.

-is paper mainly focuses on Friday-16-02-2018.csv. In
the dataset, there are three kinds of network behaviours:
normal behaviour (benign), DoS attacks based on slow
HTTP test (DoS attacks-SHT), and Hulk-DoS attacks (DoS
attacks-H).

-ere are four kinds of datasets needed during experi-
ments. One hundred thousand items are randomly selected
from Friday-16-02–2018.csv as A-Data and another one
hundred thousand items as evaluation data. After that, a
thousand items of each category in A-Data are randomly
selected as raw data. Reinforced data are a combination of
raw data and the data generated by MCVAE.

-ere are 3000 rows data in raw data, including 1000
rows data labelled as benign, 1000 rows data labelled as DoS
attacks-SHT, and 1000 rows labelled as DoS attacks-H. -e
dataset aims at simulating the insufficient dataset collected in
real scenarios due to insurmountable difficulties. Based on
the dataset, IVAE-Benign, IVAE-DoS attacks-SHT, and
IVAE-DoS attacks-H are trained. -rough MVAE-rein-
forcement, 30000 rows data are generated, respectively, for
the three kinds of network behaviour. After mixing with raw
data, reinforced data is ready. -e detail of these datasets is
shown in Table 3. After MCVAE-reinforcement, Algorithm 1
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Figure 5: -e design of neural network based on MLP.
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is needed to complete label encoding before model training,
mapping benign to “0”, and mapping the others to “1.”

3.2. Experiment Result. In order to verify the effectiveness of
the method proposed in this paper, two kinds of anomaly
detection models (ADM) are trained, respectively, on raw
data and reinforced data, with the same algorithm, loss

function, and optimizer. -e training environment of the
models is consistent except dataset. After two epochs, the
ADM on reinforced data has reached convergence. -e
metrics at this time are shown in Table 4. After five epochs,
the ADM on raw data has reached convergence. -e results
are shown in Table 5. From these results, it can be seen that
MCVAE-reinforcement can greatly shorten training time. In
this experiment, the ADM based on MCVAE-reinforcement

Table 3: -e details of experiment datasets.

Name Num of benign Num of DoS attacks-SHT Num of DoS attacks-H Total num
A-data 42,814 13,300 43,886 100,000
Evaluation data 42,553 13,355 44,092 100,000
Raw data 1,000 1,000 1,000 3,000
Reinforced data 31,000 31,000 31,000 93,000

Raw Data

Reinforced Data

Neural
Network

Evaluation Data

Results based on raw data

Results based on reinforced data

Analysis

Hyperparameter

train

train

evaluate

Figure 7: -e design of experiments.

Table 2: Some hyperparameters used in model training.

Hyper parameter Value
Loss function Binary cross entropy (BCE)
Optimizer Adam [28]
Validation mothed 5-Fold cross validation
Validation ratio 20%
Batch size 64
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Figure 6: -e design of neural network based on 1D-CNN.
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Table 5: -e metrics of ADMs in the end of epoch 5.

Dataset Model Accuracy (%) Loss Val_Accuracy (%) Val_Loss

Raw data ADM (MLP) 96.83 0.0700 99.67 1.1841e-04
ADM (CNN) 99.67 0.0310 99.67 0.0203

Reinforced data ADM (MLP) 98.98 0.0327 97.16 0.7763
ADM (CNN) 99.99 0.0010 95.38 0.9995
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Figure 8: Confusion matrixes during the evaluation stage.

Table 4: -e metrics of ADMs in the end of epoch 2.

Dataset Model Accuracy (%) Loss Val_Accuracy (%) Val_Loss

Raw data ADM (MLP) 95.54 0.1054 94.67 0.3213
ADM (CNN) 90.38 0.3417 95.01 0.1551

Reinforced data ADM (MLP) 97.93 0.0422 97.11 0.0345
ADM (CNN) 99.99 0.0017 91.17 0.8283
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takes half the time of ADM without it to reach convergence.
And in Table 4, ADMs on reinforced data get better per-
formance than ADMs on raw data. Finally, when all ADMs
reach convergence, it can be seen that the performance of
ADMs on raw data is getting closer with those on reinforced
data. -is phenomenon may be due to the amount of raw
data. Under few training items, models find a shortcut after a
large number of iterations, and then get a deceptive
performance.

For further evaluating the performance of ADMs with
MCVAE-reinforcement and without it, these ADMs are
evaluated on evaluation data. -e dataset is collected at the
same time period as raw data. And there are no duplicate
items with raw data to evaluate the performance and gen-
eralization ability of these models. -e metrics during
evaluation are shown in Table 6 and the confusion matrixes
are listed in Figure 8.

As can be seen from the results, ADMs based on raw
data are incompetent for anomaly detection, with an
average accuracy of 55.63%. Meanwhile, ADMs based on
reinforced data have achieved an average accuracy of
93.69%, proving the effectiveness of MCVAE-
reinforcement.

In addition, there is a comparative experiment among
the ADMs on sufficient training data and the ADM with
MCVAE-reinforcement on insufficient training data. In this
experiment, A-Data is selected as the sufficient training data,
whose detail is shown in Table 3. And raw data is selected as
the insufficient training data. 1D-CNN is assigned as the
baseline model for ADMs based on deep learning, with the
same parameters as before. And the support vector machine
(SVM) is adopted as the representative of the traditional
algorithm. -e results are shown in Table 7.

As can be seen from the table, with MCVAE-rein-
forcement, the ADM on insufficient data gets similar per-
formance to ADMs on sufficient data. Meanwhile, it can
continue the advantages of the training algorithm, getting
great improvement on running time than traditional
methods.

4. Conclusions

As an excellent tool technology, due to its strong learning
ability and excellent portability, deep learning has been
widely and successfully applied in many fields, such as Faster
R-CNN [29] for image and Bert [30] for natural language
processing. How to effectively apply it to solve network
security difficulties is a research hotspot.

Meanwhile, deep learning usually has high require-
ments for training datasets, which is mainly reflected in
two aspects. -e first is the requirement for the quantity of
data. If the amount of training data is insufficient, it will
lead to poor performance. -e second is the requirements
for the quality of the data. -e training dataset is expected
to be well-constructed. In order to solve this problem, this
paper utilizes MCVAE-reinforcement to assist the
training of network intrusion detection model and or-
ganically combines the deep generation model and the
deep recognition model, which provides a reference for
the application of deep learning in network security
production practice. Experiments show that the model
training method proposed in this paper can effectively
improve the convergence speed, detection performance,
and generalization performance of the model. MCVAE-
reinforcement can complete the construction of high-
precision detection model with a little amount of training
samples.

-ere are some shortcomings in this paper, that is, the
ability of VAE depends on the proper data distribution in
sampled dataset. If the data in the sampled dataset cannot
effectively represent the common characteristics of the
corresponding network behaviour, it will affect the quality
of the generated data and lead to the decline of the
performance of ADMs. As for future direction, applying
theoretical achievements related with generative adver-
sarial nets [31] may further improve the model. In ad-
dition, there are some studies aimed at enhancing the
interpretability and reliability of deep learning, such as
explainable artificial intelligence (XAI) techniques [32],

Table 7: -e metrics of ADMs on A-Data and raw data.

Model ADM on reinforced data ADM on A-Data SVM on A-Data
Loss convergence during training 0.0010 0.0162 —
Accuracy convergence during training 99.99% 99.77% —
Accuracy during evaluation 95.29% 99.75% 99.62%
Precision during evaluation 97.86% 99.84% 99.78%
Recall during evaluation 90.90% 99.59% 99.59%
Training time 9.82 s 9.43 s 184.90 s
Evaluation time 2.25 s 2.28 s 6.11 s

Table 6: -e metrics of ADMs during the evaluation stage.

Dataset Model Accuracy (%) Precision (%) Recall (%)

Raw data ADM (MLP) 55.55 48.90 99.06
ADM (CNN) 55.71 48.99 99.46

Reinforced data ADM (MLP) 92.09 97.48 83.57
ADM (CNN) 95.29 97.86 90.90
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which can be beneficial to optimize performance of VAE-
based network.
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available from reference [8].
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