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Online advertising, which depends on consumers’ click, creates revenue for media sites, publishers, and advertisers. However,
click fraud by criminals, i.e., the ad is clicked either by malicious machines or hiring people, threatens this advertising system. To
solve the problem, many schemes are proposed which are mainly based on machine learning or statistical analysis. Although these
schemes mitigate the problem of click fraud, several problems still exist. For example, some fraudulent clicks are still in the wild
since their schemes only discover the fraudulent clicks with a probability approaching but not 100%. Also, the process of detecting
a click fraud is executed by a single publisher, which makes a chance for the publisher to obtain illegal income by deceiving
advertisers and media sites. Besides, the identity privacy of consumers is also exposed because the schemes deal with the plain text
of consumers’ real identity. *erefore, in this paper, a blockchain-based click fraud detection and prevention scheme (BCFDPS)
for online advertising is proposed to deal with the above problems. Specifically, the BCFDPS mainly introduces bilinear pairing to
implicitly verify whether a consumer’s real digital identity is contained in a click message to significantly avoid click fraud and
employs a consortium blockchain to ensure the transparency of the detection and prevention process. In our scheme, the clicks by
machines or fraud ones by a human can be accurately detected and prevented by media sites, publishers, and advertisers.
Furthermore, ciphertext-policy attribute-based encryption is adopted to protect the identity privacy of consumers. *e
implementation and evaluation results show that compared with the existing click fraud detection and prevention schemes based
on machine learning and statistical analysis, BCFDPS achieves detection of each fraudulent click with a probability of 100% and
consumes lower computation cost; furthermore, BCFDPS adds functions of consumers’ privacy protection and click fraud
detection and prevention, compared to the existing blockchain-based online advertising scheme, by introducing limited
communication cost (4, 984 bytes) at lower storage cost.

1. Introduction

Nowadays, cost-per-click (CPC) is by far the most popular
model used in online advertising [1]. An online advertising
system mainly includes four entities [2–4], namely, con-
sumers (Us), advertisers (ADEs), publishers (PUBs), and
media sites (MSs). An ad promotion process includes seven
steps such as publishing, clicking, paying, and so on, which is
shown in Figure 1. *e ADE’s ad is published by PUB to U

on the website of MS, as shown in steps 1–3 in Figure 1. A
click is counted when a U clicks on the ad, as shown in steps
4-5 in Figure 1. *en, ADE needs to pay advertising pro-
motion fees to PUB because of these clicks, and PUB also
pays advertising click fees to MS, as shown in steps 6-7 in
Figure 1. *ere are mainly two types of implementations of
online advertising system to publish ads. *e first type is the
traditional online advertising systems (Google, Twitter, etc.)
which mainly rely on centralized servers. Also, inspired by
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the tamper-proof and decentralized characteristics of
blockchain, the other one is blockchain-based advertising
systems [5, 6] which are implemented to achieve the
transparency of an advertising business.

For higher revenue in the two types of implementations
of online advertising systems, an ad will be published to
a targeted U who is the potential consumer, which is called
ad precision targeting. As we know, two main types of click
fraudmethods are designed by the attackers in the above two
systems to gain extra illegal revenue: the first type is to
generate the repeated click messages by machines. In detail,
malicious advertisers use web crawler, botnet and proxy
server, etc. to click an ad by machines [7–9] for exhausting
his competitors’ budgets. 2e second one is click fraud by
a human. Specifically, the malicious publishers and media
sites recruit many people to click the same ad frame [10] or
abuse the click history of legitimate users [11] to charge
advertisers more ad promotion fees [4, 12]. *us, these fake
clicks generate additional budgets for advertisers, but do not
create any revenue [13, 14], which undoubtedly disrupts the
order of the advertising system.

*erefore, many click fraud detection and prevention
schemes have been proposed to predict the authenticity of
each click and to maintain the stability of the advertising
system. According to the technology adopted, these schemes
may be classified into two categories:machine learning-based
scheme and statistical analysis-based scheme. Machine
learning-based schemes [4, 7–9, 13, 15–22] utilize machine
learning algorithms to train models that can judge whether
a new click is fraudulent from massive click traffic. For
example, in the scheme of [7], a machine learning algorithm
based on convolutional neural networks and decision tree is
designed to construct a classifier that distinguishes whether
a click message is generated by machines or human beings
according to the sensors of mobile device. However, the
dataset used for training is easy to be mixed with fraudulent
clicks in these schemes, causing the process of training
a model to be susceptible to adversarial attack [23]. *ence,
statistical analysis-based schemes [1, 10, 24–32] aim to
mitigate the adversarial attacks. For instance, the schemes in
[10, 25] predict malicious crowdsourcing platforms by
clustering algorithms. Xu and Li [25] used the DP-means

clustering method to predict malicious groups, while Tian
et al. [10], inspired by the DP-means clustering method,
proposed a non-parametric method to solve the problem of
malicious coalition fraud. Although they prevent the fraud
of short-term malicious crowdsourcing platforms, their
approaches are not enough for multiple traffics with long
fraud intervals.

Apart from this, in the above two categories of schemes,
the click fraud is still in the wild since they predict the click
fraud only with a probability which is less than 100%. Also,
the transparency of the click fraud detection and prevention
process is not achieved, since these fraud detection and
prevention algorithms are only implemented within a single
central agency (publisher). *at is, the publisher could gain
illegal income from misreporting the number of the real
clicks. Moreover, U’s privacy is also leaked since these
schemes analyze U’s some original identity information such
as the username and phone number.

Recently, as a tamper-proof and distributed technology,
blockchain has attracted the attention of online advertising
systems to significantly increase the trust between consumers
and advertisers without additional costs and intermediaries.
Specifically, by using a distributed ledger, the data related to
the delivery of ads, clicks, and the analysis result of the real
click number are all stored in the blockchain, which can be
audited and verified by everyone [33]. On the other hand,
people’s activities in physical space have been transferred to
cyberspace increasingly. To build a better cyberspace, a digital
identity that maps one-to-one with a physical identity in
cyberspace is becoming the focus of the future. To this end,
many digital identity infrastructures [34–38] have emerged to
better manage user behavior in cyberspace.

*erefore, taking the above merits and problems into
account, we introduce the blockchain and the existing digital
identity infrastructures to detect and prevent fraudulent
clicks for an online advertising system. *e main contri-
butions of this paper are summarized as follows.

(1) We propose a blockchain-based click fraud detection
and prevention scheme (BCFDPS) for online adver-
tising, which significantly avoids clicking by machines
and increases the cost of fraud ones by a human.

(2) Whether a click is fraudulent can be confirmed di-
rectly in our scheme rather than predicted with
a probability less than 100%. A consumer’s digital
identity that is one and only mapping to a person in
the physical world is embedded in a click message.
*at is, a fraudulent click does not contain a legiti-
mate digital identity, and many duplicate clicks
contain only the same digital identity.

(3) When negotiating the ad billing fee between entities,
the problem of tampering with the real number of
clicks by media sites and publishers is solved because
the transparency of the number in the click fraud
detection and prevention process is realized through
introducing a consortium blockchain. Specifically,
the analysis result of the clicks is periodically
recorded by publishers. *e media sites and the

Publisher
(PUB)

Media site
(MS)

Consumer
(U)

Advertiser
(ADE)

1. Send an ad
2. Publish an ad to a
targeted consumer

3. Display the ad on
the website

4. Click the ad
5. Transfer the click

message

6. Pay fee

7. Pay expense

Figure 1: Process of online advertising system.
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advertisers can also verify the result independently
through the data in the blockchain.

(4) *e risk of leaking consumers’ identity privacy from
adversaries is alleviated by the bilinear pairing and
ciphertext-policy attribute-based encryption without
excessively affecting the publisher’s accurate target of
ads to consumers.

*e rest of this article is organized as follows. Related
works are discussed in Section 2. Section 3 reviews some
preliminaries. Section 4 formulates the problem being
addressed. Section 5 describes the proposed BCFDPS in
detail. Security is analyzed in Section 6, and an experiment is
designed and implemented in Section 7, followed by dis-
cussion and conclusion in Sections 8 and 9, respectively.

2. Related Work

2.1. Machine Learning-Based Schemes. Machine learning-
based schemes are widely used in advertising fraud de-
tection scenarios with large amounts of click data. User’s
click features are first extracted, then these features are used
to train a model with the training dataset, and further the
trained model is evaluated with the test dataset [13].
Oentaryo et al. [15] and Kanei et al. [4] mainly utilized
random forest to detect click fraud in online advertising
systems. But they are unable to catch coalition attacks
involving multiple fraudulent approaches. *en, Wang
et al. [16] presented CLUE in 2017, a novel recurrent neural
network (RNN)-based online e-commerce transaction
fraud detection system, and they deployed the CLUE on
JD.com, serving over 220 million active users, to achieve
real-time detection of fraudulent transactions. However,
the CLUE in [16] will face gradient vanishing or gradient
exploding problems when the click traffic is too compli-
cated, leading to a poor fraud detection model. In 2018,
Haider et al. [18] used two ensemble learning techniques,
bagging and boosting algorithms, to train a model to detect
and prevent click fraud. In 2019, support vector machine
(SVM), K-nearest neighbor (KNN), AdaBoost, decision
tree, and bagging were evaluated to detect a click by
Almahmoud et al. [8]. In 2020, gradient tree boosting
(GTB) algorithm was used to address the challenges en-
countered in effectively classifying fraudulent publishers
[19]. Nevertheless, the user’s identity privacy is exposed in
[8, 18, 19] since they used the original identity information
of consumers, such as the real username and the address of
the visitor, to train models. *en, in 2021, two XGBoost-
based schemes [21, 22] were proposed for click fraud de-
tection, but both of them require manual classification of
a large amount of click traffic in advance, which is time
consuming. Apart from the problems mentioned above,
according to the paper of Mikhailov and Trusov [23], all the
schemes in this category are prone to adversarial attacks,
for which they need a large number of samples as input to
train the model. Also, these machine learning-based
schemes can only determine whether the click is fraudulent
with a probability approaching 100%.

2.2. Statistical Analysis-Based Schemes. Graph-based prop-
agation approaches were first proposed in [24, 27, 29] to
analyze the advertising traffic. *e main idea of Stitelman
et al. [24] is to use the co-visitation network between
websites to identify media sites with a large amount of
fraudulent traffic, but this approach relies on the fact that
the experts have informed views about which websites
look reasonable and which do not. Since it is difficult to
collect all the users’ data in a co-visitation network, Hu
et al. [27] analyzed the behavior characteristic of indi-
vidual mobile advertising user and then reduced mali-
cious user clicks. As a specific deployment of the idea in
[27], Dong et al. [29] proposed FraudDroid, a novel
hybrid approach, to detect ad frauds in mobile Android
apps. It dynamically analyzes applications to build UI
state transition graphs, collects their associated runtime
network traffic, and then uses it to identify advertising
fraud.

Additionally, a pattern-based click fraud detection
scheme for mobile applications [32] was designed, and it
mainly has two components: offline pattern extractor and
online fraud detector. *e extractor is responsible for
extracting traffic patterns for ad and non-ad traffics, and the
detector is in charge of monitoring network traffic and
detecting click fraud with the traffic patterns. But the
schemes in [29, 32] may fail to handle subsequent variant
click fraud [39].

Different from the above graph-based and pattern-based
analysis schemes, three contextual-based attributes con-
cerning interarrival time (IAT), diurnal activity (DA), and
eigenscore (ES) were analyzed in comparison-shopping
services to calculate a click’s credible score for detecting
whether it is fake in [26]. Moreover, Meghanath et al. [28]
proposed a new contextual outlier detection technology
(ConOut) and applied it to the advertising domain to
identify fraudulent publishers. Besides, the work in [30]
presents Bag-of-Words algorithm to assess clicks in online
advertising system, which is based on the concept of text
search methods. However, the outlier detection technology
in [28] and the Bag-of-Words algorithm in [30] involve
users’ real username and address of the visitor, which reveals
user’s identity privacy.

In 2019, a novel inference technique (Clicktok) was
developed to isolate click fraud attacks in [31]. Clicktok
analyzes the traffic matrix, including matrix decomposition
and construction, to propose two defenses, mimicry and
bait-click. *e mimicry isolates click spam by observing the
reuse pattern of legitimate click traffic, and the ad network
uses bait-clicks to watermark the channel periodically, which
sets off watermark detectors when an attacker harvests and
reuses a legitimate clickstream in the channel. But the
Clicktok does not have a good ability to prevent the new
types of click fraud whose traffic matrix is similar to the one
of a normal click. On the other hand, these statistical
analysis-based methods are deployed in publishers’ devices
and they do not achieve the transparency of the click fraud
detection and prevention process for each entity in the
advertising system. In addition, the statistical analysis-based
schemes leak user’s identity privacy since they analyze the
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original data which includes user’s real username, address of
the user, etc.

2.3. Blockchain-Based Advertising System. Recently, block-
chain has been widely adopted in many disciplines owing to
its trusted computing model and open nature. *erefore,
blockchain-based advertising systems [5, 6] are proposed to
provide trust between entities in advertising business. *e
scheme of Liu et al. [5] develops transparent and accountable
vehicular local advertising (TAVLA) by utilizing the mes-
sage digest, multi-party verification, and smart contract of
blockchain. Specifically, the hash of the advertising in-
formation database is stored in the blockchain, and the code
of the advertising query functions is stored off-chain. A
vehicle user first requests the ad off-chain, and then the off-
chain query result will be verified and assembled in the
blockchain smart contract, and finally, the smart contract
sends the result to the user. However, the communication
data in this scheme is in plaintext, which is not secure for
online advertising systems. Moreover, to improve the low
trust caused by the click fraud in the online advertising
system, Ding et al. [6] designed and implemented a block-
chain-based digital advertising media system (B2DAM) and
deployed the business logic based on smart contracts and
Hyperledger SDK. But the communication cost between
multiple blockchains in their scheme is expensive, as they
read and write messages too many times on the blockchains.

All in all, in the above schemes, all real-time interactions
of entities are settled in the blockchain, and each ad delivery
and click behavior are recorded in the blockchain, so that the
throughput is hard to meet the high concurrency in the
advertising system. As a result, we periodically record the
analysis results of the clicks on the blockchain in our scheme.

3. Preliminaries

3.1. Blockchain. Blockchain records all the transactions
which are generated in a peer-to-peer network, and it is
actually a decentralized ledger system. In the system, all the
blocks include the hash of the previous block; in this way,
they are linked together by the hash, and a blockchain is
formed. According to the decreasing order of de-
centralization, the blockchain consists of three categories:
public blockchain, consortium blockchain, and private
blockchain [40, 41]. *e public blockchain is open to all
nodes, and everyone can read and write data on it. *e
consortium blockchain is partially open since it is managed
by several organizations and only the authenticated mem-
bers can access and record data on it. Also, the private
blockchain is considered to be centralized as it is fully
controlled by a single enterprise or organization. Consid-
ering that several enterprises and organizations are included
in the advertising system, the consortium blockchain is
adopted in our scheme.

3.2. Shamir (t, n) 2reshold Secret Sharing Algorithm. A
threshold secret sharing algorithm [42] was proposed by
Shamir in 1979 to share a master secret in a safe way. In the

literature, a trusted center (TC) splits the master secret K

into n sub-secrets (K1, K2, K3, . . . , Kn) and then distributes
them to n participants (U1, U2, U3, . . . , Un). *e master
secret K cannot be reconstructed with fewer than t sub-
secrets and the specific steps are described as follows. Firstly,
a random (t −1)-th degree polynomial as f(x) � a0 + a1x +

· · · + at−1x
t− 1 is generated by the TC, in which the master

secret K � f(0) � a0. *en, the TC calculates n sub-secrets
Ki � f(xi), i � 1, 2, . . . , n and allocates Ki to Ui secretly.
Next, when Ui receives Ki, he saves it safely. Finally, the
master key K can be recovered by the TC using the Lagrange
interpolation formula: f′(x) � 􏽐

t
i�1 Ki 􏽐

t
j�1,j≠ i x − xj/

xi − xj, and the master key K � f′(0).

3.3. Bilinear Mapping. Assume G1, G2, and GT denote three
additive andmultiplicative cyclic groups of the same order p,
where p is a large prime and q is the generator of G1, G2.
Besides, ψ: G2⟶ G1 is an isomorphism, and G1, G2, GT are
equipped with pairing. *e bilinear pairing mapping e: G1 ×

G2⟶ GT satisfies the following properties [43, 44].

(1) Bilinear: ∀P ∈ G1, Q ∈ G2 and a, b ∈ Z∗p, whereZ
∗
p �

[1, 2, . . . , ]; if e(aP, bQ) � e(P, Q)ab, the mapping
e: G1 × G2⟶ GT is said to be bilinear.

(2) Non-degenerate: there exists P ∈ G1, Q ∈ G2 such
that e(P, Q)≠ 1GT

.
(3) Computability: ∀P ∈ G1, Q ∈ G2, there is an efficient

algorithm to compute e(P, Q).

*e group GT that possesses such a map e is called
a bilinear group.

3.4. Ciphertext-Policy Attribute-Based Encryption (CP-ABE).
CP-ABE schemes [45, 46] are designed to realize complex
access control on encrypted data. In CP-ABE, a party
wishing to encrypt a message M specifies a policy by an
access tree T, and the private key must meet the policy to
decrypt it, where the access tree is constructed by the party
and the private key is generated by a set of descriptive at-
tributes S of the decryptors. In the access tree T, each non-
leaf node represents a threshold gate, described by its
children and a threshold value, and each leaf node x of the
tree is described by an attribute y and a threshold value tx.
To facilitate working with the access trees, the parent of the
node x is described by parent(x), and the function att(x) is
defined only if x is a leaf node and denotes the attribute
associated with the leaf node x. *e access tree T also defines
an ordering between the children of every node, that is, the
children of a node are numbered from 1 to num. *e
function index(x) returns such a number associated with the
node x.

According to [47], the four algorithms of the bilinear
mapping-based CP-ABE scheme are as follows:

(1) Setup: this algorithm gives the public parameters PK
and master key MK. It chooses a bilinear group G1 of
prime order p with generator g. Next, it chooses two
random exponents α, β ∈ Zp. *en, the public key is
published as
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PK � G1, g, h, f, l􏼈 􏼉, (1)

where h � gβ, f � g1/β, l � e(g, g)α, and the master
key MK is (β, gα).

(2) Encrypt (PK, M, T): this algorithm encrypts message
M to get ciphertext CT using the public parameters
PK and the access tree T. In detail, it first chooses
a polynomial px for each node x (including the
leaves) in the tree T, in which the degree dx of the
polynomial px is one less than the threshold value tx,
that is, dx � tx − 1. Starting with the root node R in
T, the algorithm chooses a random s ∈ Zp and sets
pR(0) � s. *en, it sets px(0) � pparent(x)(index(x)).
Finally, it lets Y be the set of leaf nodes in T, and the
ciphertext CT is

CT � T, 􏽥C � M · l
s
, C � h

s
,∀y ∈ Y: Cy � g

py(0)
,􏼐

Cy
′ � (h(att(y)))

py(0)
􏼑.

(2)

(3) KeyGen (MK, S): the KeyGen algorithm outputs the
private key SK using the master key MK and the
attribute set S. Firstly, it chooses r ∈ Zp and rj ∈ Zp

for each attribute j ∈ S. *en, it computes the private
key SK as

SK � D � g
(α+r)/β

,∀j ∈ S: Dj � g
r

· h(j)
rj , Dj
′ � g

rj􏼐 􏼑.

(3)

(4) Decrypt (CT, SK): this algorithm decrypts the ci-
phertext CT with the private key SK for people who
satisfy the attribute set S. *e decryption procedure
is a recursive algorithm in which

DecryptNode(CT, SK, x) �
e Di, Cx( 􏼁

e Di
′, Cx
′( 􏼁

� e(g, g)
rpx(0)

.

(4)

When x is the root node R in the tree T, it can be
concluded that DecryptNode(CT, SK, R) �

e(g, g)rpR(0) � A. *en, the message M can be
computed by

􏽥C

(e(C, D)/A)
�

􏽥C

e h
s
, g

(α+r)/β
􏼐 􏼑/e(g, g)

rs
􏼐 􏼑

� M.

(5)

4. Problem Statement

Many digital identity infrastructures [34–38] have emerged
to better manage user’s behavior in cyberspace, among
which an identity management agency is responsible for
generating and maintaining one-to-one mappings between
digital identities and physical identities. *e one-to-one
mapping of digital identity infrastructures can prevent
identity-based attacks (Sybil, whitewashing, etc.) in

cyberspace. *erefore, based on the existing infrastructures,
we designed our blockchain-based click fraud detection and
prevention scheme (BCFDPS) for online advertising system.
To elaborate our scheme clearly, the main entities and
procedures of existing digital identity infrastructures are also
included.

4.1. SystemModel. *e proposed BCFDPS consists of seven
entities: identity management agency (IMA), entity identity
blockchain (EIB), consumer (U), access behavior blockchain
(ABB), media site (MS), publisher (PUB), and advertiser
(ADE), where the IMA and EIB are the entities of the
existing digital identity infrastructures, as shown in Figure 2.

(i) IMA generates identities for U, PUB, and ADE,
issues their identity licenses, and provides U with
a signature on U’s masked identity during the
registration phase. IMA records the real identities
of U, PUB, and ADE in EIB. Note: the IMA belongs
to the existing digital identity infrastructures.

(ii) EIB is responsible for recording the hash of digital
identity in the advertising system other than MS.
Also, it is a consortium blockchain maintained by
several IMAs. Note: the EIB belongs to the existing
digital identity infrastructures.

(iii) U sends the encrypted masked identity and ad click
messages to MS whenever he visits MS’s website
and clicks the ad.

(iv) ABB is in charge of recording the information of
PUB’s advertising bidding, MS’s forwarding results
ofU’s click message, and PUB’s analysis result ofU’s
access behavior. *e ABB is a consortium block-
chain, which is controlled by many MSs and PUBs.

(v) MS represents themedia site betweenU and PUB. It
is responsible for displaying PUB’s ad for U and
forwarding all the click messages of U for PUB. MS
summaries the result of ad bidding and the for-
warding information and periodically records them
in the ABB. MS can verify the click number in-
dependently for detecting and preventing click
fraud.

(vi) PUB publishes ADE’s ad, joins the ad bidding
process of MS, analyzes the effective ad clicks
generated by U, and records the analysis results in
the ABB. PUB can verify the click number in-
dependently for detecting and preventing click
fraud.

(vii) ADE sends an ad to PUB for publishing, and he can
also detect and prevent click fraud alone through
verifying the number of clicks in the ABB.

4.2. Security Model. In BCFDPS, we have the following
security assumptions.

(i) IMA and PUB are semi-honest and they will strictly
follow the protocol but are curious about the
information.

Security and Communication Networks 5



(ii) U is considered as a malicious entity and he will
intentionally click on the same ad many times out
of profit or curiosity.

(iii) MS is regarded as dishonest. It may deploy click
fraud methods and even directly tamper with the
statistical results of clicks to try to obtain extra
illegal revenue from the PUB.

(iv) ADE is also seen as a malicious entity. He may
attempt to deliberately falsify his statistics to reduce
the ad expenses from the PUB.

(v) Two consortium blockchains, maintained by
multiple IMAs, MSs, and PUBs, respectively, are
fast and secure enough in recording transactions.
Also, we assume that the standard cryptographic
algorithms used in our scheme are secure and
unbreakable.

(vi) It is built upon the Canetti–Krawczyk (CK) threat
model [48], in which any two parties could com-
municate via an unauthenticated network. Specif-
ically, an adversary can fully control the
communication in a probabilistic polynomial time
and try to reveal, track, or even imitate U through
sniffing and tampering with messages between U
and MS.

(vii) Corresponding to the physical identity, a person in
cyberspace has his one and only digital identity.*e
U’s digital identity in each ad click message is
protected by a masked identity and the random
numbers, and the click message is generated by U’s
browser plugin, where the plugin is assumed to be
integrated in the browser in advance to protect U’s
privacy.

4.3.DesignGoals. According to the above system model and
security model, the design goals of our scheme are as follows.

(1) No impact on ad precision targeting: a PUB can still
accurately target an ad to aU although theU’s digital
identity is masked. In other words, only the PUB can
link the U’s masked identity from different click
messages.

(2) Acceptability of ad response speed: the ad response
speed in our scheme is acceptable for a U, even
though the cryptographic algorithms are used to
protect the U’s identity privacy in the process of
publishing an ad.

(3) Transparency of ad billing fee: MS, PUB, and ADE
can count the real number of clicks on the same ad in
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Figure 2: System model.

6 Security and Communication Networks



an independent way. *at is, the process of verifying
the ad billing fee is transparent between MS, PUB,
and ADE.

5. Proposed BCFDPS

*e BCFDPS is proposed to detect and prevent click fraud,
and it is mainly divided into three phases, as shown in
Figure 2. *e first phase allows U, PUB, and ADE to register
with the IMA and obtain their digital identities and identity
licenses. Meanwhile, IMA stores the hash value of their
identities on the EIB, as shown in steps①–④ (note: the four
steps belong to the existing digital identity infrastructure).
*e second phase permits MS and PUB to work together to
recommend ADE’s ad to U. U clicks the ad that he is in-
terested in and MS records the hash value of the data that it
forwarded in the ABB, as shown in steps ⑤–⑬. *e last
phase lets both PUB and ADE detect and prevent click fraud
independently using the data in the ABB, which is shown in
steps ⑭ and ⑮.

*e detailed process of BCFDPS includes four phases:
initialization, registration, ad publishing, and click fraud
detection and prevention. To elaborate our scheme clearly, the
notations and descriptions of BCFDPS are shown in Table 1.

5.1. Initialization. *e digital identity is the cornerstone of
cyberspace which is provided and validated whenever a user
accesses the network services. *e initialization of this
section is not exclusive to our scheme. In other words, in
order to describe our scheme clearly, the pivotal initiali-
zation of the existing digital identity infrastructure is de-
scribed in this section. Specifically, the IMA performs
initialization to generate its public and private keys, and the
EIB generates the system public parameters PP. In addition,
U, PUB, and ADE generate their public and private keys.

5.1.1. IMA Initialization. IMA initializes its public and
private keys PKIMA/SKIMA. *en, IMA publishes PKIMA in
the system. In addition, IMA defines PUB’s attribute set
including but not limited to these attributes
S � PUB{ }, Hat∪Pants∪ Shoes∪ . . .{ }{ }.

5.1.2. EIB Initialization. *e EIB performs initialization to
generate the system public parameters PP. Firstly, it selects
a large prime p, an elliptic curve Ep(a, b), and a base point P

with order n under the finite field Fp. *en, it chooses
a bilinear group G with generator g and two random
numbers α, β ∈ Zp. Next, it calculates parameters: h � gβ,
f � g1/β, l � e(g, g)α, andMK � (β, gα), and publishes PP �

Ep(a, b), P, G, g, hf, l,MK􏽮 􏽯 in the system so that IMA can
get PP. Lastly, EIB generates a shared private key x denoting
the master key described in Section 3.2, and it uses the
Shamir (t, n) threshold secret sharing algorithm [42] to
distribute the sub-secrets of x to each IMA.

5.1.3. U, PUB, and ADE Initialization. U, PUB, and ADE
also generate their own public and private keys, referred to as
PKU/SKU, PKPUB/SKPUB, PKADE/SKADE.

5.2. Registration. Similar to Section 5.1, the registrations of
U, PUB, and ADE are not exclusive to our scheme. In other
words, in order to describe our scheme clearly, the pivotal
registration of the existing digital identity infrastructure is
described in this section. Specifically, U registers with IMA
to obtain his real identity UID, identity license ILU, and the
signature USig. Similar to U, PUB registers with IMA to get
its digital identity PUBID, identity license ILPUB, and an
attribute set S as an ad publisher. Also, ADE receives his
digital identity ADEID and identity license ILADE from IMA.

5.2.1. U Registration (UR)

STEP UR1. IMA collects U’s biometric data, e.g., finger-
print, digitalizes the fingerprint to obtain the digitized data,
and selects and assembles a set of unique code segments
from the code library according to the data, and at the
same time, the hash value of the code segments is cal-
culated. *e hash value is U’s real identity UID. Note that
if a U is disguised by a machine or has already registered,
the IMAwould not generate an identity for theU. In order
to issue an identity license ILU to U, the IMA gathers
other’s sub-secrets and uses the Shamir (t, n) threshold
secret recovering algorithm [42] to recover the shared
private key x for calculating ILU � UID · h(x) · P andU’s
masked identity MUID � UID · P. *en, IMA sends
EPKU

(UID‖ILU‖USig‖PP) to U’s browser plugin, where
USig is the signature of U from IMA, shown in (6), and PP
refer to the public parameters in EIB. *is process is
shown in step ① in Figure 2.

USig � SigSKIMA
h ILU( 􏼁‖MUID( 􏼁. (6)

STEP UR2. At last, IMA records h(UID) in EIB, which
is used for accountability when a click fraud happens.
*is process is shown in step ④ in Figure 2.

Table 1: Notations and descriptions.

Notation Description
PP Public parameter generated by EIB
UID U’s real digital identity
MUID U’s masked identity
MS *e identity of media site
PUBID *e identity of publisher
ADEID *e identity of advertiser
IDad *e identity of an ad
x *e shared private key of EIB
S *e publisher’s attribute set
USig *e signature of U from IMA
PKe *e public key of entity e

SKe *e private key of entity e

ILe *e identity license of entity e

AuSe *e authentication symbol for entity e

SAe *e secure authentication for entity e

ts, ts1, ts2 *e timestamp
h(·) hash function: 0, 1{ }∗ ⟶ 0, 1{ }n

U‖V Concatenate operation between U and V

Ea(b)/Da(b) Encrypt/decrypt message b with key a

Siga(b) *e signature on message b with key a

M Message generated after U clicks an ad
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5.2.2. PUB Registration (PUBR)

STEP PUBR1. IMA generates PUB’s identity PUBID
and an attribute set S � PUB{ }, Hat∪ Food∪ . . .{ }{ }

according to the business scope of PUB. Hereafter,
similar to STEP UR1, IMA generates PUB’s identity
license ILPUB � PUBID · h(x) · P and sends
EPKPUB

(PUBID‖ILPUB‖S‖PP) to PUB. *is process is
shown in step ② in Figure 2.
STEP PUBR2. At last, IMA records the h(PUBID) in
EIB for supervision when a click fraud appears. *is
process is shown in step ④ in Figure 2.

5.2.3. ADE Registration (ADER)

STEP ADER1. IMA generates ADE’s identity ADEID
and identity license ILADE � ADEID · h(x) · P and
sends EPKADE

(ADEID‖ILADE) to ADE. *is process is
shown in step ③ in Figure 2.
STEP ADER2. At last, IMA records h(ADEID) in EIB
to supervise when a click fraud arises. *is process is
shown in step ④ in Figure 2.

5.3. Ad Publishing. To obtain higher revenue, PUB often
publishes ads to a targetedU throughMS’s ad bidding.*en,
U clicks the ad that he is interested in.

5.3.1. Publisher Publishes an Ad (PPA). *is phase deals
with the process that a browser plugin sends U’s masked
identity in ciphertext to PUB and PUB displays the related
ads to the targeted U, as shown in steps ①–⑥ in Figure 3.

STEP PPA1. ADE sends an ad to PUB for publication.
*en, ADE and PUB reach a consensus on ADE’s ad
and create the ad’s identity IDad, as shown in step① in
Figure 3.
STEP PPA2. U sends his masked identity in ciphertext
(instead of a real identity in the real world) to PUB for
getting the ad that he is interested in, protecting his
privacy. Firstly, U visits MS’s website, and U’s web
browser plugin encrypts the secret USig through the CP-
ABE algorithm to prevent entities other than the col-
lection of PUBs from obtaining U’s identity privacy.
*en, U sends the ciphertext CT to the MS. After that,
the MS directly broadcasts the CT to the PUBs
cooperating with the MS. Here is the specific process.
U uses the public parameters PP and defines an access
tree T according to the attributes of ads that he is
interested in. *e format of T is shown in Figure 4,
where “1/2” means that PUB must satisfy at least one of
the two attributes Hat∪ Shoes{ }. *en, U encrypts the
secret USig to get the ciphertext CT.

CT � T, 􏽥C � USig‖ts1􏼐 􏼑 · l
s
, C � h

s
,∀y ∈ Y:􏼐

Cy � g
py(0)

, Cy
′ � (h(att(y)))

py(0)
􏼑,

(7)

where ts1 is the timestamp, l � e(g, g)α, h ∈ PP, s ∈ Zp

is a random number, py is a polynomial for each node y

in T, and py(0) � s and att(y) are the attributes as-
sociated with the leaf node y.
After U visits MS’s website, U’s browser plugin sends
CT to MS, which is then directly broadcast to different
PUBs by MS. *is process is as in steps ② and ③ in
Figure 3.
STEP PPA3. Next, PUB decrypts 􏽥C in CT to get the
secret USig. Further, PUB gets U’s masked identity
MUID from the USig and decides whether to bid for an
ad according to the MUID, as shown in step ④ in
Figure 3. *e specific process of getting the USig is as
follows.
According to the attribute set S obtained as described in
Section 5.2.2, PUB uses themaster keyMK in the public
parameters PP to generate the decryption key SK
according to

SK � D � g
(α+r)/β

,∀j ∈ S: Dj � g
r

· h(j)
rj , Dj
′ � g

rj􏼐 􏼑,

(8)

where r, rj ∈ Zp are random numbers, j ∈ S is an at-
tribute, and α, β belong to the public parameter PP.
*en, PUB uses (9) to decrypt the leaf nodes of the
access tree T with SK and CT when PUB’s
S � PUB{ }, Hat∪ Food∪ . . .{ }{ } satisfies the attributes
which U requires.

DecryptNode(CT, SK, x) �
e Di, Cx( 􏼁

e Di
′, Cx
′( 􏼁

� e(g, g)
rpx(0)

,

(9)

where x is a leaf node in T. After PUB obtains all leaf
nodes, it uses the Lagrangian interpolation formula to
obtain the parent node, and this process is recursive
until T’s root node is obtained. T’s root node is
A � e(g, g)r·pR(0).
Next, PUB can get the secret USig by

􏽥C

(e(C, D)/A)
�

􏽥C

e h
s
, g

(α+r)/β
􏼐 􏼑/e(g, g)

rs
􏼐 􏼑

� USig‖ts1􏼐 􏼑.

(10)

At last, PUB decrypts USig with IMA’s public key PKIMA
and obtains the masked identity MUID of U. PUB
searches its local database to get the portrait of MUID and
decides whether to bid for the ad. If a PUB joins in the
bidding process, it sends the IDa d and the price fee to the
MS.*is bidding process will be executed by many PUBs.
STEP PPA4. MS displays the ad of the bid winner and
sends the PUBID, ADEID, PKPUB, PKADE, and ad frame
to the U, as shown in step ⑤ in Figure 3.
STEP PPA5. MS periodically (e.g., once a day) records
the results of the ad bidding in the ABB sorted by
periods and IDa d s. *e format of the results is
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IDad‖EPKPUB
(fee)‖MS‖PUBID{ }, where “fee” is the

price that PUB should pay to MS after an ad is clicked
once by U, as shown in step ⑥ in Figure 3.

5.3.2. U Clicks the Ad (UCA). U clicks the ad that he is
interested in after MS displays it on the website. �is section
is shown in steps ⑦–⑨ in Figure 3.

STEP UCA1. U’s browser plugin gets PUBID, ADEID,
PKPUB, and PKADE from the ad frame and calculates
AuSPUB � e(ILU · PUBID, P)

h(ILU) and
AuSADE � e(ILU · ADEID, P)

h(ILU). It then embeds the
timestamp ts2 to calculate SAPUB � EPKPUB

(AuSPUB‖ts2)
and SAADE � EPKADE

(AuSADE‖ts2). Next, the plugin
sends the click messageM about the ad toMS.�e click
message is shown as in equation 6 and as in step ⑦ in
Figure 3.

M � EPKPUB
USig‖ts2( )‖SAPUB‖SAADE. (11)

STEP UCA2. MS forwards IDa d‖M‖MS{ } to the PUB
who won the bidding and stores
IDa d‖M‖MS‖PUBID{ } in its local database, as shown
in step ⑧ in Figure 3.
STEP UCA3. Finally, the data
h(IDa d‖M‖MS‖PUBID){ } are classi�ed by periods and
IDa d s and periodically (e.g., once a day) recorded in
the ABB by the MS, as shown in step ⑨ in Figure 3.

5.4. Click Fraud Detection and Prevention. �is phase ach-
ieves click fraud detection and prevention between entities
in an advertising system based on ABB.

5.4.1. PUB Detects and Prevents Click Fraud (PUBD). To
prevent MS from forging the data and ensure the trans-
parency of this ad click analysis process, PUB can detect and
prevent fraudulent click, and it is shown in Figure 5.

STEP PUBD1. PUB uses its private key SKPUB to de-
crypt M from MS to obtain the secret USig and
AuSPUB‖ts2{ } from SAPUB. �e PUB veri�es the
timeliness of the ts2 to prevent the replay attacks, as
shown in step ① in Figure 5.
STEP PUBD2. PUB uses IMA’s public key PKIMA to
restore h(ILU) and MUID from the USig and then
calculates AuSPUB by (12), as shown in step ② in
Figure 5:

e ILPUB,MUID( )h ILU( ) � e ILPUB,UID · P( )h ILU( ) � e ILPUB, P( )UID·h ILU( )

� e ILU · PUBID, P( )h ILU( )

� AuSPUB′ .

(12)

U
T,Usig,UID,MUID,ILU

ABBMS PUB ADE

CT

M

③ CT

① IDad

{IDad || fee}

⑧ {IDad || M || MS}

⑨ {h (IDad || M || MS || PUBID)}

⑥ {IDad || EPKPUB
 ( fee) || MS || PUBID}

⑤ {PUBID || ADEID ||
PK

PUB
 || PKADE || ad frame}

⑦ Calculate a
M = EPKPUB

 (USig ||ts2) || SAPUB || SAADE

④ Decrypt the C to get USig, and
obtain the MUID = EPKIMA

 (USig)

~

CT = T, C = USig || ts1 ∙ ls, C = hs
② Generate a~

Figure 3: Process of publishing an ad to a targeted consumer.

2/2

1/1 1/2

Hat ShoesPUB

Figure 4: An example of U’s access tree T.
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STEP PUBD3. If (12) holds, PUB counts the number of
di�erent MUID s in AuSPUB s, denoted as n, which is
the number of valid advertising clicks in a certain
period (e.g., one day). �is means that in this period,
PUB only pays for n clicks to MS. In this way, the PUB
can detect all the fraudulent clicks in the message
forwarded byMS. Also, the PUB pays nothing toMS for
the repeated MUIDs, so the click fraud by a malicious
MS can be prevented. Simultaneously, PUB records U’s
access behavior information like IDa d‖M‖{
MUID‖USig‖ SAPUB‖ts2‖SAADE‖MS‖fee‖behaviour}
locally, as shown in step ③ in Figure 5.
STEP PUBD4. Finally, PUB periodically (e.g., once
a day) records the result n, IDa d, h(MUID)n,{
h(SAPUB)n, h(SAADE)n} in ABB sorted by periods and
IDa ds, as shown in step in ④ in Figure 5.

5.4.2. ADE Detects and Prevents Click Fraud (ADED).
Similarly, ADE also veri�es the results recorded by PUB in
the ABB to detect and prevent click fraud, and this section is
shown in Figure 6.

STEP ADED1. ADE communicates with PUB to obtain
the original access information IDa d‖USig‖{
MS‖fee‖SAADE} of U in the PUB local database. ADE
then uses PKPUB to encrypt the fee and compares it with
the data on the ABB to prevent PUB’s cheating, as
shown in step ① in Figure 6.
STEP ADED2. ADE decrypts SAADE with private key
SKADE, obtains AuSADE‖ts2{ }, and veri�es the timeli-
ness of ts2 to prevent replay attacks, as shown in step②
in Figure 6.
STEP ADED3. Similar to STEP PUBD2, ADE also re-
stores h(ILU) and MUID fromUSig, and then calculates
AuSADE′ by

e ILADE,MUID( )h ILU( ) � e ILADE,UID · P( )h ILU( )

� e ILADE, P( )UID·h ILU( )

� e ILU · ADEID, P( )h ILU( )

� AuSADE′ .

(13)

If (13) holds, ADE also counts the number n′ of dif-
ferent MUIDs in AuSADEs in a certain period (e.g., one
day), as shown in step ③ in Figure 6.

STEP ADED4. ADE reads the data n recorded in ABB
by PUB and compares n′ with the n. If the equation
n′ � n holds, ADE pays fee to PUB according to the n,
as shown in step④ in Figure 6.�erefore, the ADE can
detect all the fraudulent clicks in the original access
information from PUB. Also, the ADE pays nothing to
PUB for the repeatedMUIDs, so the fraudulent click by
a malicious PUB can be prevented.

5.4.3. MS Detects and Prevents Click Fraud (MSD). MS
obtains all the AuSPUB‖ts2{ } from PUB and uses PKPUB to
encrypt them successively to get the encrypted result
SAPUB′ � EPKPUB

(AuSPUB‖ts2). �en, MS compares the SAPUB′
with the SAPUB inM fromMS’s local database one by one; if
it holds, the data from the PUB are valid. Finally, MS counts
the number n″ of the di�erent AuSPUB and veri�es if n″ � n
holds. If it holds, MS charges PUB fees according to the n″.
As a result, the MS can detect all the fraudulent clicks in the
data from PUB. Also, MS cannot charge more PUB for the
repeated AuSPUBs, so the fraudulent click by a malicious MS
can be prevented.

6. Security Analysis

In this section, we �rst analyze the security of our scheme
from three levels: the processing level, the data level, and the
infrastructure level, which can be called PDI model-based
security [49–52]. �en, we give the informal analysis of
security under the security assumptions in Section 4.2.
Lastly, we demonstrate that the BCFDPS scheme is provably
secure.

6.1. PDI Model-Based Security Analysis. As the one of the
latest and most mature blockchain security analysis
frameworks for Industry 4.0, the PDI model [49] conducts
a comprehensive and detailed analysis of security issues. In
the PDI model, the blockchain security is divided into three
levels, which are the process level, the data level, and the
infrastructure level [51]. Similarly, we also analyze the se-
curity of our blockchain-based click fraud detection and
prevention scheme according to the three aspects.

6.1.1. ­e Process Security

(1) O�-blockchain data processing security: a large
number of data processing operations are run o�-

ABBPUB
M

count the number n of different MUIDs. 

① Restore USig , AuSPUB || ts2, and verify ts2.
② Restore h (ILU), MUID, and calculate AuS′PUB.
③ Verify AuS′PUB? = AuSPUB, if it holds,

④ {n, IDad , h (MUID), n , h (SAPUB) n , h (SAADE) n}

Figure 5: Process of PUB verifying the e�ective clicks.
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blockchain in our scheme, since the data statistical
analysis ability of the existing blockchain applica-
tions is weak [50]. In our scheme, a U’s masked
identity MUID and his ad click message M are
encrypted (denoted as mm) and sent to the MS by
U’s browser plugin locally.�en, mm is forwarded to
a PUB by a MS o�-blockchain. Next, the MS, PUB,
and ADE can independently count the real click
number from mm with ECC and bilinear pairing
algorithms. Also, since mm is ciphertext and being
processed o�-blockchain, it is di�cult for an attacker
to gather, crack, and modify it. �at is, the data
processing security o�-blockchain is guaranteed in
these entities.

(2) Data processing security in the blockchain: to im-
plement our scheme in a real-time online advertising
scenario, the data processing in the blockchain of our
scheme is to periodically read and write content in
the access behavior blockchain (ABB) through smart
contracts. �e ABB is a consortium blockchain that
only allows authorized MSs and PUBs to write data,
which avoids the unauthorized access. Also, the
consensus protocol in ABB guarantees the correct-
ness and consistency of the data when it is written to
the ABB, largely eliminating exceptions in data
processing and ensuring the security of data pro-
cessing in the blockchain.

6.1.2. ­e Data Security

(1) Data tamper-proof: in our scheme, all original
business data are stored in the local servers of MS
and PUB, and the aggregated results of the original
data are regularly recorded in the consortium
blockchain as the form of hash values. In this way,
even if attackers obtain the data in the blockchain,
they cannot get the original data in the local servers
of MS and PUB, so they cannot view or tamper with
the original data. On the other hand, blockchain can
ensure data consistency in distributed ledgers.
�erefore, business data security is achieved whether
the data are in the blockchain or not.

(2) Consumer’s identity privacy: similar to the digital
twin in [53–55], a U in our scheme can only obtain
his unique digital identity to visit MS’s websites and
click on PUB’s ads. Also, a masked identity MUID,

CP-ABE algorithm, and ECC algorithm are utilized
by the U to hide his identity, while preserving the ad
precision targeting. In addition, nobody except the
PUB can mark the U, and no one can reveal U’s real
digital identity UID. �at is, our scheme protects the
privacy of consumer’s identity.

6.1.3. ­e Infrastructure Security

(1) System structure security: the two-level mutual ver-
i�cation between MS, PUB, and ADE maintains the
stability of our system structure. For one thing, PUB
counts the real and e�ective clicks from a large
number of users’ ad click messages Ms which are
forwarded by the MS. Once the Ms are tampered
with or forged by the MS, they cannot pass the
veri�cation of PUB. At the same time, theMS can use
the ECC algorithm to count the real clicks from the
data stored in local database to prevent PUB from
forging the amount of the clicks. For the other thing,
since the raw data are generated by U, the ADE can
�nd anomalies once the PUB adds entries in the raw
data.�us, our scheme has system structure security.

(2) Cryptographic facilities security: we use the standard
cryptographic facilities to build our system. Specif-
ically, CP-ABE algorithm, bilinear pairing algorithm,
and ECC algorithm are used by a U to protect his
identity. �e bilinear pairing algorithm and ECC
algorithm are adopted by a PUB and an ADE to
detect the fraudulent click, while a MS utilizes the
ECC algorithm to detect a click fraud.�e security of
our scheme relies on these standard cryptographic
facilities and we assume that the standard crypto-
graphic facilities used in our scheme are secure and
unbreakable.

6.2. Informal Analysis of Security. In this section, we analyze
the security of our scheme under the security assumptions in
Section 4.2 in an informal way.

6.2.1. Prevention of a False MUID. In Section 5.2.1, a ma-
chine cannot obtain a validMUID since it has no way to pass
the IMA biometric authentication. Even if it forges a false
MUID, it still cannot generate a valid
USig � SigSKIMA

(h(ILU)‖MUID) without IMA’s private key

ABBADE

④ n recorded by PUB

Get {IDad  || USig || MS || fee || SAADE}, encrypt the fee and compare with
EPKPUB

 (fee) in ABB network, if it is correct, the fee is valid.

Restore AuSADE || ts2, and verifies ts2.
Calculate AuS′ADE and verify AuS′ADE? = AuSADE, if it holds, count the number n′
of different MUIDs.

Verify whether n′ ? = n, if it holds, the click fraud do not happen.

③

②

①

Figure 6: Process of ADE verifying the e�ective clicks.
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SKIMA. *at is, the click message, containing an invalid
MUID, generated by the machine in phase 5.3.2 will be
discarded. *erefore, in our scheme, the number of false
MUIDs is not included in the number of valid clicks.

6.2.2. Transparency of Clicks between Entities. PUB decrypts
the SAPUB in M to get AuSPUB using SKPUB, then verifies the
AuSPUB, and counts the number n of different AuSPUB.
Similarly, ADE restores the AuSADE in SAADE from PUB’s
local database using SKADE to verify the authenticity of
AuSADE, and then ADE counts the number n′ of different
AuSADE. Although SAADE of M comes from PUB, AuSADE in
SAADE is encrypted by PKADE, and only SKADE can decrypt it.
*erefore, PUB cannot tamper with SAADE; furthermore,
ADE ensures the validity of n′. MS encrypts the original data
AuSPUB‖ts2􏼈 􏼉 from PUB using PKPUB and compares the
encrypted result SAPUB′ � EPKPUB

(AuSPUB‖ts2) with SAPUB in
M from MS’s local database to verify whether the PUB is
honest. In this way, PUB, ADE, and MS can verify the
number of clicks about the same ad in an independent way.

6.2.3. U’s Conditional Unlinkability. First of all, U sends his
masked identity in ciphertext CT toMS andMS broadcasts it
to PUBs in phase 5.3.1.*en, only PUBs can decryptU’s USig
from CT since CT is calculated using the CP-ABE algorithm
and only attributes S owned by PUBs can generate a de-
cryption key SK. Secondly, U sends his click message M to
MS and MS forwards it to PUB in phase 5.3.2. Next, only
PUB can reveal U’s masked identity MUID from M using its
private key for advertising precision marketing. In the entire
communication of U, neither the attacker in the channel nor
the MS can directly link U’s masked identity MUID because
both CT and M are encrypted by CP-ABE algorithm or
asymmetric cryptographic algorithm and only PUBs can
decrypt them. However, even PUB cannot link U’s masked
identity MUID to U’s real identity UID in ABB since PUB
does not have the right to write and read in EIB. *ence, the
scheme achieves U’s conditional unlinkability.

6.2.4. Data Security and Integrity. Firstly, in this scheme, all
the commercial contract data, e.g., fee, are encrypted and
only the data owner PUB and MS can decrypt these ci-
phertexts. In addition, all the commercial contract data and
the hash value of click result are recorded in the ABB (a
consortium blockchain) which is shown in steps⑩,⑬, and,
⑭ and any adversary cannot tamper with these data in the
consortium blockchain.

6.2.5. Resistance to Replay Attacks. In phases 5.3.1 and 5.3.2,
the timestamp ts1 and ts2 are included in the message CT
and M, and PUB first checks their timeliness to avoid replay
attacks. Further, in phases 5.4.2 and 5.4.3, ADE and MS can
avoid replay attacks by the timestamp ts2. Consequently, our
scheme is resistant to replay attacks in a great probability.

6.2.6. Resistance to Forgery. For one thing, in phase 5.3.1,
MS storesU’s CT while it has no ability to constructU’s click
message M in phase 5.3.2 without a ILU. For another thing,
in phase 5.4.2, PUB records SAPUB and SAADE, but it cannot
forge a SAADE because it also does not have a ILU. In other
words, the click message M containing MUID can only be
generated by U. *at is, the BCFDPS can resist forgery
attacks.

6.3. Provable Security. *e proposed scheme is based on
bilinear pairing cryptosystem on elliptic curves (denoted as
BPCEC), ciphertext-policy attribute-based encryption
(denoted as CP-ABE), and elliptic curve cryptography
(denoted as ECC). According to the security characteristics
of each module, we show that our scheme meets click fraud
detection and prevention and U’s conditional unlinkability.

6.3.1. 2eorem 1. If the BPCEC, CP-ABE, and ECC algo-
rithms satisfy the basic security properties, then the scheme
in this paper can detect and prevent click fraud.

Proof. Define ABPCEC as an adversary who attacks the se-
curity of BPCEC algorithm, ACP−ABE as an adversary
attacking the security of CP-ABE algorithm, and AECC as an
opponent attacking the security of ECC algorithm. As-
suming ACF clicks fraud successfully, a polynomial time
algorithm Aθ ∈ (ABPCEC, ACP−ABE, AECC) is defined, which
has the ability to attack the algorithms of BPCEC, CP-ABE,
and ECC.*rough the query of ACF and the Aθ’s interaction
in the click fraud game, Aθ is optimized repeatedly to
successfully attack the BPCEC, CP-ABE, and ECC algo-
rithms. *at is, if the adversary ACF clicks fraud successfully
in the scheme, it meansAθ successfully attacks the security of
algorithms of BPCEC, CP-ABE, and ECC with a certain
probability.

According to the steps defined above, here are the in-
teractions between algorithm Aθ and the adversary ACF:

STEP 1. Registration phase: through the identity gen-
erated in U’s registration phase, algorithm Aθ obtains
U’s digital identity and receives U’s identity UID, U’s
masked identity MUID, U’s identity license ILU, and
IMA’s signature USig. At last, Aθ sends
UID,MUID, ILU, USig􏽮 􏽯 to ACF.
STEP 2. Inquiry phase: the adversary ACF can query the
algorithm Aθ for polynomial time:

(1) Generate the ciphertext CT: ACF visits MS’s website,
generates the ciphertext CT by the CP-ABE algo-
rithm, and sends CT to MS.

(2) Generate the click message M: MACF generates the
click message M which contains a b ∈ 0, 1{ } ran-
domly selected by ACF through BPCEC and ECC
algorithm and ACF then clicks PUB’s ad to send M.

STEP 3. Verification phase: PUB verifies U’s click
message M and outputs b′ using the ECC and BPCEC
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algorithms. If b′ � b exists, it indicates that the ad-
versary ACF successfully carried out the click fraud
attack. *e success probability of the adversary ACF is

AdvACF
(k) � Pr ExpACF

(k) � 1􏽨 􏽩

� Pr ACF(verify) � 1|b � 1􏼂 􏼃 · Pr[b � 1] + Pr ACF(verify) � 0|b � 0􏼂 􏼃 · Pr[b � 0]

�
1
2

Pr

ABPCEC(verify) � 1,

ACP−ABE(verify) � 1,

AECC(verify) � 1,

|b � 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
1
2

Pr

ABPCEC(verify) � 0,

ACP−ABE(verify) � 0,

AECC(verify) � 0,

|b � 0
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<
1
2

Pr ABPCEC(verify) � 1|b � 1􏼂 􏼃 + Pr ACP−ABE(verify) � 1|b � 1􏼂 􏼃 + Pr AECC(verify) � 1|b � 1􏼂 􏼃( 􏼁

+
1
2

Pr ABPCEC(verify) � 0|b � 0􏼂 􏼃 + Pr ACP−ABE(verify) � 0|b � 0􏼂 􏼃 + Pr AECC(verify) � 0|b � 0􏼂 􏼃( 􏼁

� Pr ExpABPCEC
(k) � 1􏽨 􏽩 + Pr ExpACP−ABE

(k) � 1􏽨 􏽩 + Pr ExpAECC
(k) � 1􏽨 􏽩

� AdvABPCEC
(k) + AdvACP−ABE

(k) + AdvAECC
(k).

(14)

If an attacker ABPCEC successfully attacks the BPCEC al-
gorithm, an attacker ACP−ABE successfully attacks the CP-ABE
algorithm, and an attacker AECC can successfully attack ECC
algorithm, ACF can carry out the click fraud attack successfully.
However, the probability of ABPCEC, ACP−ABE, and AECC suc-
cessfully attacking the BPCEC, CP-ABE, and ECC algorithms is
almost 1/n, respectively; then, ACF wins in the click fraud attack
game of BCFDPS scheme with a probability of 3/n. But,
according to the assumptions that BPCEC, CP-ABE, and ECC
algorithms satisfy the basic security properties, it is concluded
that the probability ofACF successfully attacking can be ignored,
so the scheme can detect and prevent click fraud. □

6.3.2. 2eorem 2. If all the crypto-algorithms such as
BPCEC, CP-ABE, and ECC satisfy the basic security

features, then U’s conditional unlinkability can be achieved
in the BCFDPS.

Proof. Define ABPCEC as an adversary who attacks the
linkability of MUID of BPCEC algorithm, ACP−ABE as an
adversary attacking the linkability of USig of CP-ABE al-
gorithm, and AECC as an opponent attacking the linkability
of USig of ECC algorithm. Assuming ACP (except PUB) links
U’s masked identity MUID successfully, a polynomial time
algorithm Aτ ∈ (ABPCEC, ACP−ABE, AECC) is defined, which
has the ability to attack the algorithms of BPCEC, CP-ABE,
and ECC. During the communication process of U, MS, and
PUB, two messages CT and M are encrypted by the algo-
rithms BPCEC, CP-ABE, and ECC. *erefore, for the ad-
versary ACP, the probability of successfully linking many
different messages to the same U is

AdvACP
(k) � Pr ExpACP

(k) � 1􏽨 􏽩

� Pr[Ver(CT) � 1] · Pr Ver USig􏼐 􏼑 � 1􏽨 􏽩 · Pr Ver AuSPUB( 􏼁 � 1􏼂 􏼃

� Pr ExpACP−ABE
(k) � 1􏽨 􏽩 · Pr ExpAECC

(k) � 1􏽨 􏽩 · Pr ExpABPCEC
(k) � 1􏽨 􏽩

� AdvACP−ABE
(k) · AdvAECC

(k) · AdvABPCEC
(k).

(15)

*erefore, if the attacker ABPCEC successfully attacks the
BPCEC algorithm, the attacker ACP−ABE successfully attacks
the CP-ABE algorithm, and the attacker AECC successfully

attacks the ECC algorithm, then ACP wins in the conditional
unlinkability simulation attack game. However, according to
the assumptions about these security features, the
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probability of ACP successfully attacking can be ignored. As
a result, the scheme accomplishes U’s conditional
unlinkability. □

7. Implementation and Evaluation

We evaluate our scheme in terms of computation, com-
munication, storage, and Ethereum gas cost based on JPBC
library [56] and Ethereum.

In the proposed scheme, four phases of initialization,
registration, ad publishing, and click fraud detection and
prevention are involved. Because the first two phases happen
rarely, they are not implemented in this section and we
mainly focus on the phases of ad publishing and click fraud
detection and prevention in which an ad is published and the
click fraud is detected and prevented.

7.1. Computation Cost

7.1.1. Evaluation of Our Scheme. We mainly focus on the
phases of the ad publishing and click fraud detection and
prevention in this section. We execute evaluation tests to get
the time cost of meta-operations and the evaluation test is
based on a PC (Intel Core i5-9400F CPU @ 2.90GHz, 16GB
RAM @ 2667MHz and Windows 10× 64). We use JDK 1.8,
JPBC library [56], to support efficient bilinear pairing
operations.

To achieve persuasive expression of computation com-
parison, the symbols and parameters are introduced: TC Enc

is the encryption algorithm in CP-ABE scheme, TC KG
denotes the key generation algorithm in CP-ABE scheme,
TC Dec means the decryption algorithm in CP-ABE scheme,
TE Enc expresses the encryption algorithm in ECC, TE Dec
signifies the decryption algorithm in ECC, and Tbp repre-
sents the bilinear pairing operation. *eir time cost is as
follows: TC Enc � 146.41 ms, TC KG � 118.80 ms, TC De c �

33.12 ms, TE Enc � 3.17 ms, TE Dec � 0.36 ms, and Tbp �

6.79 ms. In addition, the time cost of hash function and
concatenate operation is small, and we do not take this into
account in computation cost. *e detailed computation
costs for each phase are illustrated in Table 2.

In phase 5.3.1, U is required to perform one encryption
algorithm in CP-ABE scheme and PUB needs to execute one
key generation algorithm in CP-ABE scheme, one de-
cryption algorithm in CP-ABE scheme, and one decryption
algorithm in ECC, that is, the running time is TC Enc +

TC KG + TC Dec + TE Dec � 298.69 ms. According to Ma
et al. [57], the response speed of publishing an ad in our
scheme is in the acceptable threshold (150 ∼ 600ms) and is
lower than the one in [6] which closes to 400ms. In phase
5.3.2, U computes three encryption algorithms in ECC and
two bilinear pairing operations. *erefore, the execution
time to generate a click message is
3TE Enc + 2Tbp � 23.09ms, and it has no effect on the user
experience. Further, in phase 5.4.1, PUB is required to run
three decryption algorithms in ECC and one bilinear pairing
operation, that is 3TE Dec + Tbp � 7.87ms. In summary, the
computation cost from publishing an ad for U (phase 5.3.1)

to verifying the effective clicks by PUB (phase 5.4.1) is
298.69 + 23.09 + 7.87 � 329.65ms, where the time cost of
one click fraud detection and prevention is only 7.87ms.
After PUB counts the effective clicks, ADE and MS will also
verify the clicks to ensure their profit. Similar to PUB, ADE
performs three decryption algorithms in ECC and one bi-
linear pairing operation, that is, 3TE Dec + Tbp � 7.87ms.
For the MS, it executes one encryption algorithm in ECC to
detect a click fraud, which is TE Enc � 3.17ms. From Table 2,
it can be seen that the CP-ABE algorithm increases the run
time in phase 5.3.1, but it protects U’s privacy from MS and
the sniffer of a channel. In addition, it should be noted that
the computation overhead of PUB in phases 5.3.1 and 5.4.1
can be improved at the publisher with powerful computing
clusters. Moreover, distributed and parallel optimization
techniques for verifiable computations can also be adopted
to further enhance publisher’s performance in publishing
the ad to a U who is the potential consumer of the ad.

On the other hand, blockchain is introduced in our
scheme; in order to demonstrate the practical performance
of our blockchain-based scheme, we evaluate the execution
cost of our smart contract based on a public Ethereum
testnet (Rinkeby). We used Chrome v89.0 explorer with the
plugin MetaMask and Remix which is a browser-based IDE
to connect the contract between Ethereum and the program
simulated. Rinkeby testnet was started by the Ethereum team
in April 2017 and it uses Clique PoA (Proof of Authority)
consensus protocol. Importantly, it is immune to spam
attacks, as Ether supply is controlled by several trusted
parties and only they can write transactions in the block-
chain, which makes it like a consortium blockchain; thence,
the waiting time for transaction confirmation is relatively
short to be ignored.

We deploy smart contracts on Rinkeby to record the
transaction data and count the gas cost of smart contracts on
deployment and recall. *e gas cost of our scheme is shown
in Table 2. In our scheme, a smart contract is only deployed
once in phase 5.3.1 and the gas cost of deploying the contract
is 89, 003. Additionally, in phases 5.3.1, 5.3.2, and 5.4.1, the
cost of recalling the contract to write 256, 32, and 128 bytes
of analysis result on blockchain is 27,054, 23,470, and 25,006
gas, respectively. All in all, judging from the evaluation
results, our scheme is feasible in practice.

7.1.2. Comparison of the Computation Cost in Click Fraud
Detection and Prevention Process. As far as we know, the
click fraud detection and prevention schemes that use
blockchain are hardly found. *erefore, we choose the click
fraud detection schemes [8, 16, 18, 29, 31] which do not use
blockchain and compare the computation costs with them in
publisher’s click fraud detection and prevention process
(phase 5.4.1), and the comparison result is shown in Table 3.

It can be seen from Table 3 that Almahmoud et al. [8]
utilized SVM, KNN, etc. to detect a fraudulent click by
machines, and the time taken to build the model of the
generated 500 instances is 10ms, while the time taken to
classify a single instance whether legitimate or illegitimate is
50ms with a precision of 95.10%. *e scheme in [16] uses
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recurrent neural network to train a model with more than
1.6 million sessions so that the typical training duration is 12
hours (roughly 6–8 epochs), but the precision is 33.80%.*e
dataset of the scheme in [18] contains 393,708 deliveries
(243,650 ok deliveries and 150,058 fraud deliveries), and the
time required to train classifier with 10 features is about 800
seconds with a precision rate of 96.29%. Dong et al. [29]
utilized 12,000 ad-supported apps, and an average of 216.7
seconds was spent to construct the UI transition graphs and
an average of 400ms was spent to detect the ad frauds. *e
dataset in [31] is from a university campus network between
June 2015 and November 2017 with total of 217,334,190
unique clicks. After training, the precision is 89.34%. Table 3
shows that the preparation times of schemes in [16, 18, 29]
are longer than ours because their schemes are based on
machine learning and statistical analysis, and they need to
spendmore time training machine models and analyzing the
pattern of the click traffic, while the preparation time is not
included in our scheme.*e verification time of a click fraud
in the schemes in [16, 18, 31] is not explained, but in the
scheme in [29], it is 400ms, which is obviously higher than
ours. In summary, our scheme is the best one for publishers
to detect and prevent a click fraud.

7.2. Communication and Storage Cost

7.2.1. Evaluation of Our Scheme. Our scheme is embedded
in the advertising system and many entities in the system
need to send data to publish an ad and store data as evi-
dences to pay for fees. To evaluate the feasibility of our
scheme in practice, we simulate the scheme in terms of ad

publishing and click fraud detection and prevention, and the
results of communication and storage cost are shown in
Table 4. Specifically, we assume that the output size of the
general hash function (h) is 256 bits, the size of an elements
in the elliptic curve is 256 bits, the size of an element in
a bilinear group is 1,024 bits, the length of identities is
256 bits, and the timestamp size is 112 bits.

In phase 5.3.1, an ADE first sends an ad’s identity IDa d

to a PUB, then a U transmits a ciphertext CT containing his
own MUID to a MS, the MS further forwards the ciphertext
CT to the PUB, and after the PUB decrypts and obtains the
MUID, the PUB sends the IDa d and bidding fee to the MS;
next, the MS displays the a d frame for the U. *e com-
munication cost of U, MS, PUB, and ADE is CT � 1, 508,
CT + a d frame � 2, 508, IDa d + fee � 33, and IDa d � 32
bytes. Also, U stores 259-byte parameters
T, USig,MUID, ILU􏽮 􏽯 to compute ad click messages M faster.
To make it easier to publish the ad, the MS stores the
IDa d, fee,PUBID􏼈 􏼉 that are 65 bytes, the PUB reserves
CT,MUID, IDa d, fee,MS􏼈 􏼉, which are 1, 637 bytes, and the
ADE keeps his 32 bytes IDa d􏼈 􏼉. Similarly, in phase 5.3.2, the
contents of the communication of U, MS, PUB and ADE are
M � 484 bytes, IDa d + M + MS � 548 bytes, 0, and 0, re-
spectively. *e storage cost of them is 0, M{ } � 484 bytes,
M{ } � 484 bytes, and 0 separately.*e click fraud is detected
and prevented by the MS, PUB, and ADE in an independent
way in phases 5.4.1, 5.4.2, and 5.4.3, and the processed results
are also stored. Specifically, the PUB writes a total of n +

IDa d + Info + ts � 143 bytes of data in the ABB and it
consumes 175 bytes to store n, IDa d,MS, Info, ts􏼈 􏼉. *e ADE
receives SAADE + ts + USig � 255 bytes to verify the click
messages, and the ADE stores n, IDa d, PUBID, ts􏼈 􏼉 � 79

Table 2: Computation cost of our scheme in ad publishing and click fraud detection and prevention.

Phases
Time (ms) Gas on contracts

U MS PUB ADE Total Deploy Call Total
5.3.1:
PPA TC Enc� 146.41 0 TC KG + TC Dec + TE Dec� 152.28 0 298.69 89,003 27,054 116,057

5.3.2:
UCA 3TE Enc + 2Tbp� 23.09 0 0 0 23.09 0 23,470 23,470

5.4.1:
PUBD 0 0 3TE De c + Tbp� 7.87 0 7.87 0 25,006 25,006

5.4.2:
ADED 0 0 0 3TE De c + Tbp� 7.87 7.87 0 0 0

5.4.3:
MSD 0 TE Enc� 3.17 0 0 3.17 0 0 0

Table 3: Comparison of computation cost in click fraud detection and prevention.

Schemes Methods Precision (%) Preparation time Verification time (ms)
[8] Machine learning (SVM, KNN, etc.) 95.10 10ms 50
[16] Machine learning (RNN) 33.80 12 h (roughly 6–8 epochs) —
[18] Machine learning (bagging and boosting) 96.29 ≈ 800 s —
[29] Statistical analysis (UI transition graphs) ≈ 93 216.7 s 400
[31] Statistical analysis (traffic matrix analysis) 89.34 — —
Ours Blockchain (identity authentication) 100 0 7.87
Method refers to the algorithms or ideas used in these schemes. Precision indicates the credibility of a click traffic detection result. Preparation time denotes
the time cost to train a model or analyze a pattern of a click fraud. Verification time describes the time cost to detect a click fraud using the model or pattern.
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bytes of data. Moreover, AUSPUB + ts � 142 bytes of message
are obtained by the MS to detect the click fraud, and it stores
n, IDa d, PUBID,AUSPUB, ts􏼈 􏼉 � 207 bytes of result.

For the data presented in Table 4, the communication
and storage cost in our scheme is mainly consumed in phases
5.3.1 and 5.3.2. A total of about 8, 000 bytes are used, which is
negligible in today’s common online advertising systems.

7.2.2. Comparison of the Communication Cost in Publishing
and Clicking an Ad. We did our best to search for current
blockchain-based online advertising click fraud detection
and prevention schemes but only found two blockchain-
based online advertising schemes [5, 6] which do not realize
the detection and prevention of click fraud. Additionally,
Ding et al. [6] were mainly concerned about the throughput
of the blockchain transactions, and they did not give details
of sending the advertising messages. *erefore, from the
perspective of scheme similarity, we only make a compari-
son in the processes of “Publisher publishes an ad (phase
5.3.1)” and “U clicks the ad (phase 5.3.2)” with a vehicular
local advertising system of Liu et al. [5]. Table 5 visually
describes the communication cost in the processes of
publishing an ad and clicking an ad.

In the scheme of Liu et al. [5], a PUB directly sends an
ad to a U, and the U then clicks on the ad. ADE and MS are
not included in the process of publishing and clicking on
the ad, so the cost of ADE and MS is 0. To obtain an ad in
the scheme of Liu et al. [5], a U needs to send his local
position of 2 × 8 � 16 bytes, five attributes of 5 × 10 � 50
bytes, and a number of 1 byte to a PUB, in which the
communication of a U is 16 + 50 + 1 � 67 bytes. Also, the
PUB returns two positions of 2 × 8 � 16 bytes and forty
attributes of 40 × 10 � 400 bytes to the U, in which the
communication of a PUB is 2 × 16 + 400 � 432 bytes.
However, in their scheme, the click fraud still exists since
they did not verify the authenticity of the click. Also, the
privacy of U’s locations and interests is leaked to the sniffer
in the channel because the communication data are in
plaintext. In our scheme, we are able to detect and prevent
click fraud while protecting the identity privacy of the
U. Specifically, an ADE first sends an ad IDa d to a PUB, a U
sends a ciphertext CT to the MS, and the MS forwards the
CT to the PUB for getting an ad. *en, the PUB sends
a IDa d and a price fee to the MS, and the MS displays the
a d to the U. Next, the U clicks on an ad and sends a click
message M to the MS, and the M is forwarded to the PUB.
In these steps, the U’s communication cost includes a CT
and a M, which is 1, 508 + 484 � 1, 992 bytes, the

communication cost of the MS contains a CT, an a d frame,
a IDa d, an identity MS, and a M, which is 1, 508 + 1, 000 +

32 + 32 + 484 � 3, 056 bytes, the PUB’s communication
cost consists of a IDa d and a fee, which is 32 + 1 � 33 bytes,
and the ADE only sends 32 bytes of IDa d. *e commu-
nication cost of ours is higher than that of Liu et al. [5] since
we add some additional authenticity information in the
click message to detect and prevent click fraud. Moreover,
the communication data are encrypted by the CP-ABE
algorithm to protect U’s privacy from the transmission
medium.

When we place our scheme and Liu et al.’s scheme [5] with
the same level of U’s privacy protection and without regarding
to click fraud detection and prevention, the ad publishing steps
in our scheme can be modified as follows: a U needs to send
UID to theMS, then theMS forwardsUID to the PUB, next, the
PUB sends IDa d and fee to theMS, and finally, theMS displays
IDa d for the U. As a result, during these steps, the total
communication content within the system is
UID,UID, IDa d, fee, IDa d􏼈 􏼉 � 32 + 32 + 32 + 1 + 32 � 129
bytes, which is significantly lower than 499bytes of Liu et al.’s
scheme. *at is, we add 5, 113 − 129 � 4, 984 bytes of com-
munication overhead for U’s privacy protection and click fraud
detection and prevention. Also, the overhead (4, 984 bytes)
added to our scheme is acceptable in the background that the
mainstream network bandwidth is above 3MB/s (the average
bandwidth of a 4G network is 3MB/s).

7.2.3. Comparison of the Storage Cost in Publishing and
Clicking an Ad. Besides, the comparison of storage cost
when a publisher publishes an ad and a consumer clicks the
ad is also shown in Figure 7.

In the processes of publishing and clicking an ad, Liu et al.’s
scheme [5] does not involve the advertiser and the media site,
that is, the storage cost of them is 0. Also, to request an ad faster,
theU stores his ad query in advance, inwhich the storage cost of
U is 67bytes. After publishing an ad to the U, the PUB records
the result of the ad query, and according to the experimental

Table 4: Communication and storage cost of our scheme in ad publishing and click fraud detection and prevention.

Phases
Communication cost (bytes) Storage cost (bytes)

U MS PUB ADE Total U MS PUB ADE Total
5.3.1: PPA 1, 508 2, 508 33 32 4,081 259 65 1, 637 32 1,993
5.3.2: UCA 484 548 0 0 1,032 0 484 484 0 968
5.4.1: PUBD 0 0 143 0 143 0 0 175 0 175
5.4.2: ADED 0 0 0 255 255 0 0 0 79 79
5.4.3: MSD 0 142 0 0 142 0 207 0 0 207

Table 5: Comparison of communication cost (bytes) in publishing
and clicking an ad.

[5] Ours
Consumer (U) 67 1, 508 + 484 � 1, 992
Media site (MS) 0 2, 508 + 548 � 3, 056
Publisher (PUB) 432 33
Advertiser (ADE) 0 32
Total 499 5, 113
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result, the total length is 12 × 8 × 128 + 3 × 22 × 50 × 128 �

434, 688 bytes. For our scheme, the access tree (T), the sig-
nature from IMA (USig), the masked identity (MUID), and the
identity license (ILU) of U are stored in U’s browser plugin in
advance, which is a total of 60 + 71 + 64 + 64 � 259 bytes. *e
MS is responsible for forwarding messages and retaining the
forwarding results IDa d, fee,PUBID, M􏼈 􏼉, so its storage cost is
32 + 1 + 32 + 484 � 549 bytes. Additionally, the PUB stores
CT,MUID, IDa d, fee,MS, M􏼈 􏼉 forwarded by the MS, which is
a total of 1, 508 + 64 + 32 + 1 + 32 + 484 � 2, 121 bytes. Also,
the ADE only stores 32bytes of ad information IDa d􏼈 􏼉. In
a word, the total storage cost of our scheme is significantly lower
than that of Liu et al. [5] because they need to store all the
similarity results between multiple ads and one consumer.

8. Discussion

Our scheme addresses the challenging problems encoun-
tered in online advertising click fraud detection and pre-
vention, namely, incompletely reliable detection results,
tampering with the number of real clicks by the PUB itself
(the PUB can count the real click number), and leakage of
consumer’s identity privacy. However, it still has some
shortcomings that need to be solved.

First of all, although an entity identity blockchain
(EIB) exists in our scheme, fraudulent adversaries have
not been held accountable in our current scheme. Spe-
cifically, the EIB is designed as a consortium blockchain
that records the digital identity hash of entities which can
serve as evidence to hold malicious entities accountable
when a fraudulent click fraud occurs. To restrain the
malicious entities, an accountability system needs to be
designed in the future.

Secondly, the time spent by MS to detect and prevent
click fraud is slightly higher. In detail, when a MS detects
click fraud, it needs to use the PKPUB to encrypt the

AuSPUB‖ts2􏼈 􏼉 successively and then compare the encrypted
result with the SAPUB in its local database one by one. As
a result, to reach an agreement with PUB on ad billing fees,
the time cost for MS to detect real clicks may be high in
a certain period. *erefore, our future research will focus on
reducing the time cost of MS in its detection process.

Lastly, the problem of consumers’ partial data loss may
still exist. In our scheme, we assume that the parameters
obtained by registration such as the user’s identity license
ILU are secretly stored in his browser plugin, so how to
prevent the leakage of parameters from the plugin also needs
to be further studied.

9. Conclusion

In this paper, we proposed a blockchain-based click fraud
detection and prevention scheme (BCFDPS) for online
advertising to avoid clicking by machines and increases
the cost of fraud ones by a human. Specifically, a click
fraud by a malicious machine is significantly avoided
since a consumer’s immutable digital identity is em-
bedded in the click message with the bilinear pairing
algorithm and the machine does not have a digital
identity to generate a valid click message. Also, the cost of
click fraud by a human increases because many valid
clicks by the same recruited person can only be counted
once. Additionally, the introduced consortium block-
chain maintains all the hash values of analysis result of
consumers’ click messages to achieve the transparency of
the click fraud detection and prevention process for each
entity in the advertising system. Further, the identity
privacy of consumers is protected from media sites,
advertisers, and the sniffers in the channel by ciphertext-
policy attribute-based encryption. Our implementation
and evaluation demonstrate the advantages of BCFDPS in
computation and storage cost, and the Ethereum gas cost
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Figure 7: Comparison of storage cost (bytes) when a publisher publishes an ad and a consumer clicks the ad.
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is limited. Additionally, to protect the user’s identity
privacy, the communication cost is moderately increased.
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