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With the broadening of application scenarios for Internet of +ings, intelligent behavior recognition task has attracted more and
more attention. Since human behavior is nonrigid motion with strong spatiotemporal topological association, modeling it directly
with traditional Euclidean space-based methods may destroy its underlying nonlinearity. Based on the advantages of Riemannian
manifold in describing 3D motion, we propose an end-to-end 3D behavior manifold feature learning framework composed of
deep heterogeneous networks. +is heterogeneous architecture aims to leverage the graph construction to guide manifold
backbone network to mine more discriminative nonlinear spatiotemporal features. +erefore, we first model the nonlinear
spatiotemporal co-occurrence of 3D behavior in the high-dimensional Riemannian manifold space. Secondly, we implement a
non-Euclidean heterogeneous architecture on the Riemannian manifold so that the backbone network can learn deep spatio-
temporal features while preserving the manifold topology. Finally, an end-to-end deep graph similarity-guided learning opti-
mization mechanism is introduced to enable the overall model to fully utilize the complex similarity relationship between
manifold features. We have verified our 3D deep heterogeneous manifold network on popular skeleton behavior datasets and
achieved competitive results.

1. Introduction

Behavior recognition tasks [1–3] receive much attention due
to the vigorous development of artificial intelligence and the
rise of computer vision. In smart security, human-computer
interaction, and immersive games, behavior recognition is
playing an increasingly important role. We can perform
dangerous behavior warnings, provide more convenient
behavior instructions for human-computer interaction, and
make immersive games have a rich and exquisite game
experience through behavior recognition. With the great
improvement of computer and devices for capturing the
movement of human skeleton, the acquisition of skeleton
sequence data is more convenient, which promotes the
development of skeleton-based behavior recognition [4, 5].
+e skeleton-based behavior recognition method has the
advantages of eliminating the influence of the background
and the invariance of the perspective, which brings the

ability to pay more attention to the behavior itself. For these
reasons, more and more researchers are involved in skele-
ton-based action recognition research.

+ere are three main methods of existing behavior
recognition: methods based on spatial features of skeleton
coordinates, methods based on temporal information of
skeleton sequence, and methods based on spatiotemporal
features. In the method based on spatial features of skeleton
coordinates, the covariance matrix of the joint position
trajectory is calculated to build the temporal model of
skeleton sequence [2]. In [3], the paired relative positions of
joints are also used to describe the posture and joint changes
of the skeleton sequence, and the principal component
analysis is applied to normalize features to obtain the rep-
resentation of the principal features. In [4], the rotation and
translation between body parts are used as features, and the
Fourier temporal pyramid (FTP) is utilized to model the
temporal dynamics. +ese methods pay more attention to
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the spatial relationship of the joints in the skeleton behavior,
which weakens the attention to the temporal features to a
certain extent.

For the temporal information, Wang et al. [1] calculate
relative positions of each joint and other joints to represent
each frame of the skeleton sequence and then model tem-
poral information. In [6], the histogram of the 3D joint
position is calculated to represent each frame of the skeleton
sequence, and HMMs are used to model the temporal dy-
namics. Kim and Reiter [7] propose to use temporal con-
volutional neural network (TCN) for 3D human behavior
recognition. Compared with the popular LSTM-based re-
current neural network model, the TCN-based model is
more intuitive and interpretable [7]. +ese methods can take
the spatiotemporal features of behavior into account, but
may ignore some spatial features that are globally related and
cannot closely link temporal and spatial features.

In the method based on spatiotemporal features, Yan
et al. [8] design skeleton sequence graph containing tem-
poral information and use the spatiotemporal graph con-
volution network to learn the spatiotemporal features in the
behavior sequences. Ke et al. [9] use a deep convolutional
neural network to obtain the temporal features of the
skeleton sequence, use a multitask learning network to
process all the frames of the generated fragments, and finally
combine the spatial information for behavior recognition.
Some scholars use graph convolutional network (GCN)
combined with LSTM or dual-stream network structure
[5, 10–12] to extract spatiotemporal information in behavior
sequences. +ese methods can pay attention to the close
relationship between temporal and spatial features, but since
behavior features also have the temporal and spatial co-
occurrence, these methods cannot accurately describe this
property.

To learn more discriminative spatiotemporal manifold
features by the deep model, we need to comprehensively
consider the spatiotemporal co-occurrence relationships
between the connected and disconnected skeleton parts. To
this end, we intend to represent the spatial structure based
on the transformation group for each frame of original
nonrigid 3D skeleton behavior sequences and use the Rie-
mannian manifold to construct the relative spatial trans-
formation relationships between all pairs of skeleton parts.
+is spatial structure representation method can describe
the relative motion relationship between all pairs of skeleton
parts in a frame as a point in the high-dimensional Rie-
mannian manifold space.

Since each action sequence consists of many frames, we
employ an interpolation method based on the transfor-
mation group to integrate the points in the manifold surface
space into a transformation group curve, so as to model the
co-occurrence relationship of the spatiotemporal features of
original 3D skeleton sequence. However, directly inputting
features with manifold constraints into neural network will
bring high time and space complexity. Currently, it is dif-
ficult to use the neural network to mine rich information
contained in manifold input while preserving the manifold
constraints. To this end, Wang et al. [13] propose a GCN-
based method to solve the problem of edge prediction

between nodes. Inspired by this method, we try to treat an
action as node, construct similarity graph of all nodes based
on its manifold trajectory, use graph convolution to predict
connections, and finally achieve the classification of be-
haviors.With respect to this idea, the difficulty to be solved is
how to construct graph of feature nodes in manifold space.

+e graph construction method is currently commonly
used in determining the similarity of members in social
network analysis [14, 15], and the constructed graph is used
for intelligent recommendation. In these applications, the
multidimensional features of the task are usually data in
Euclidean space, and existing methods such as KNN [16] can
solve this problem. However, in the application scenario of
our problem, we hope to realize the construction of behavior
feature nodes on manifold space. +erefore, in this study, a
graph construction method based on the Riemannian metric
on manifold is proposed. +is method can take full ad-
vantage of rich information of data onmanifold. At the same
time, the Riemannian metric method can map behavior
nodes isometrically into projected space.

+is study proposes a 3D behavior recognition method
based on spatiotemporal trajectory graph construction,
whose description of framework is shown in Figure 1. +is
method uses Riemannian metric to measure the spatio-
temporal trajectory properties, which make similar nodes
closer and dissimilar or different types of nodes far apart.
+e model mainly has the following stages, data pre-
processing, Riemannian metric graph construction, graph
convolution, and behavior classification. In the data
preprocessing stage, we process the 3D coordinate data of
the skeleton sequences into a behavior trajectory curve
representing relative behavior relationship between any
pair of bones. In order to express as much spatial in-
formation as possible to reflect rich spatiotemporal co-
occurrence, we calculate the relative behavior relationship
between any two bones. In the stage of Riemannian metric
graph construction, we roll and expand the processed
manifold spatiotemporal trajectory curve along the di-
rection of the trajectory into a corresponding continuous
rolling tangent space curve. +is process tries to ensure
that the distance between any two points in a tangent
space curve is equivalent to the distance between two
points in the original manifold, use DTW to measure the
similarity between curves, and use the similarity between
behavior nodes to construct a similarity graph. In the
graph convolution stage, through the update between each
iteration of graph convolution, similar nodes are pulled
closer and different are pushes apart so that behavior
nodes of the same category are gathered together. Finally,
in the classification stage, the labels are spread from the
central point of each cluster to achieve the classification of
behaviors. +e main contributions of this study are as
follows:

(1) For skeleton sequences, we extract rotation and
translation relationships from bone pairs and rep-
resent them as discrete trajectories in Riemannian
manifold, which can describe spatiotemporal co-
occurrence and global relative relationships.
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(2) We propose a graph construction method based on
continuous projections on Riemannian manifold,
which is employed to map the spatiotemporal tra-
jectories on the manifold isometrically to preserve
more complex similarity distribution relationship
between manifold features.

(3) We propose a deep heterogeneous manifold model
consisting of two subnetworks with different struc-
tures. It incorporates an end-to-end optimizable
manifold backbone network, which exploits the
powerful representative ability of Riemannian
manifold and can be guided by the subsequent
graph-based subnetwork.

2. Spatiotemporal Manifold
Trajectory Representation

To fully exploit the nonlinearity of behavior data, we rep-
resent them as curves in manifold space. Specifically, we
represent it in the Lie manifold SE3 in the form of Cartesian
product, which can contain rich spatiotemporal co-occur-
rent relationships.

Given 3D coordinates of the joints of the skeleton be-
havior sequence, we assume that the number of frames of an
behavior sequence is F, and the number of joints is Nj, so the
coordinate of the nth joint in the frame f is expressed as
X

f
n � (x

f
n , y

f
n , z

f
n ), and the 3D coordinate of a behavior

sequence is represented as X
f
n |n � 1, . . . , Nj; f � 1, . . . , F􏽮 􏽯.

With these 3D coordinates and the body structure data given
in the dataset, i.e., the above joint points are connected in the
body structure, here we might as well assume that the joint i

and the joint j are the two ends of the bone Bij in the first
frame, and this bone can be represented as
Bij � X1

i − X1
j � (x1

i − x1
j , y1

i − y1
j , z1

i − z1
j); in this way, a

bone can intuitively be represented as a vector in 3D Eu-
clidean space, and the set of bones
B

f
ij|1< i< j<Nj; f � 1, . . . , F􏽮 􏽯 can also be obtained. Since

the spatiotemporal graph of the body structure in the current
skeleton data are all acyclic graphs, the number of bones is

Nj − 1. In the skeleton of body, the relationship between any
two different bones is (Nj − 1)∗ (Nj − 2) pairs.

+e elements in the trajectory manifold have the fol-
lowing constraints:

SE3 � T �
R d

0T 1
􏼢 􏼣 ∈ R4×4

|R ∈ SO3, d ∈ R3
􏼨 􏼩, (1)

where SE3 is special Euclidean group and SO3 is special
orthogonal group.

+e manifold trajectory using relative relationships has
the following advantages:

(1) +e features used to represent the rotation rela-
tionship between skeletons are scale invariant; in
other words, no matter how large the scale is to
represent the skeleton, the rotation relationship
between the skeletons is unchanged

(2) +e relative relationship of SE3 has spatial co-oc-
currence, i.e., we can explore the relationship be-
tween not only any two bones but also spatially
connected skeleton pairs

(3) Representing the relative relationship of the skeleton
based on the trajectory curve can closely combine the
spatial information and the temporal information, so
different spatial features can be represented point by
point to form a discrete curve on manifold space,
which helps to increase the similarity of features with
the similar temporal information

3. Backbone Network of Deep Heterogeneous
Manifold Network

3.1. Riemannian Manifold Preservation Network. Since the
input data of our deep Riemannian manifold network is the
initialized high-dimensional Riemannian manifold trans-
formation group data, it is necessary to maintain the
richness and topology of their nonlinear structures during
the feature learning process. +e commonly used Euclidean

Time

Original skeleton coordinate data Manifold trajectory data Initial graph construction Classification

SE3 norm Riemann 
metric

GCN

A
ction

Action class 1

Action class 2

Action class 3

Figure 1: Framework of 3D behavior recognition network based on spatiotemporal trajectory graph construction.
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spatial convolution layer may destroy this property, so we
employ a convolution-like Riemannian transform layer that
contains transform parameters optimized for deep model
learning and whose output still conforms to the Riemannian
manifold constraints, which preserve the Riemannian
manifold topology of the data.

According to the above description, we know that the
feature is a set of points in the motion group SE3, which is
represented by the discrete curves’ form on the manifold of
the Lie group [17, 18]. We denoted this manifold as M, and
the set of points is S; then, the feature of the fth frame in the
kth behavior is represented as Sk

f. Since any point on the
manifold M has constraints: if we have any U ∈M, then U ·

UT � I and det(U) � 1, where I is the identity matrix, which
is also the identity element on the manifold, and det is the
operation to find the value of the determinant. So, there is

SEn � R ∈ Rn×n
|R
⊤

R � In, detR � 1􏼈 􏼉. (2)

If we have V ∈M, then V · U ∈M.
+is property can be summarized as

SE(3) × SE(3)⟶ SE(3). (3)

+e SE3 matrix has the invertible property R− 1 � R⊤.
+erefore, the behavior trajectory curve l is in the form of
SE(3) × SE(3) × . . . × SE(3).

+e initialized high-dimensional Riemannian manifold
transformation group data are also a spatiotemporal co-
occurrence representation of the original 3D data, thus
requiring spatial and temporal pooling techniques on the
Riemannian manifold. We can not only reduce the data
dimension and preserve topology but also further obtain
more discriminative spatiotemporal manifold features be-
tween action sequence frames.

3.2. Graph Construction Based on Manifold Trajectory.
On the obtained manifold trajectory curves, we use the
Riemannian similarity metric method to construct graph for
the behavior features on Riemannian manifold. +e distance
on a manifold is obtained by measuring geodesics on the
manifold. To ensure that the distance between any two
points on the manifold remain constant in the constructed
graph, we can map the points on the manifold isometrically
to a convenient measurement space. +e implementation
process of the graph construction method based on Rie-
mannian similarity metric is shown in Algorithm 1.

+e dimension of the SE3 matrix is 6, which brings high
computational and space complexity to operations such as
multiplication and inverse. +erefore, in this study, we do
not use the method of directly calculating the distance
between two points on the SE3 manifold. We explore the use
of a certain method that can isometrically map the points on
the manifold to a space that is convenient for measurement.
If we directly expand the projection at a point, for example,
we expand at the pole, the result may be that the closer to the
pole, the more similar the curve after projection is to the
original curve on the manifold, and the farther away from
the pole, the more distorted the curve is after projection.
Inspired by methods of geodetic distance [19], we propose a

method for measuring the distance of a curves on manifold
based on a continuous projection.

Figure 2 shows a continuous projection of a behavior
trajectory curve on the manifold along the quasi-average
curve to its corresponding tangent space. In the curve lABC

on the manifold, we use the continuous projection method
along the average curve of the class (i.e., the dotted line in the
figure) to project the points on the curve one by one into the
tangent space. +e lengths of line segments lAB, lBC, and lAC

on the manifold are, respectively, equal to the lengths of lab,
lbc, and lac of the corresponding tangent space.

Below, we explain this continuous projection process in
detail. Specifically, the continuous projection mapping on
the manifold is a smooth mapping h: along a smooth average
curve α: [0, T]⟶M:

h: [0, T]⟶ SE3 � SO3∝R
3
,

t↦h(t) � (R(t), s(t)).
(4)

In particular, this rolling continuous mapping needs to
meet the three conditions defined in [20] at any time t ∈ [0, T],
namely, rolling conditions, no-slip conditions, and no-twist
conditions. +e continuous projection h(t) is a continuous
map that satisfies the above three conditions and maps the
manifold trajectory to the corresponding tangent space.

Since the area near the point on the Lie groupmanifold is
smooth, any point in this area can be represented by a slight
rotation and translation change from a point to its neigh-
bors. Assuming that P is a point on the manifold space of
SE3, α: [0, τ]⟶ SE3, α(t) � U(t)P0W(t)T is a curve on
SE3 starting from P0 when t � 0, and at any subsequent time,
you can find a point on the curve corresponding to that time.
We can find such a smooth curve; then, this meets the
continuous projection condition. Since our calculation
cannot exhaust every point on the continuous curve, in
order to facilitate the calculation, in the following calcula-
tion, we will continue to project the points on the curve
frame by frame. Under the three constraints of manifold
described above, this mapping process can be expressed as

h: [0, τ]⟶ G � SE3 × SE3∝R
4×4

,

t↦h(t) � U
⊤

(t), W
⊤

(t), X(t)( 􏼁,
(5)

where 〈imes denotes semidirect product symbol and
(U⊤(t), W⊤(t), X(t)) is the solution of the motion equation
in the projection process at time t.

+is process is a continuous projection V along the curve
α(t) on the Lie group manifold V: � TAff

P0
SE3 � TP0

SE3; the
curve α(t) has the following expression:

α(t) � U(t)P0W(t)
⊤

. (6)

αdev(t) is the expansion of the curve α(t) under the effect
of continuous projection h(t) at P0:

αdev(t) � h(t)°α(t) � U⊤(t)α(t)W(t) + X(t) � P0 + X(t).
(7)

Suppose we perform continuous projection in the time
interval [0, T] on a certain behavior curve. Since the curve on

4 Security and Communication Networks



the manifold we use is discrete on the time axis, we get the
corresponding points in the mapping space. It is
αdev(t), t ∈ 0, 1, 2, . . . , T − 1, T{ }.

Using the continuous projection method, the process of
obtaining the similarity between the behavior curves from
the manifold space is shown in Figure 3. We take the three
points A, B, and C of a certain behavior curve on the
manifold as an example. After continuous projection, they
correspond to the three points a, b, and c in the tangent
space. Our method aims to make the distances between AB,
BC, and AC on the manifold are basically similar to the
mapped distances ab, bc, and ac, especially to ensure that the
distances between nodes of the same category are as similar
as possible.

+e projection method based on the tangent space of a
certain point has a problem, that is, the closer the data to the
projection point, the better the retention of features and local
similarities between the data. On the contrary, the farther
away from the projection point is, the relative distance of the
data is pulled away after being projected, which causes the
local similarity of the data far from the projection point and
the global similarity of the whole data to be destroyed. We
keep the local similarity and global similarity between nodes

Input: trajectory curves of all skeletons S; behavior sequence label in training set L; total number of behavior categories M;
(1) for Given behavior category Li ∈ [L1, LM] do
(2) Calculate the average trajectory curve of each class on the manifold;
(3) Average trajectory curve La

i vr � DT W(All train behavior curves ∈ Li);
(4) end for
(5) for all Training trajectory curve S with label Li do
(6) Continuously project training trajectory curve S along the average trajectory curve La

i vr,
(7) Obtain the curve features on the tangent space Strain after continuous projection;
(8) end for;
(9) for all Training trajectory curve S do
(10) Given test set trajectory curve S

(11) for i � 1; i<M; i + + do
(12) Continuously project test set trajectory curve S along the average trajectory curve La

i vr;
(13) end for
(14) Continuously unfold test set trajectory curve S along the path of M average curves, obtain a set of curves S1, S2 . . . SM􏼈 􏼉

(15) Calculate the set of similarity scores between each curve in the curve set and the corresponding average curve Score;
(16) Obtain the features Stest under the score reflecting to the highest similarity;
(17) end for;
(18) for all Training trajectory curve S do
(19) Given a curve Strain feature, use DTW to calculate the most similar K trajectory curve to this curve;
(20) Get adjacency list Ttrain;
(21) end for;
(22) for all Test track curves S do
(23) Given a curve Stest feature, use DTW to calculate the most similar K trajectory curve to this curve;
(24) Get adjacency list Ttest;
(25) end for;

Output: Curve features of training set Strain and test set Stest after continuous projection; +e adjacency list obtained of the
training set Ttrain and test set Ttest;

ALGORITHM 1: Graph construction method based on Riemannian similarity metric.
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Figure 2: +e behavior trajectory curve on the manifold is con-
tinuously projected along the curve to its corresponding tangent
space.

A
B

C

a b

cTangential space

Figure 3: +e distribution of nodes in manifold and in projection
space by the continuous projection method.

Security and Communication Networks 5



as much as possible in the projection process, avoiding the
distortion of the distance between nodes that affects the
subsequent node classification.

Generally, the behavior curves of a certain type on the
manifold does not completely coincide with the geodesic. In
particular, when this continuous projection curve satisfies
certain constraints, the continuous projection curve we get
degenerates into a geodesic curve. In a part of the projection
of a certain point, the curve on the manifold and the two
curves in the corresponding tangent space have the same
geodesic curvature. +at is to say, the geodesic curve is a
projection curve that meets certain constraints, so the ap-
plicable range is narrow. Our continuous projection method
can be applied to more manifold projection scenes;
expanding average curve of a class along the behavior curve
can better measure the similarity between different classes.

4. End-to-End Optimizable Graph-Guided
Heterogeneous Model

In the previous 3D action recognition methods based on
deep learning, most methods usually use a fully connected
layer at the end of the backbone network and use cross-
entropy loss to complete the task. In the iterative learning
process, they do not fully consider the similarities and
changes between deep features of similar actions as well as
the differences between deep features of different action
categories. Since the output of our backbone network is still
topologically preserved Riemannian manifold data, we need
a construction method of nearest neighbor graph on a high-
dimensional Riemannian manifold surface to model local
similarities, combined with graph convolutional network to
achieve deep global similarity prediction to guide the feature
learning of backbone network. +is can make full use of the
potential local similarity relationship in the local context
information of each action sequence so that the whole
heterogeneous network can integrate the common features
of the same category and suppress their changes and at the
same time expand the differences of different categories
through the aggregating capability of graph convolution.

Our deep heterogeneous manifold network consists of
two subnetworks with different structures. +e former is the
backbone network for learning deep manifold spatiotem-
poral features, and the latter is the graph convolution-guided
learning subnetwork, which is built on the previous tra-
jectory curves. In the backbone network, two pooling
learning submodules are added to learn more discriminative
features for further promoting of the graph convolutional
network. In an end-to-end manner, the latter subnetwork
can guide the feature learning of the former backbone
subnetwork. However, its backpropagation will be more
complicated, and the whole heterogeneous model is built on
the Riemannianmanifold, making the optimization problem
with manifold constraints. If the manifold is embedded in
linear space, the dimension problem will increase, thereby
increasing the complexity. It is very difficult to optimize in
Euclidean space. However, in some specific Riemannian
manifold, the constraints can be eliminated to become
unconstrained optimization, so we consider to solve an end-

to-end optimization problem directly on the Riemannian
manifold.

In the first module of the trajectory curve feature
learning part, we set the learning parameter RS in a Lie group
manifold and then perform a spatial pooling on the data that
has undergone manifold learning so that we can select more
discriminative spatial features learned by the previous layer,
and it reduces the computational complexity of spatial
features and facilitates the subsequent computation. Simi-
larly, the second module also sets a learning parameter RT in
the Lie group manifold and then performs a temporal
pooling on the data. In this way, on the one hand, it is
possible to select more discriminative temporal features after
learning from the previous layer, and on the other hand, it
reduces the computational complexity of temporal features.

Given RS ∈ SE3 and RT ∈ SE3, we suppose that the data
passed in each time are D ∈ SE3. Due to the retention of Lie
group operations, there is

D · RS ∈ SE3,

D · RT ∈ SE3.
(8)

+erefore, in this part, the network parameters’ learning
is constrained in the Lie group manifold. In the graph-
guided convolution module, we loop all behavior nodes, put
all nodes into a queue, construct a domain subgraph with
each node as the central point, and predict the connection
relationship between the included peripheral nodes and the
central point. As a result, a set of edges whose weights are the
connection probability can be obtained. In order to cluster
similar nodes together, a simple method is to prune all edges
whose weights are lower than a certain threshold and use
breadth-first search method to propagate pseudolabels. In
each iteration, the edge is updated below a certain threshold,
and in the next iteration, the connected clusters are greater
than the predefined maximum value. In the next iteration,
the threshold for updating the edge is increased. Repeat this
loop process until the queue is empty. At this time, all nodes
have been marked with pseudolabels of the category. We
take the label of the central node of each cluster to propagate,
i.e., the classification of nodes is realized.

5. Experimental Verification

5.1. Dataset Description

5.1.1. G3D Dataset. +is dataset is a skeleton-based dataset
[21] collected from game data. It contains 10 participants,
who perform 20 categories of game behaviors. Most be-
havior sequences are recorded by a specific camera in a
controlled indoor environment. Participants perform basic
behaviors in strict accordance with instructions, and each
sequence was repeated 3 times by each subject. Nevertheless,
participants are free to complete the collection of different
exercise sequences according to their own exercise habits.
+e dataset contains manually labeled behavior category
labels for all sequences.

+e skeleton in this dataset consists of 20 joints, and the
position of the participant’s joints is expressed in X, Y, and Z
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coordinates in meters. +e skeleton data also includes a joint
tracking state, including accurately tracked joints, imported
joint coordinates, and predicted joint coordinates. In many
cases, the predicted joints are accurate, but in some cases, the
limbs are occluded and the predicted joints may be inac-
curate. Since some joint points in the dataset are obtained
through prediction, the accuracy of the final classification
will be affected to a certain extent if the predicted joints are
inaccurate.

5.1.2. HDM05 Dataset. +e behavior sequences in this
dataset are performed by 5 nonprofessional actors [22]. Most
of the behavior sequences are performed multiple times by
all five actors according to the specific instructions in the
script. +e script contains five parts, and each part is divided
into several scenes. Each behavior sequence is only collected
in the corresponding single scene. +e skeleton in this
dataset consists of 31 joints, and the 3D coordinates of the
joints are represented in X, Y, and Z coordinates in
centimeters.

Although the dataset is small in scale, the behavior
categories are more detailed, with a total of 130 behavior
categories, some of which may look similar. +erefore, this
dataset is also somewhat challenging.

5.1.3. NTU-RGBD Dataset. +e NTU-RGBD dataset con-
tains 60 behavior classes and 56880 video samples [23]. +is
dataset contains RGB video, depth mapping sequence, 3D
bone data, and infrared (IR) video for each sample. Each data
is captured simultaneously by 3 Kinect V2 cameras. Here, we
use three-dimensional skeleton data, and the three-di-
mensional coordinates of the joints are expressed in X, Y,
and Z coordinates. +e three-dimensional skeleton data
contain the three-dimensional coordinates of 25 human
body joints per frame. +e original benchmark provides two
evaluation methods, namely, cross-subject (CS) and cross-
view (CV) evaluation. In CS evaluation, the training set
contains 40,320 videos from 20 subjects, and the remaining
16,560 videos are used for testing. In CV evaluation, 37920
videos captured from No. 2 and No. 3 cameras were used for
training, and the remaining 18,960 videos fromNo. 1 camera
were used for testing.

+is dataset is widely used in skeleton-based behavior
recognition. It has several scene categories, including daily
behaviors, medical scenes, and multiperson sports. Since it
contains both single-person sequences and multiperson
interaction sequences, it is quite challenging to perform
recognition tasks on this dataset.

Table 1 summarizes the main data distribution charac-
teristics of the above three datasets. It can be seen that the
number of joints and the number of bones selected in the
three datasets are roughly similar, and the number of frames
in each behavior sequence varies widely, ranging from a few
frames to a few hundred frames, i.e., it is linearly adjustable
within certain limits. From this perspective, it is very im-
portant to fully dig out the temporal information to com-
plete the task of behavior recognition. Judging from the
number of behavior sequences contained, the scales of the

three datasets from small to large are G3D-Gaming,
HDM05, and NTU-RGBD; from the perspective of the
divided behavior categories, HDM05 has the most behavior
categories, indicating the classification of behavior se-
quences is finer, and the corresponding recognition difficulty
is also greater. In addition, in order to further improve the
generalization ability of recognition in the future, we have
implemented a behavior recognition data acquisition system
with multichannel video input.+e system can be connected
to the mainstream RGBD cameras on the market, and the
number of channels is linearly adjustable within a certain
range.+e collected videos can be processed into the current
major formats, for example, AVI, MPEG, and MP4. We can
estimate the 3D skeleton sequences as datasets from the
collected video data.

In the G3D dataset and HDM05 dataset, we follow the
principle of cross-validation experiment, using half of the
dataset for training and the remaining half for testing. +e
experimental settings of the NTU dataset adopts the com-
monly used cross settings, including the cross subject and
cross view. In order to keep the number of frames consistent
for all behavior sequences, we downsample the execution
frames of the skeleton sequences so that each dataset has a
fixed number of frames. +e number of frames selected for
the G3D dataset is 100, the HDM05 dataset is 300, and the
NTU dataset is 300. For the three datasets, we apply similar
normalization preprocessing to achieve the invariance of
position and view changes.

5.2. Experiment and Comparative Analysis. We first test the
classification result of the proposed method on the G3D
dataset. +e 663 sequences in the dataset are divided into the
training set and the test set according to the participating
objects. +e behavior sequences performed by the partici-
pants 1, 3, 5, 7, and 9 are used as the training set, and the
behavior sequences performed by the remaining participants
are used as the test set; thus, 333 training set sequences and
330 test set sequences are obtained.

Due to the small size of the dataset, we consider that the
number of neighbor nodes’ set when constructing the graph
is relatively small. In the update process of graph convo-
lution, around each node, the closest node and the 11 closest
nodes around it are selected. Initially, they are considered to
be of the same class, and then, the edge weights are updated.

+e experimental results on G3D dataset are shown in
Table 2. From the data in the table, it can be seen that the
proposed method has better performance than the previous
methods. +e reason is that the previous method directly
expands the manifold data and inputs them into the network
for learning. In this process, some manifold constraints are
destroyed, making the latter network unable to mine the rich
information originally contained on the manifold data. +e
proposed method continuously projects manifold curves
into the corresponding projection space along the average
curve of the class, which can keep the distance between the
curves projected from manifold curves as consistent as
possible. In this way, the subsequent graph convolution can
use the similarity between the projected curves to classify.
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+e proposed method has an improvement of 1.59%
compared with the method combining deep neural network.
+is is due to the fact that the spatiotemporal trajectory can
mine more abundant co-occurrent features, and using these
features, we can achieve better similarity construction.
Graph convolution network in the following can improve
the classification result through pulling similar nodes closer
and pushing others far apart.

In the HDM05 dataset, we randomly select half of the
behavior sequences from each class as the training set and
the remaining half as the test set. +ere are a total of 2343
behavior sequences in the dataset and 130 detailed behavior
categories. Each category has an average of less than 20
behavior sequences. After dividing the training set and the
test set, the training set and test set have about 10 behavior
sequences for each category.+erefore, in the update process
of graph convolution, one of the closest nodes around each
node and the 7 closest nodes around it are selected.

+e experimental results on the HDM05 dataset are
shown in Table 3. +e proposed method is compared with
the method that only uses the manifold learning. +ere is
about 20% improvement. We reckon that the continuous
projectionmethod based on themanifold curve can learn the
features that contain rich spatiotemporal co-occurrence
from the manifold data, and the similarity graph between
behavior nodes is better constructed; thus, the graph con-
volution method can be used for further similarity learning.
In this process, the method based on continuous projection
can maintain the similarity between curves, especially the
similarity between curves of the same category. +is step is a
key step to connect the manifold data and the deep network.

Compared with somemethods using deep learning, such
as PB-GCN [28], our method also has a certain improve-
ment.+e reasonmay be that the conventional deep learning
network just arranges the data according to a certain di-
mension. For example, the data separated into different body
parts are sent to the network for learning. In this process, the
local behavior information of most of the skeleton coor-
dinates can be used, but it is difficult to learn the essential
complicated features of the relative relationship of the
movement in the network. Nonetheless, the proposed net-
work can use this information by learning the features of the
manifold trajectory.

In NTU-RGBD dataset, we conduct training and testing
according to the currently commonly used data division and
conduct subject-cross and view-cross experiments, respec-
tively. Due to the large number of behavior sequences for
each category in the dataset, each node cannot be directly
connected to its peers when constructing a graph. When
constructing the graph, 200 nearest neighbor nodes of each
node are selected to form the adjacency list. In the update
process of graph convolution, one of the closest nodes
around each node and the 20 closest neighbors around it are
selected.

+e experimental results on the NTU dataset are shown
in Table 4. +e proposed method is greatly improved
compared to the method that only uses the Lie group. +e
reason is that, after the graph construction by continuous
projection, the introduced graph convolution module can
leverage backpropagation to enhance the learning ability of
the Lie group. Compared with some existing deep learning
methods such as Deep-LSTM [23], ST-LSTM [29], TCN [7],
and GCA-LSTM [30], our method also has some advantages.
When these methods are mining behavior sequences, the
main focus is on one of the temporal features and spatial
features, and our method can organically combine the
temporal and spatial features of the behavior characteristics
by means of the manifold behavior trajectory. Compared
with the current mainstream behavior recognition methods
HCN [31], ST-GR [32], ST-GR [32], and ST-GCN [8], our
method is still comparable.

5.3.AblationStudy. In order to verify the effectiveness of the
proposed method, we performed ablation experiments on
HDM05 dataset to validate each module. We have done five
experiments to compare the method of directly stretching
the manifold data into European data (Stretch), the method
of logarithmic mapping (LogMap), the method of contin-
uous projection (Ours/G), and the continuous projection
combined with graph convolution.

+e results of the ablation experiments on the HDM05
dataset are shown in Table 5. It can be seen from the table
that the result of directly stretching the manifold data into
the Euclidean data is the worst. In this process, the con-
straints of manifold data are broken, so a large amount of
spatiotemporal information contained is difficult to be
utilized by subsequent networks. +e logarithmic mapping
method can retain part of the data constraints by projecting
the data into the tangent space. After projection, the data
can still express most of the spatiotemporal feature in-
formation. Compared with the logarithmic mapping

Table 1: Datasets’ summary.

Datasets Class Sequence Joint Frame Subject
G3D-gaming 20 663 20 6–330 10
HDM05 130 2343 31 50–721 5
NTU-RGBD 60 56 880 25 50–300 40

Table 2: Performance comparison on the G3D dataset.

Methods Accuracy (%)
RBM+HMM [24] 86.4
SE3 + FTP [4] 87.23
SO3 [25] 87.95
SO3+ deep [26] 89.10
Ours 90.69

Table 3: Performance comparison on HDM05 dataset.

Methods Accuracy (%)
SPDNet [27] 61.45
SE3 + FTP [4] 70.26
SO3 [25] 71.31
SO3 + deep [26] 75.78
PB-GCN [28] 88.17
Ours 90.05
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method, the method based on continuous projection still
has a lot of improvement, which shows that the continuous
projection maintains the stronger similarity of the data
after the projection than the logarithmic mapping. Finally,
the method of continuous projection combined with graph
convolution achieves the best results, which shows that the
graph convolution method used here can achieve the
function of pulling similar nodes closer and pushing others
far apart to improve the classification result of the
algorithm.

6. Conclusion

In this study, a deep heterogeneous manifold network is
proposed. It incorporates a graph construction method
based on Riemannian metric, which can preserve the
nonlinear constraints of the spatiotemporal trajectory to a
large extent and obtain better data projection through
continuous projection. +e graph nodes of behavior se-
quences built by this method are input to graph convo-
lutions to realize the clustering and classification, which
can improve the classification result of behavior recogni-
tion. +e whole architecture combines a manifold learning
backbone subnetwork and a graph convolutional network.
+e two parts learn from each other through end-to-end
optimization, and manifold-based graph construction can
guide the manifold network. +e proposed method has
been validated on several mainstream skeleton-based
datasets and achieved competitive results. In the future, we
will investigate how to automatically learn features rep-
resented in Riemannian manifold from raw data, which will
further improve the discriminativeness of Riemannian
representations.

Data Availability

All datasets are public datasets that can be downloaded
online. G3D dataset is publicly available at https://dipersec.
king.ac.uk/G3D/G3D.html, NTU RGB+D dataset is pub-
licly available at https://rose1.ntu.edu.sg/dataset/
actionRecognition/, and HDM05 dataset is publicly avail-
able at https://resources.mpi-inf.mpg.de/HDM05/.
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