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In recent years, blockchain and machine-learning techniques have received increasing attention both in theoretical and practical
aspects. However, the applications of these techniques have many challenges, one of which is the privacy-preserving issue. In this
paper, we focus on, specifically, the privacy-preserving issue of imbalanced datasets, a commonly found problem in real-world
applications. Built based on the fully homomorphic encryption technique, this paper presents two new secure protocols, Privacy-
Preserving Synthetic Minority Oversampling Protocol (PPSMOS) and Borderline Privacy-Preserving Synthetic Minority
Oversampling Protocol (Borderline-PPSMOS). Our analysis reveals that PPSMOS is generally more efficient in performance than
Borderline-PPSMOS. However, Borderline-PPSMOS achieves a better TP rate and F-Value than PPSMOS.

1. Introduction

In the past few years, new information technology tech-
niques, such as blockchain [1–4] and machine-learning
[5–15], have been developing rapidly and used successfully
in various real-life applications. However, they still face a
critical challenge in the privacy-preserving issue. For ex-
ample, the openness of a blockchain system poses a serious
threat to the privacy and security of any user transactions.
&us, research for privacy-preserving techniques is be-
coming even more crucial.

Datasets in the wild come with a variety of problems. One
of the most common problems is the imbalanced issue of the
datasets. Imbalanced datasets issue arises in many real-world
sectors, such as disease detection [16], bankruptcy prediction
[17], fraud detection [18], etc. As the distribution of samples is
incorrect in imbalanced datasets, it may cause the classifi-
cation algorithms to produce inaccurate results and further
issues. An imbalanced dataset usually consists of a number of
classes, which falls into one of these two types: majority
classes, which has a bigger number of examples, and minority
classes, in which there are fewer examples. In this paper, we
consider the situation where there are only two classes in a
dataset, i.e., one majority class and one minority class.

&e existing solutions proposed to solve the imbalanced
dataset problem are categorized according to which level the
technique is solving the problem from, e.g., data level,
feature level, and machine-learning algorithm level. In this
paper, we focus on fixing the problems at the data level.
&ere are two known data level techniques, namely
undersampling and oversampling methods. &e under-
sampling method works by removing parts of the samples
from the majority class to balance the ratio of majority and
minority samples, whereas oversampling method balances
the majority and minority samples by generating new mi-
nority samples. In 1972, Wilson [19] proposed an under-
sampling method, in which a majority sample should be
deleted if all of its neighbors are minority samples. In 2020,
Wang et al. [20] proposed a novel entropy and confidence-
based undersampling boosting framework to solve imbal-
anced dataset issues, which could be applied to noniterating
algorithms such as decision trees.

Random oversampling of minority classes is the simplest
oversampling method. &rough sampling with replacement,
samples are continuously drawn from the minority class.
&is method, however, can easily lead to data overfitting. In
2002, Chawla et al. [21] proposed the Synthetic Minority
Oversampling Technique (SMOTE) algorithm, which is one
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of the best-known oversampling methods to date. &e al-
gorithm works by generating artificial data using boot-
strapping and the K-nearest neighbor algorithm. Further
improvising SMOTE algorithm, Han et al. [22] proposed
Borderline-SMOTE in 2005. &e algorithm focuses on
working on samples that are on the boundary of both
majority and minority classes. &e demonstration showed
that Borderline-SMOTE achieved a better TP rate and
F-Value than its predecessor. In 2008, Douzas et al. [23]
presented a simple and effective oversampling method based
on K-means clustering and SMOTE, which is able to
eliminate noise generation and effectively overcome im-
balances between and within classes. Furthermore, Li et al.
[24] presented three sampling approaches for imbalanced
learning in 2020. Unlike the previous solutions, their ap-
proaches considered a new class-imbalance metric, which
contains the differences of information contents between
classes, instead of the traditional imbalance ratio.

Although so many solutions have been proposed to solve
the imbalanced data sets problem, the privacy-preserving
issue has not been well resolved. To the best of our
knowledge, Hong et al. [25] proposed a secure collaborative
machine-learning solution in which they used secure mul-
tiparty computation to adjust the class weight for the im-
balanced dataset. &at is, the privacy-preserving issue of the
imbalanced dataset was tackled at the machine-learning
algorithm level. &e privacy-preserving solution in the
machine-learning level is specific. &at is, when we change
the machine-learning algorithm, a new privacy-preserving
solution to the imbalanced data set problem should be
proposed. By contrast, as the privacy-preserving solutions in
the data level solve the problem in the preprocessing stage,
the output of these solutions can be widely used as they are
independent of the machine-learning algorithms. So, in this
paper, we focus on the privacy-preserving issue of imbal-
anced data sets at the data level.

Despite the numerous solutions proposed to solve the
imbalanced data sets problems, there is almost none of them
attempted to resolve the privacy-preserving issue. To the best
of our knowledge, Hong et al. invented a secure collaborative
machine-learning solution, in which they used a secure
multiparty computation to adjust the class weight of the
imbalanced dataset. &ey tackled the privacy-preserving
issue of the imbalanced dataset on the machine-learning
algorithm level. &is solution, however, is sensitive to the
algorithm used for machine-learning, i.e., when the ma-
chine-learning algorithm is changed, a new privacy-pre-
serving solution must be proposed for the imbalanced
dataset problem. In contrast, as the privacy-preserving so-
lutions at the data level work by solving the problem in the
preprocessing stage, their output can be used widely, re-
gardless of the machine-learning algorithm adopted in the
system. Hence, in this paper, we focus on tackling the
privacy-preserving issue of imbalanced datasets on the data
level.

Currently, Secure Multiparty Computation (SMC) is one
of the most widely used techniques to tackle the privacy-
preserving issue. In SMC, multiple parties participate in the
game with their individual secure inputs and nobody knows

anything of each other’s inputs. When the game ends,
according to the game rules, some of the parties will obtain
the output. &e first SMC solution [26] to the millionaire
problem was first presented by Yao. Since then, SMC has
been developing rapidly. In 2017, Makri et al. [27] proposed
SPDZ, a private image classification with SVM using the
SMC framework. Mohassel et al. [28] presented a privacy-
preserving machine-learning framework, SecureML, in
which the privacy-preserving issue of the linear regression,
logistic regression, and neural network training using the
stochastic gradient descent method was considered.

In SMC, there are various underlying cryptographic
tools, such as garbled circuit, homomorphic encryption
scheme, oblivious transfer, and secret sharing scheme. In
this paper, we focus on handling the imbalanced dataset
problemwith the privacy-preserving two-party computation
using the homomorphic encryption scheme. Homomorphic
encryption is one of the most active research areas in the
field of cryptography. Homomorphic encryption was ini-
tially proposed by Rivest et al. [29] in 1978. In 1985, ElGamal
et al. [30] proposed a widely used multiplicatively homo-
morphic encryption scheme, known as ElGamal scheme. In
2001, Damgard et al. [31] promoted an additively homo-
morphic encryption scheme, named Paillier scheme. In
2009, Gentry [32] proposed a fully homomorphic encryption
scheme, a ground-breaking development to homomorphic
encryption study. Currently, the two most widely used fully
homomorphic encryption schemes are the BGV scheme [33]
by Brakerski et al. and BFV scheme [34] by Fan et al. In 2021,
Chen et al. [35] presented a dynamic multikey fully ho-
momorphic encryption scheme based on LWE assumption
in the public key setting.

1.1. Contributions. In this paper, we propose two novel
privacy-preserving oversampling protocols, namely
PPSMOS and Borderline-PPSMOS. Both PPSMOS and
Borderline-PPSMOS are aimed to solve the problem of the
imbalanced dataset while preserving the participants’ input
and output privacies. With the client and the service denoted
as Bob and Alice, respectively, the work in this paper can be
generally viewed as follows.

(1) PPSMOS: &is algorithm works in a distributed
architecture, where Bob inputs no examples at the
beginning of the protocol. All the examples, both
majority and minority, are provided by Alice. After
the protocol, Bob gets the synthetic minority ex-
ample while he learns nothing of Alice’s examples. At
the same time, Alice learns nothing of the output Bob
receives. PPSMOS shows to be a good solution with a
privacy-preserving manner for data balance prob-
lems encountered in the cold start phase of many
real-life applications.

(2) Borderline-PPSMOS: In this algorithm, at the start of
the protocol, Bob has some majority examples as his
input. Meanwhile, Alice has a number of minority
examples. After the protocol, Bob receives synthetic
minority examples, while he learns nothing of Alice’s
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minority examples, and Alice learns nothing of Bob’s
input and output.

(3) PPSMOS and Borderline-PPSMOS performance
analysis: Our analysis shows that PPSMOS generally
works more efficiently than Borderline-PPSMOS,
while Borderline-PPSMOS achieves a better TP rate
and F-Value than PPSMOS. We also found that
PPSMOS and Borderline-PPSMOS are both secure
in the semihonest model.

1.2. Roadmap of $is Paper. &e rest of this paper is orga-
nized as follows. In Section 2, we introduce the prelimi-
naries. We present the Privacy-Preserving Synthetic
Minority Oversampling (PPSMOS) protocol in Section 3
and Borderline-PPSMOS in Section 4. We compare and
analyse our protocols in Section 5. We, then, give our
concluding remarks in Section 6.

2. Preliminaries

2.1. Homomorphic Encryption. &e homomorphic en-
cryption scheme allows us to operate the ciphertext
directly. &e result obtained after the application of this
scheme is equivalent to the ciphertext obtained after
performing an operation on a plaintext. Homomorphic
encryption algorithms are divided into three categories:
additive homomorphism, multiplicative homomor-
phism, and full homomorphism. For our protocols, we
adopt the fully homomorphic encryption scheme. We
describe the fully homomorphic encryption algorithm as
follows.

We denote (pk, sk) as the system keys, where pk is the
public key and sk is the secret key. Furthermore, E(α) is the
encryption operation on the plaintext α and D(β) is the
decryption operation on the ciphertext β. &e fully ho-
momorphic encryption scheme follows the properties
below.

E(α) + E(c) � E(α + c),

E(α)∗E(c) � E(α∗ c).
(1)

2.2. Semihonest Model. &ere are two widely used adver-
sarial models in SMC, the semihonest model, and the
malicious model. In this work, we design our protocols in
the semihonest model.

In the semihonest model, there are two kinds of
participants, the honest participants and the semihonest
participants. &e honest participants follow the protocol
without doing any other activities. At the same time, the
semihonest participants followed the protocol and col-
lected the data they obtained during the process of the
protocol. After the protocol, they may want to infer in-
formation from the data they collected. A protocol is
secure in the semihonest model if the semihonest par-
ticipants get no valuable information from the data they
collected.

3. Privacy-Preserving Synthetic Minority
Oversampling Protocol

In this section, we present our Privacy-Preserving Synthetic
Minority Oversampling Protocol (PPSMOS) and analyze its
security aspect.

Suppose that Alice has the total dataset
P � p1, p2, . . . , ph 

T with pi � (p
(1)
i , p

(2)
i , . . . , p

(n)
i ) with

1≤ i≤ t. To simplify, Alice puts all the minority samples in
front of P. In other words, we denote the minority subclass
by Pmin � p1, p2, . . . , pm 

T where m is the number of the
minority samples. Both Alice and Bob wish to generate a
minority sample pnew based on P. After the protocol, Bob
gets the output pnew under the condition that Alice and Bob
cannot know any information about pnew and P,
respectively.

3.1. PPSMOS

3.1.1. Input. Alice inputs P � p1, p2, . . . , ph 
T, where pi �

(p
(1)
i , p

(2)
i , . . . , p

(n)
i ) and 1≤ i≤ h, with the first m elements

Pmin � p1, p2, . . . , pm 
T belonging to the minority class.

Bob inputs nothing.

3.1.2. Output. Bob obtains a newly synthesized minority
sample pnew while Alice gets nothing.

3.1.3. Preprocessing Stage

(1) Alice calls the key generation algorithm of the fully
homomorphic encryption system to generate the
system key (pk, sk).

(2) Alice computes the ciphertext E(P) as follows.

(i) E(P) � E(p1), E(p2), . . . , E(ph) 
T where

E(pi) � (E(p
(1)
i ), E(p

(2)
i ), . . . , E(p

(n)
i ))

(3) Alice constructs a matrix S that contains the indices
of the k-nearest neighbors of every element in Pmin,
i.e., every sij in S presents the index of the jth nearest
neighbor of pi in the minority class Pmin.

S �

s11 · · · s1k

⋮ ⋱ ⋮

sm1 · · · smk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2)

(4) Alice discloses pk, E(P) and S on the network.
(5) Bob gets pk, E(P) and S published by Alice.

3.1.4. Processing Stage

(1) Bob generates two random integers, α and β, where
1≤ α≤m and 1≤ β≤ k.

(2) Bob generates two random numbers gap and noise
where 0< gap < 1. &en, using the public key pk and
the encryption algorithm E(∗), he computes the ci-
phertext E(gap) and E(noise).
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(3) Using both ciphertexts obtained in (2), Bob does the
following operation to produce X. &en he sends X

to Alice.

X � E(gap)∗ E psαβ
  − E pα(   + E pα(  ∗E(noise)

� E(gap)∗ E p
(1)
sαβ

  − E p
(1)
α   + E p

(1)
α  ∗E(noise)

E(gap)∗ E p
(2)
sαβ

  − E p
(2)
α   + E p

(2)
α  ∗E(noise)

· · ·

E(gap)∗ E p
(n)
sαβ

  − E p
(n)
α   + E p

(n)
α  ∗E(noise)

T

.

(3)

(4) Alice decrypts X using the secret key sk and obtains
D(X) � (c(1), c(2), . . . , c(n)) , before sending it to
Bob.

(5) Bob gets the final result pnew as follows.

pnew �
c

(1)

noise
,

c
(2)

noise
, . . . ,

c
(n)

noise
 . (4)

3.2. Security Analysis

Theorem 1. Under the assumption that the underlying fully
homomorphic encryption scheme is secure, PPSMOS securely
generates the minority samples in the semihonest model.

Proof. First, we analyse the situation where Alice is cor-
rupted. In PPSMOS, Alice receives X from Bob. Using the
secret key, Alice is able to recover the plaintext:

D(X) � c
(1)

, c
(2)

, . . . , c
(n)

  � gap∗ psαβ
− pα  + pα ∗ noise.

(5)

As α, β, and gap are random numbers, Alice does not
have the ability to infer the matchup between D(X) and its
samples. Furthermore, since D(X) are confused by the
random number noise, Alice has no way of knowing Bob’s
newly generated point pnew. Hence, even if Alice is cor-
rupted, Bob’s output is isolated from Alice and, thus,
secure.

Next, we analyze the case that Bob is corrupted. In the
preprocessing stage, Bob gets the ciphertext E(P) and a
matrix S, which are both disclosed by Alice. As the un-
derlying homomorphic encryption scheme is secure in the
semihonest model, Bob will not be able to infer any in-
formation regarding Alice’s private input from E(P). As S

presents the index of the jth nearest neighbor of pi in the
minority class Pmin, Bob is unable to get any information of
the specific point of P through S. &erefore, even if Bob is
corrupted, Alice’s private information is still secure and
undisclosed from Bob.

&us, we can deduct that that &eorem 1 holds. □

4. Borderline Privacy-Preserving Synthetic
Minority Oversampling Protocol

In this section, we present our Borderline Privacy-Pre-
serving Synthetic Minority Oversampling Protocol (Bor-
derline-PPSMOS) and analyze its security aspect.

Suppose that Alice has a minority class
P � p1, p2, . . . , pm 

T, where pi � (p
(1)
i , p

(2)
i , . . . , p

(n)
i ). Bob

has a majority class Q � q1, q2, . . . , qt 
T, where

qi � (q
(1)
i , q

(2)
i , . . . , q

(n)
i ). Both Alice and Bob wish to gen-

erate a minority sample pnew based on P and Q. After the
protocol, Bob gets the output pnew. Meanwhile, Alice cannot
know any information about pnew and Q, and Bob cannot
know any information about P.

4.1. Borderline-PPSMOS

4.1.1. Input. Alice inputs P � p1, p2, . . . , pm 
T where

pi � (p
(1)
i , p

(2)
i , . . . , p

(n)
i ). Bob inputs Q � q1, q2, . . . , qt 

T

where qi � (q
(1)
i , q

(2)
i , . . . , q

(n)
i ).

4.1.2. Output. Alice gets nothing. Bob obtains a newly
synthesized minority sample pnew.

4.1.3. Preprocessing Stage

(1) Alice generates the key s(pk, sk) of the fully ho-
momorphic encryption system.

(2) Alice computes the ciphertext E(P) as follows.

(i) E(P) � E(p1), E(p2), . . . , E(pm) 
T where

E(pi) � (E(p
(1)
i ), E(p

(2)
i ), . . . , E(p

(n)
i ))

(3) Alice constructs a matrix D, where dij in D repre-
sents the square power of the Euclidean distance
between the point pi and its jth-nearest neighbors.

D �

d11 · · · d1k

⋮ ⋱ ⋮

dm1 · · · dmk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

(4) Alice encrypts every element in D and obtains E(D).
(5) Alice discloses pk, E(P) and E(D) on the network.
(6) Bob gets pk, E(P) and E(D) which were published

by Alice.

4.1.4. Processing Stage

(1) Bob computes E(Q) using pk and the encryption
algorithm E(∗).

(i) E(Q) � E(q1), E (q2), . . . , E(qt)}
T, where

E(qi) � (E(q
(1)
i ), E (q

(2)
i ), . . . , E(q(n)))

(2) For every element pi in P, Bob calculates the ci-
phertext of the square power of the Euclidean
distance between the pi and the elements in Q.
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E(V) �

E v11(  · · · E v1t( 

⋮ ⋱ ⋮

E vm1(  · · · E vmt( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

(i) where E(vij) � (E(p
(1)
i ) − E(q

(1)
j ))2 + (E(p

(2)
i )

−E(q
(2)
j ))2 + · · · + (E(p

(n)
i ) − E(q

(n)
j ))2

(3) Bob generates m random numbers σ1, σ2, . . . , σm.
&en, he obtains the ciphertext
E(σ1), E(σ2), . . . , E(σm), using the public key pk
and the encryption algorithm E(∗).

(4) Bob connects E(V) to the encryption matrix E(D)

to form a new matrix E(G).

E(G) �

E d11(  + E σ1(  · · · E d1k(  + E σ1(  E v11(  + E σ1(  · · · E v1t(  + E σ1( 

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

E dm1(  + E σm(  · · · E dmk(  + E σm(  E vm1(  + E σm(  · · · E vmt(  + E σm( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

(5) Bob performs row and column confusion on E(G)

to obtain the confused matrix E(G′). &en he sends
E(G′) to Alice.

(6) Alice receives E(G′) and decrypts it with the private
key sk to obtain the matrix G′.

G′ �

g11 g12 · · · g1(n+t)

⋮ ⋮ ⋱ ⋮

gm1 gm2 · · · gm(n+t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

(7) For every row in G′, Alice computes the k-smallest
value and denotes the position of these elements in
the matrix R. &en, Alice sends R to Bob.

R �

r11 · · · r1k

⋮ ⋱ ⋮

rm1 · · · rmk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

(8) Bob performs the inverse obfuscation on matrix R

to get matrix B.

B �

b11 · · · b1k

⋮ ⋱ ⋮

bm1 · · · bmk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (11)

(9) For the ith row in B, where 1≤ i≤ k, Bob counts the
number cnti of the elements smaller than k + 1.
Similar to that in Borderline-SMOTE, we call the
point pi ∈ Danger, if (k/2)≤ cnti < k.

(10) Bob randomly selects a point pi from the class
Danger and randomly selects an element bix, which
is greater than k from the ith row of B.

(11) Bob generates two random numbers, gap and noise,
where 0< gap< 1. Next, he generates the ciphertext
E(gap) and E(noise) by using the public key pk and
the encryption algorithm E(∗).

(12) Bob performs an operation using the ciphertext
E(gap) and E(noise) to obtain X as follows. &en
he sends X to Alice.

X � E(gap)∗ E qbix
  − E pi(   + E pi(  ∗E(noise)

� E(gap)∗ E q
(1)
bix

  − E p
(1)
i   + E p

(1)
i  ∗E(noise)

E(gap)∗ E q
(2)
bix

  − E p
2
i   + E p

2
i  ∗E(noise), . . . ,

E(gap)∗ E q
n
bix

  − E p
n
i(   + E p

n
i(  ∗E(noise)

T
.

(12)

(13) Alice decrypts X using the secret key sk and obtains
D(X) � (c(1), c(2), . . . , c(n)). She then proceeds to
send D(X) to Bob.

(14) Bob gets the final result pnew as follows.

pnew �
c

(1)

noise
,

c
(2)

noise
, . . . ,

c
(n)

noise
 . (13)

4.2. Security Analysis

Theorem 2. Under the assumption that the underlying fully
homomorphic encryption scheme is secure, Borderline-
PPSMOS securely generates the minority sample in the
semihonest model.

Proof. First, we analyse the situation where Alice is
corrupted. In Borderline-PPSMOS, Alice receives E(G′)
from Bob. Alice is able to recover the plaintext using the
private key. However, since Bob obtained E(G′) by ap-
plying row and column confusion operation on E(G),
Alice will not be able to infer the true rank order of E(G).
Furthermore, as E(G′) is confused by using
E(σ1), E(σ2), . . . , E(σm), where σ1, σ2, . . . , σm are random
numbers, Alice will not be able to know the information
of set Q owned by Bob.

Also, when Alice receives X from Bob, she can recover
the plaintext:

D(X) � c
(1)

, c
(2)

, . . . , c
(n)

 

� gap∗ qbix
− pi  + pi ∗noise.

(14)
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However, as i, x and gap are random numbers, Alice
does not have the ability to infer the matchup between D(X)

and its samples. In addition, as D(X) is confused by the
random number noise, Alice has no way of knowing Bob’s
newly generated point pnew. Hence, even if Alice is cor-
rupted, Bob’s input and output are totally isolated fromAlice
and still secure.

Next, we analyze the case where Bob is corrupted. In the
preprocessing stage, Bob gets the ciphertext E(P), E(D) and
public key pk. As the underlying homomorphic encryption
scheme is secure in the semihonest model, Bob is unable to

infer any information regarding Alice’ private input from
E(P) and E(D). In the processing stage, Alice computes the
k-smallest value and denotes the position of these elements
in matrix R. During this step, Alice only sends the location
index to Bob, which does not reveal any information of
Alice’s input. Next, Bob gets D(X) � (c(1), c(2), . . . , c(n))

from Alice. Similarly, as the homomorphic encryption
scheme is secure in the semihonest model, Bob cannot infer
pi from gap∗ (qbix

− pi) + pi. &us, even if Bob is corrupted,
Alice’s private information is still secure and undisclosed
from Bob.

Table 1: Performance analysis of PPSMOS and Borderline-PPSMOS.

Protocol
Preprocessing stage Processing stage

Computational
complexity Communication complexity Computational complexity Communication complexity

PPSMOS hn hn 5n+ 2 n
Borderline-
PPSMOS mn + mk tn + mk (m + mt + 2t + 3)n + 4mk + 2mt + m + 2 m(k + t) + n
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Figure 1: Computational Complexity (left) and Communication Complexity (right) of PPSMOS and Borderline-PPSMOS by varying n

when m � 100, t � 50, k � 5.
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Figure 2: Computational Complexity (left) and Communication Complexity (right) of PPSMOS and Borderline-PPSMOS by varying k

when m � 100, t � 50, n � 25.
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&erefore, we can deduce that Borderline-PPSMOS is
secure in the semihonest model, under the fully homo-
morphic encryption scheme, i.e., &eorem 2 holds. □

5. Performance Analysis

In this section, we present the performance analysis of both
PPSMOS and Borderline-PPSMOS. On the efficiency
analysis, we look at computational complexity and com-
munication complexity. Given that h is the size of Alice’s
input in PPSMOS, n is the feature size, t is the size of the
majority class, m is the size of the minority class, and k is a
parameter, we analyze the protocols’ performances as
follows.

First, we analyze the performance of PPSMOS. During
the preprocessing stage, Alice performs the encryption
operation for hn times while Bob gets hn ciphertexts. Fur-
thermore, in the processing stage, Bob performs encryption
operation 2 times and 2n times for each homomorphic
additive operation and homomorphic multiplicative

operation. Alice, then, performs decryption operations for n

times. Bob sends n ciphertexts to Alice.
Secondly, we analyze the efficiency of Borderline-

PPSMOS. In the preprocessing stage, Alice performs the
encryption operations for mn + mk times, while Bob gets
tn + mk ciphertexts. Next, in the processing stage, Bob
performs encryption operation for tn + m + 2 times, ho-
momorphic additive operation for mtn + (t + k)m + 2n

times, and homomorphic multiplicative operation for mtn +

2n times. Alice performs decryption operations for m(k +

t) + n times. Finally, Bob transferred m(k + t) + n cipher-
texts to Alice.

We summarise the computational complexity and
communication complexity of both protocols below in
Table 1.

We visualize the operational efficiency of both PPSMOS
and Borderline-PPSMOS during the processing stage by
instantiating the parameters, as shown below in Figures 1–4.

From these figures, we can conclude the following: (1) the
computational complexity and communication complexity of
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Figure 3: Computational Complexity (left) and Communication Complexity (right) of PPSMOS and Borderline-PPSMOS by varying m

when n � 25, t � 50, k � 5.
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Figure 4: Computational Complexity (left) and Communication Complexity (right) of PPSMOS and Borderline-PPSMOS for the cost by
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PPSMOS are lower than those of Borderline-PPSMOS; (2) the
computational complexity and communication complexity of
PPSMOS depend only on the feature size n; (3) the com-
putational complexity and communication complexity of
Borderline-PPSMOS depend on almost all of the parameters,
i.e., n, t, m and k; (4) Borderline Synthetic Minority Over-
sampling Protocol achieves better TP rate and F-Value than
Synthetic Minority Oversampling Protocol [22]. Further-
more, as our privacy-preserving schemes do not affect the TP
rate and F-Value of the underlying Minority Oversampling
protocol, we can further deduct that Borderline-PPSMOS
achieves a better TP rate and F-Value than PPSMOS.

6. Conclusion

In this paper, we propose two novel privacy-preserving
oversampling protocols, PPSMOS and Borderline-PPSMOS,
that are aimed to address the imbalanced dataset issue while
preserving the privacy of the participants’ input and output.

PPSMOS works in a manner where the client inputs no
majority examples, as opposed to Borderline-PPSMOS,
where the client has some majority examples. Both PPSMOS
and Borderline-PPSMOS are secure in the semihonest
model. &is means that both methods are suitable for the
preprocessing stage of machine-learning and applicable to
any cases where synthesizing minority examples in a pri-
vacy-preserving manner is needed. Our results show that
PPSMOS is more efficient than Borderline-PPSMOS in
general, while Borderline-PPSMOS achieves better TP rate
and F-Value than PPSMOS.

While doing our work in the semihonest model and
through our analysis, we found that our protocols are unable
to resist malicious attacks, and their efficiency needs im-
provements. As future work, we will continue improving our
research on these two aspects, as well as focusing on de-
signing better privacy-preserving protocols that are to be
used in the preprocessing stage of machine-learning.
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