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In recent years, tremendous progress has been made in network traffic classification and its use has become ubiquitous in many
emerging applications, such as Internet censorship in many countries and ISP traffic engineering. However, the traffic analysis of
intermediaries brings the risk of privacy disclosure to users. )is paper presents a network traffic obfuscation technology to resist
traffic classification. It deceives the machine learning and deep learning models by generating adversarial samples. )e adversarial
samples generation algorithm includes a white-box attack algorithm based on fuzzy strategy and a black-box attack algorithm
based on smote data enhancement. Experiments based on the ISCXTor2016 public data set show that the MIM algorithm has the
best performance in white-box attacks, and the obfuscation success rate of DNN and LSTMmodels is 90%. In the black-box attack,
the obfuscation effect of LSTM is the best, while CNN has stronger robustness.

1. Introduction

Advanced traffic analysis technology has brought great
challenges to information concealment and privacy pro-
tection. Common deep packet inspection (DPI) determines
traffic categories and user behaviors by monitoring and
analyzing incoming and outgoing data packets from in-
termediate nodes. Powerful deep learning technology en-
ables network intermediaries to identify target information
from huge network traffic. Traffic obfuscation is one of the
common techniques to resist traffic analysis. Traditional
traffic obfuscation technologies can only protect computers
from the attack of traffic analysis to some extent. )e ma-
chine learning classifier with low performance brings great
challenges to traffic obfuscation. Adversarial machine
learning technology opens a new door to defend against
traffic analysis.

In order to improve the ability of hiding private in-
formation, traffic obfuscation technology aims to ensure that
the targeted traffic cannot be recognized by the attacker in
the observed traffic set by a series of operations such as
randomization and mimicry shaping. For example, the Tor
browser reencapsulates the anonymous network traffic

through meek [1] before sending the message and disguises
the anonymous network traffic as the traffic accessing
Microsoft Azure or Amazon Web service, to realize traffic
obfuscation. Due to the existence of network supervision
requirements, the identification and tracking technology for
encrypted or obfuscated traffic has also attracted much at-
tention. Network intermediaries identify target traffic
through traffic fingerprints. Traffic fingerprint is a feature or
a series of feature combinations representing certain traffic,
including static fingerprint features and dynamic fingerprint
features. Even if traffic obfuscation technology hides some
information of the original traffic, network censors, regu-
lators, and network intermediaries can still study traffic
identification technology based on small differences. )e
most common way of network traffic identification is
through DPI [2]. DPI is a new and effective real-time packet
detection technology, which is used to monitor and analyze
incoming and outgoing packets from intermediate nodes.
For example, China, Turkey, Iran [3], and other countries
widely use DPI for network censorship. With the rapid
development of artificial intelligence, more and more ma-
chine learning technologies are applied to traffic identifi-
cation, which effectively improves the efficiency and
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accuracy of traffic identification. Compared with traditional
machine learning methods, the deep learning method does
not need to extract flow features manually and achieves
better results. Due to the small scale and poor scalability of
the data set, the effectiveness of this traffic identification
technology still needs to be verified in a real large-scale
environment.

While the identification of obfuscated traffic is contin-
uously strengthened, new obfuscation technologies have also
been introduced accordingly. )ese two technologies are
offensive and defensive to each other, and each has its
advantages and disadvantages in the process of develop-
ment. )e research on traffic obfuscation for secure link
channels is of great significance in the field of information
encryption and information hiding. Legally using traffic
obfuscation is an important mean to protect Internet users’
privacy and data security. It can effectively prevent a series of
attacks against users’ privacy, such as network eavesdrop-
ping, traffic analysis, and so on. Traffic obfuscation com-
plicates the communication flow between users and provides
security protection for the information content itself by
employing information encryption, to improve the difficulty
of man-in-the-middle traffic analysis attack.

)e main contributions of this paper are as follows.

(i) We propose an improved white-box attack to gen-
erate an obfuscation strategy, which is a gradient
iterative descent algorithm. In the process of
updating the adversarial sample, it is not allowed to
reduce the packet size; that is, relative to the packet
size in the original sequence, the corresponding
packet size in the adversarial sample sequence fol-
lows the monotonic nondecreasing rule.

(ii) We propose a black-box attack method by training
the alternative model, which uses SMOTE tech-
nology for data enhancement. We discuss the
transitivity of adversarial samples between different
models and then evaluate the effectiveness of the
black-box attack algorithm.

)e paper is organized as follows: Section 2 presents the
related work. Section 3 describes the white-box attack,
followed by the black-box attack in Section 4. )e experi-
ment setup shows in Section 5. Finally, we summarize the
research.

2. Related Work

Network traffic classification groups similar or related traffic
data, which is one mainstream technique in the field of
network management, security, and man-in-the-middle
traffic analysis attacks. A cost-sensitive SVM (CMSVM) [4]
is proposed to solve the imbalance problem in network
traffic identification. To deal with the limitation of encrypted
traffic classification in accuracy, Ren et al. [5] proposed a tree
structural recurrent neural network (Tree-RNN), which
divides a large classification into small classifications by
using the tree structure. Dong et al. [6] applied sampled
NetFlow data to traffic identification and proposed a Deep
Belief Networks Application Identification (DBNAI)

method to improve performance. Traffic classification
methods are emerging, but there are few techniques against
classification.

)e purpose of traffic obfuscation is to hide the char-
acteristics of traffic fingerprints and resist traffic analysis
based on deep packet inspection or machine learning. )e
traditional traffic obfuscation includes randomization ob-
fuscation, mimicry obfuscation, and tunnel obfuscation.

Randomization obfuscation mainly randomizes some
visible metadata features and message load of the targeted
traffic utilizing encryption and adding random noise, so that
the opponent cannot identify the targeted traffic from the
traffic set. Obfs1 is the protocol obfuscation layer of TCP. To
hide the protocol type in use, it randomizes the message load
by using stream cipher after key negotiation. It does not
provide authentication or data integrity and does not ran-
domize the data length. Obfs2 [7] is the first obfuscation
protocol widely used in onion networks. However, due to the
lack of a robust key exchange method, any opponent capable
of monitoring the initial handshake of obfs2 can recover the
key. To resist such attacks, obfs3 [8] uses a customized Diffie
Hellman key exchange protocol to negotiate keys. Compared
with obfs2 and obfs3, Brandon’s dust protocol [9] has a more
random payload. Except for Mac, IV, and randomly filled
fields, other fields are encrypted. To complete key exchange
without unencrypted handshake, dust protocol adopts out-
of-band half handshake. Similar to Kopsell’s model [10],
peers must receive out-of-band invitations to join the net-
work. Weinberg et al. introduced a proxy framework,
StegoTorus [11], which can confuse the protocol identifi-
cation on the application layer and the transport layer to
improve the resilience of Tor to fingerprint attacks. Tan [12]
analyzed DHT attacks and eclipse attacks against Tor. To
improve Tor’s ability to defend against active detection at-
tacks, Winter [13] proposed ScrambleSuit polymorphic
network protocol. )e ScrambleSuit protocol can be easily
integrated into Tor’s existing ecosystem, and it is difficult for
inspectors to identify ScrambleSuit using regular expres-
sions. Obfs4 [14] tries to provide authentication and data
integrity based on ScrambleSuit. In the handshake phase, the
data is filled with random length to confuse the initial stream
signature. After the handshake is completed, the application
layer data is split into “packets” for transmission, and en-
cryption and authentication are completed in NaCl secret
box (Poly1305/XSalsa20) [15] “frames”.

In the mimicry obfuscation, the mimicry client is re-
sponsible for shaping the traffic to make it imitate other
protocols to some extent, and the mimicry server is re-
sponsible for recovering the traffic. To resist statistical traffic
analysis, Wright et al. [16] shaped one type of traffic into
another by using convex optimization technology. )is
traffic shaping method is more efficient than traditional
packet filling but ignores the key element of a secure en-
cryption channel. Wang et al. [17] proposed a novel anti-
censorship network browsing framework CensorsSpoofer,
which uses IP address spoofing to send data from the agent
to the user and imitates the encrypted VoIP session to
transmit downstream data. Dyer et al. [18] used a new
cryptography primitive called format conversion encryption
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(FTE) in themimicry obfuscation technology, which extends
the traditional symmetric encryption and can convert the
ciphertext into a specific format. An FTE scheme includes
three parts: key generation, encryption, and decryption. An
additional recording layer is used to buffer, encode, parse,
and decode the FTE message stream. Compared with the
standard SSH tunnel, using FTE as the proxy system will not
produce any delay overhead, and the bandwidth overhead is
only 16%. Mohajeri et al. [19] proposed the SkypeMorph
model, which uses Skype video call as the target protocol,
making it difficult for opponents to distinguish confusing
bridge communication from actual Skype call through
statistical characteristics. Because Skype traffic accounts for a
high proportion of the Internet and all communications are
encrypted, it can provide an ideal encrypted channel for Tor
traffic. In the initial setup phase, the SkypeMorph client and
bridge use Skype API to log in to Skype and exchange public
keys to start Skype video calls between both parties. )ere
are various TCP connections in a video call, and some TCP
connections remain in the same state after the end of the
conversation. In the traffic shaping stage, the Oracle com-
ponent controls the size and timing of each packet sent. )e
component provides a simple traffic shaping method and
traffic morphing method, respectively.

Tunnel traffic obfuscation uses normal traffic samples as
tunnels to transmit target traffic. Tunnel technology can also
be regarded as mimicry technology. Infranet [20] first
embedded the real communication into the web session, sent
the request using a secret channels, and used the picture
steganography to return the data. )is way can easily be
located to the agent by the examiner disguised as an ordinary
user. Foe [21] is an anticensorship tool that uses e-mail as a
tunnel. It is based on SMTP protocol and can run on most
e-mail servers. In addition, the CensorSpoofer framework
[17] also uses tunneling technology, but it is only used to
send user requests (such as URLs). To hide the real network
traffic of users, Brubaker et al. [22] designed a new set of
censorship avoidance systems, called Cloudtransport, which
uses cloud storage services such as Amazon S3 to establish
tunnels. Cloudtransport uses the same “cloud client” library,
protocol, and network server as any other application based
on given cloud storage, so simple protocol identification is
invalid for Cloudtransport. Cloudtransport only confuses
the traffic before passing through the proxy cloud service.
When the traffic reaches the bridge, it will no longer hide the
user traffic. Meek [1] uses the “domain name prefix” tech-
nology to forward messages to the Tor relay bridge. Domain
name prefix refers to the use of different domain names at
different communication layers.)emessage sent by the Tor
browser will be reencapsulated by a meek client to build a
special HTTPS request and sent to the intermediate web
service (e.g., CDN) configured with multiple domain names.

With the significant increase of network traffic scale and
complexity, compared with the content-based DPI method,
machine learning and data-driven traffic identification
technology shows better performance. Especially after the
emergence of deep learning, it no longer relies on manual
extraction of traffic characteristics, which saves a lot of
manpower and material resources and has strong scalability.

)e traffic recognition technology based on deep learning
will be the focus and mainstream of future research, such as
[23, 24]. )e development of adversarial machine learning
provides opportunities for traffic obfuscation technology.
Especially in the face of traffic identification technology
based on deep learning, adversarial machine learning can
effectively protect the security and privacy of network traffic.
A variety of attack algorithms (FGSM [25], BIM [26], MIM
[27], and CW [28]) can generate obfuscation traffic samples
under legal modification and limited resource constraints.
)ese carefully designed samples can be used not only as
training samples for poisoning attacks, but also as test
samples for evasion attacks. In addition, Muhammad et.al
[29] utilized the mutual information (MI) for crafting
adversarial perturbations and substitute model training to
perform the black-box adversarial attack. However, the lack
of frequency of mutual information may lead to sample
imbalance and abnormal characteristics.

)is paper mainly focuses on how to restrict the iden-
tification of anonymous traffic by traffic obfuscation. By
interfering with the input data, the recognition accuracy of
the model is reduced. As shown in Figure 1, the network
traffic classification model and traffic obfuscation technol-
ogy are rivals. )e former attacks the secure link channel
system and the latter protects the secure link channel sys-
tems from eavesdropping, sniffing, traffic analysis, and other
attacks, including white-box attacks and black-box attacks.

3. White-Box Attack

3.1. Architecture. )e obfuscation traffic generation
framework based on a white-box attack is shown in Figure 2,
which is mainly divided into four steps: data set division,
model training, constructing antitraffic samples, and finally
verifying the effectiveness of the attack algorithm.

Step 1: divide the original data set into the training set
and test set, in which the training set is used for model
training, and the test set is used to construct adversarial
traffic samples. Only one fixed random partition is
performed. Different deep learning algorithms use the
same training data set, and different antiattack algo-
rithms use the same test data set.
Step 2: under the same training data set, DNN, CNN,
and LSTM deep learning algorithms are used for ex-
periments, respectively. For the trained neural network
model, persistence processing is needed to provide
direct access for white-box attackers and verify the
success rate of the attack algorithm.
Step 3: construct adversarial traffic samples through a
white-box attack algorithm, including FGSM, BIM,
MIM, and CW. )is step requires the attack algorithm
to fully access the deep learning model and obtain the
gradient of the model about the given input. For each
attack algorithm, a confused traffic set is constructed,
respectively.)e size of the traffic set is similar to that of
the test set, which is provided to the neural network
model for prediction, and the attack success rate of the
algorithm is estimated by the prediction success rate.
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Step 4: evaluate the effectiveness of the algorithm from
several dimensions, including the effectiveness of dif-
ferent algorithms for the same model and the reliability
of the same model in the face of different algorithms.

3.2. White-Box Attack-Based Gradient. In the white-box
attack, the attacker can fully access the model, parameters,
and architecture and organize the adversarial attack by
making noise through the adversarial attack algorithm.
)ere are usually gradient methods and decision-making
methods in white-box antiattack algorithms. )e gradient-
based attack is the most commonly used method in the
literature. It uses the detailed information of the target
model about the gradient of a given input to iteratively
generate adversarial samples, which requires the attacker to
fully understand and access the target model. Decision-
based attack is a simpler and more flexible method, which
only needs to query the Softmax layer of the target model

and iteratively calculate the noise by using the rejected
process. FGSM, BIM, and MIM are typical gradient-based
adversarial attack algorithms.

3.2.1. Adversarial Samples Based on FGSM. When the at-
tacker obtains the complete neural network model and the
original test samples, he can cheat the model to output the
wrong category by updating the original sample input in the
gradient direction of the objective function. )e objective
function describes the error between the original output and
the target output of the model.

)e neural network model can be formally described as

F � softmax · Fn · Fn−1 · · · · · F1,

Fi(x) � σ θi · x( 􏼁 + 􏽢θi.
(1)

)e output vector y of the neural network is probability,
and the last label of the classifier is
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C(x) � argmaxiF(x)i. (2)

FGSM (fast gradient sign method) is a one-step gradient
method, which generates adversarial samples only through
one update. Assuming that the attacker can fully access the
neural network, including architecture and parameters, the
way to generate adversarial samples using FGSM is

x′ � x − ϵ · sign ∇xJ(x, y)( 􏼁. (3)

)e function J is the loss function, which is used tomeasure
the change degree of classification results. )e commonly used
loss function is the cross-entropy function. A sign is a symbolic
function used to obtain the gradient direction.

)e generalized formula of FGSM is

x′ � x − ϵ ·
∇xJ(x, y)

∇xJ(x, y)2
. (4)

For each negative sample in the test set, use (3) to update
the negative sample input to maximize the deviation pre-
dicted by the deep learning model, that is, the probability
that the model will finally classify the input as positive as
possible. )ere is no requirement for the positive and
negative direction of length change, only the maximum
disturbance threshold is limited to 20, and the length interval
is [0, 200].

3.2.2. Adversarial Samples Based on BIM. BIM (basic iter-
ative method) method is an iterative version of FGSM, that
is, iterative multiple fast gradient sign method. Although
FGSM is fast, in many cases, a single update is not enough to
fail the model prediction. )erefore, it is considered to
update the samples iteratively to improve the attack success
rate.

)e iterative formula of BIM is

x0′ � x

xk+1′ � xk
′ − α · sign ∇xJ xk

′, y( 􏼁( 􏼁
.

⎧⎨

⎩ (5)

3.2.3. Adversarial Samples Based on MIM. MIM (momen-
tum iterative method) integrates the momentum term into
the iterative process of attack, makes the update of direction
more stable, gets rid of the bad local maximum, and pro-
duces more transitive adversarial samples. Similarly, in the
first-order optimization algorithm, the momentum method
adds the momentum term to the gradient descent method
and accumulates the previous “momentum” to replace the
real gradient, to accelerate in the correct gradient direction.
MIM and momentum method have similar forms, and the
specific parameters are not the same.

)e iterative formula of MIM is

vk+1 � μ · vk +
∇xJ xk
′, y( 􏼁

∇xJ xk
′, y( 􏼁1

xk+1′ � xk
′ − α · sign vk+1( 􏼁

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

Compared with BIM, MIM can achieve a higher attack
success rate. Because BIM has been moving greedily along
the given gradient direction in the iterative process, the
adversarial sample is easy to fall into the local maximum and
the sample overfitting. )e momentum term introduced in
MIM is helpful to cross some narrow valleys or humps, to
skip the bad local minimum or maximum.

3.2.4. Adversarial Samples Based on CW. Different from
FGSM, BIM, MIM, and other methods, CW not only re-
quires model classification error but also wants to be as
similar as possible between the adversarial sample and the
original sample; that is, the false rate is lower. )e method
formalizes the original optimization problem of finding
adversarial samples as follows:

minimizeD x, x′( 􏼁,

such thatC x′( 􏼁 � t, x′ ∈ clipmin, clipmax􏼂 􏼃,
(7)

where function D(x, x′) is a distance measurement func-
tion, which is used to describe the similarity between the
adversarial sample and the original sample. Because the
classifier function C(x′) is highly nonlinear, the original
problem is difficult to solve. An objective function f needs to
be found so that C(x′) � t, if and only if
f(x′) � 0, C(x′) � t. )us, the original optimization
problem is transformed into a new optimization problem,
which is formally described as follows:

minimizeD x, x′( 􏼁 + c · f x′( 􏼁,

such that x′ ∈ clipmin, clipmax􏼂 􏼃.
(8)

Because L0 distance metric is nondifferentiable, L∞
distance measurement is not completely differentiable, so
gradient descent method is not suitable to optimize pa-
rameters. )erefore, this chapter uses Euclidean distance to
measure the distance between the adversarial sample and the
original sample and uses the gradient descent method to
solve the new optimization problem, in which the objective
function f uses the loss function loss_2 defined by Carli-
niWagnerL2 in the CleverHans attack library.

3.2.5. Obfuscation Traffic Generation Strategy. )e repre-
sentation of the obfuscated flow adv is obtained by adding
the original flow representation ori and the noise repre-
sentation del, namely: adv� ori+ del. When representing
traffic with a sequence of top n packets’ lengths, there are
usually two ways to add noise into the original traffic, by
appending extra bytes to packets of the intended traffic flow
and inserting extra packets at specific intervals into the
original data stream.

For example, for a certain original flow representation
ori� [150, 300, 350, 280, 500, 350, 150, 250, 500, 400], the
noise vector is [10, -20, 5, 10, -30, 30, 20, -30, -5, 50], and the
target representation is [160, 280, 355, 270, 470, 380, 170,
220, 495, 450]. To add noise to the original traffic, firstly
insert a packet with length of 280 between the 1st and 2nd
packets. )en insert a packet with length of 270 between the
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2nd and 3rd packets. Lastly insert four data packets with
lengths of 170, 220, 495, and 450 after the 4th packet. Now
the flow representation becomes [150, 280, 300, 270, 350,
280, 170, 220, 495, 450]. )en append extra bytes with the
lengths of 10, 55, 120, 100 to the 1st, 3rd, 5th, and 6th packets
to get the noise representation. )ere is a total amount of
data with size of 2170 added into the original flow.

)e strategy of traffic obfuscation by adding extra
packets and bytes always generates a large amount of noise
data and brings high costs to network transmission and
processing, thereby destroying existing protocols or re-
ducing network service quality. How to effectively reduce the
network overhead caused by the noise is one of the core
problems in the traffic obfuscation.

In the process of updating the adversarial sample, it is
not allowed to reduce the packet size; that is, relative to the
packet size in the original sequence, the corresponding
packet size in the adversarial sample sequence follows the
monotonic nondecreasing rule.

)is paper proposes the following two improved
methods to realize the obfuscation traffic generation
strategy:

(1) After a fixed number of iterations, the adversarial
sample is corrected.

(2) In each iteration, delete the illegal disturbance di-
rection, set a larger EPS value for a single iteration,
and set a smaller EPS value for truncation of the final
output.

In the first method, when the fixed number of iterations
is set to 1, it is necessary to compare the adversarial sample
with the original sample at the last step of each iteration
process, calculate the disturbance vector, reset all negative
values in the disturbance vector to 0, and then add this
disturbance to the original sample to complete the update.
When the fixed number of iterations is set too small, the
adversarial samples may always update in the wrong di-
rection. )erefore, it is necessary to set a large value to
correct the sequence.

)e optimization process of the first method on BIM and
MIM algorithms is shown in Algorithms 1 and 2.

In the second method, the illegal disturbance direction is
deleted in each iteration, which is the same as setting the
number of fixed iterations to 1 in method 1. In order to
reduce the negative impact of the search direction, consider
using a larger search step in the update process, that is,
setting a larger EPS value. Finally, the adversarial samples are
limited to the legal range by a small EPS value.

)e optimization process of the second method on BIM
and MIM algorithms is shown in Algorithms 3 and 4.

4. Black-Box Attack

4.1. Architecture. )e obfuscated traffic generation frame-
work based on black-box attack is shown in Figure 3, which
is mainly divided into five steps: data set division, data
enhancement, training the original model and alternative
model, constructing adversarial traffic samples, and finally
verifying the effectiveness of the attack algorithm.

Step 1: divide the original data set into three parts: two
training sets and one test set. One training set is used to
train the original model and the other is used to train
the alternative model. )e test set is used to construct
antitraffic samples.
Step 2: since the scale of a training set 2 is smaller than
that of training set 1 if the training set 2 is directly used
to train the alternative model, the alternative model will
overfit the data set and lack generalization. )erefore,
the adversarial traffic sample constructed by it has no
transitivity and is no longer applicable to other models.
)erefore, it is necessary to generate new training
samples according to a training set 2 to obtain addi-
tional data. )is process is called data enhancement.
Step 3: training set 1 is used as the training set of the
original model and training set 3 is used as the training
set of the alternative model. Different machine learning
algorithms are used to train the original model (in-
cluding KNN, random forest, DNN, CNN, and LSTM)
and the alternative model (including DNN, CNN, and
LSTM) and persist the model.
Step 4: use MIM and CW adversarial attack algorithms
to construct adversarial traffic samples on the alter-
native model. For each algorithm and model, a cor-
responding confusing traffic set is generated, and the
size of the traffic set is similar to that of the test set.
Step 5: verify the effectiveness of the black-box attack,
explore the transitivity of adversarial traffic samples
between different models, and use the confused traffic
samples in the confused traffic set to make the success
rate of misclassification of the original model as its
evaluation index. )ere are a total of 30 combinations
of original models, alternative models, and adversarial
attack algorithms.

4.2. Black-Box Attack-Based SMOTE. Black-box attackers
have no knowledge of the training data set, learning model,
and other relevant information of the original model, as-
suming that they can only master no more than the amount
of data used by the original model. )erefore, black-box
attackers need to establish a powerful alternative model to
make adversarial samples. Because the adversarial samples
are transitive, they will still be misclassified by the original
model. Because the amount of data mastered by the black-
box attacker is insufficient, it is necessary to expand the
original data set through a series of data enhancement means
to make the limited data produce more equivalent data. In
the selection of alternative models, we need to take into
account the performance of the model itself and the effec-
tiveness of the attack algorithm applied to the model.

4.2.1. Transitivity of Adversarial Samples. )e transitivity of
adversarial samples is the basis of a black-box attack. )is
feature means that the adversarial samples generated by one
model are still valid for another model, which is used to deal
with the same task. For many samples, their gradient di-
rections on different models are orthogonal to each other.
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When using the gradient-based adversarial attack method,
they will search in the same antiattack direction. Because
different models may still have similar decision boundaries,
which are very consistent, and the boundary diameter along
the gradient direction is smaller than that in the random
direction, moving along the gradient direction of the vari-
able will significantly change the value of the loss function
[30], thus changing the output values of two different models
at the same time.

To evaluate the transitivity of adversarial samples, two
models are usually required, one is the original model, and
the other is the alternative model. )e proportion that can
misclassify the alternative model in all adversarial samples

generated by the original model is calculated as the mea-
surement standard. )e ratio between the number of
transitive adversarial samples and the total number of
adversarial samples is also called the matching rate. )e
higher matching rate means better transitivity.

4.2.2. Data Enhancement. In the black-box attack, the
amount of data mastered by the attacker is much smaller
than the training set size of the original model. In order to
make the decision boundary of the alternative model ap-
proximate to the original model, the attacker needs to ex-
plore the input domain and generate a comprehensive data

Input: classifier f; loss function J; original sample x; authentic label y; disturbance size α; fixed number of iterations n; number of
iterations T.
output: adversarial sample. x’

(1) ϵ � α/T;
(2) x0′ � x;
(3) for k � 0 to T − 1 do
(4) get gradient ∇xJ(xk

′, y) of func f with respect to xk
′;

(5) //update the adversarial sample x’
k+1

(6) x’
k+1 � xk

′ − α · sign(∇xJ(xk
′, y));

(7) if k%n � 0 then
(8) //modify x’

k+1
(9) c � x’

k+1 − x;

(10) set all elements greater than 0 in the vector c to
(11) 0;
(12) x’

k+1 � x’
k+1 − c;

(13) end if
end for.
return x’

k+1;

ALGORITHM 1: Improved BIM using method 1.

Input: classifier f; loss function J; original sample x; authentic label y; disturbance size α; fixed number of iterations n; number of
iterations T; attenuation factor μ.
output: adversarial sample. x’

(1) ϵ � α/T;
(2) g0 � 0, x0′ � x;
(3) for k � 0 to T − 1 do
(4) get gradient ∇xJ(xk

′, y) of func f with respect to xk
′;

(5) //update momentum vk+1
(6) vk+1 � μ · vk + ∇xJ(xk

′, y)/∇xJ(xk
′, y)1;

(7) //update adversarial sample x’
k+1

(8) x’
k+1 � xk

′ − α · sign(vk+1);

(9) if k%n � 0 then
(10) //modify x’

k+1
(11) c � x’

k+1 − x;

(12) set all elements greater than 0 in the vector c to
(13) 0;
(14) x’

k+1 � x’
k+1 − c;

(15) end if
end for.
return. x’

k+1;

ALGORITHM 2: Improved MIM using method 1.

Security and Communication Networks 7



Input: classifier f; loss function J; original sample x; authentic label y; disturbance size ϵ1, ϵ2 ; fixed number of iterations n; number
of iterations T.
output: adversarial sample. x’

(1) ϵ � ϵ1;
(2) x0′ � x;
(3) for k � 0 to T − 1 do
(4) get gradient ∇xJ(xk

′, y) of func f with respect to xk
′;

(5) //update adversarial sample x’
k+1

(6) x’
k+1 � xk

′ − α · sign(∇xJ(xk
′, y));

(7) if k%n � 0 then
(8) //modify x’

k+1
(9) c � x’

k+1 − x;

(10) set all elements>0 in the vector c to 0;
(11) x’

k+1 � x’
k+1 − c;

(12) end if
(13) end for
(14) //according to ϵ2, truncate x’

k+1
(15) set all elements greater than 0 in the vector x’

k+1 to ϵ2;
return x’

k+1;

ALGORITHM 3: Improved BIM using method 2.

Input: classifier f; loss function J; original sample x; authentic label y; disturbance size α; fixed number of iterations n; number of
iterations T; attenuation factor μ.
output: adversarial sample. x’

(1) ϵ � ϵ1;
(2) g0 � 0, x0′ � x;
(3) for k � 0 to T − 1 do
(4) get gradient ∇xJ(xk

′, y) of func f with respect to xk
′;

(5) //update momentum vk+1
(6) vk+1 � μ · vk + ∇xJ(xk

′, y)/∇xJ(xk
′, y)1;

(7) //update adversarial sample x’
k+1

(8) x’
k+1 � xk

′ − α · sign(vk+1);

(9) if k%n � 0 then
(10) modify x’

k+1 according to x;
(11) end if
(12) end for
(13) //according to ϵ2, truncate x’

k+1;
(14) set all elements greater than 0 in the vector x’

k+1 to ϵ2;
return x’

k+1;

ALGORITHM 4: Improved MIM using method 2.
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Figure 3: Generating obfuscated traffic based on black-box attack.
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set according to a small part of the initially collected data.
)is process is called data enhancement.

In the field of image classification, there are many data
enhancement strategies based on spatial geometric trans-
formation, such as rotation, clipping, rotation, scaling de-
formation, affine transformation, and so on. )e data
enhancement strategies of noise class and fuzzy class can also
generate new training samples. )e former randomly su-
perimposes some noise on the basis of the original picture,
and the latter realizes pixel smoothing by reducing the
difference of pixel values. SMOTE [31] and SamplePairing
are diverse data enhancement methods, that is, using
multiple samples to generate new samples. SMOTE is based
on difference; it can synthesize new samples for small sample
classes and solve the problem of sample imbalance while
enhancing data. In this paper, SMOTEmethod is used as the
data enhancement method of black-box attack.

SMOTE sample is a linear combination of two similar
samples from a few classes, which is defined as follows:

s � x + u · x
R

− x􏼐 􏼑, (9)

where 0≤ u≤ 1, xR is a vector randomly selected from the k
nearest neighbors of X, and K is set to 5 by default. )e
specific process of synthesizing new sample points is shown
in Figure 4, in which red sample points are x, blue is the five
real sample points closest to x, and green is other real sample
points.

4.2.3. Alternative Model. In the black-box attack, the al-
ternative model is a machine learning model that is really
used to construct antitraffic samples. It “replaces” the
original model that the attacker cannot obtain to perform
the adversarial attack and finally verifies the effectiveness of
these adversarial traffic samples on the original model. )is
chapter constructs five original models based on five algo-
rithms: KNN, random forest, DNN, CNN, and LSTM. Since
KNN and random forest algorithms have no gradient, only
three algorithms such as DNN, CNN, and LSTM are selected
as alternative models.

)ere are 15 different combinations of original models
and alternative models. When the architecture/algorithm of
the original model and the alternative model are different,
the attacker only has a small amount of input data infor-
mation; when the architecture/algorithm of the original
model and the alternative model are the same, the attacker
can master more model information. )ese combinations
can be divided into two parts according to the degree of
information the attacker has, as shown in Table 1.

5. Experiment

5.1. Data Set. )is paper adopts the public data set Tor-
nonTor (ISCXTor2016) of Canadian Institute of network
security [32]. )e data size is 22Gb, including 7 types of
traffic, as follows:

(1) Browsing: HTTPS traffic generated by browsers
(chrome, Firefox).

(2) e-mail: )e sender sends mail through SMTP/s, and
the receiver receives the traffic generated by mail
using POP3/SSL and IMAP/SSL, respectively.

(3) Chat: Instant messaging software (Facebook, hang-
outs, Skype, aim, ICQ).

(4) Streaming: Skype, FTP over SSH (SFTP), and FTP
over SSL (FTPS).

(5) VoIP: voice calls from Facebook, hangouts, and
Skype.

(6) P2P: uTorrent and transmission download different
torrent files from the public repository

)rough the statistics of the original pcap packet con-
tent, the number of streams and the total number of packets
of each type of traffic can be obtained. In this paper, only
one-way flow is considered, and each flow is intercepted with
10s as the time threshold. )e statistical results are shown in
Table 2.

5.2.White-Box Attack Experiment. )e attack success rate is
the ratio that the confused traffic set is recognized as positive
samples by the classification model. )e EPS parameter
range of the three gradient-based white-box attack algo-
rithms is 1–25. A larger EPS parameter range, i.e., 1–35, is
tested separately for CNNmodel. In the improved white-box
attack method, the EPS of method 1 is 25, the larger EPS of
method 2 is 25, and the smaller EPS is 21.

5.2.1. Gradient Iterative Attack Parameters. In Experiment
1, DNN, CNN, and LSTM binary classification models were
trained using the training set, and three gradient iterative
attack algorithms of FGSM, BIM, and MIM were imple-
mented. )e gradient iterative attack algorithm is applied to
the test set to count the attack success rate under different
EPS values. Figure 5 shows the experimental results of FGSM
algorithm. FGSM is a one-step gradient attack algorithm.
Figure 6 shows the experimental results of BIM and MIM
gradient iterative attack algorithms.

In Figure 5, the attack success rate of CNN is the lowest.
With the increase of EPS, the attack success rate increases

u∙(xR-x)

new synthesized 
sample points

xR-x

x

xR

Figure 4: SMOTE algorithm.
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very slowly. When EPS increases from 1 to 5, the curves of
the DNN and LSTM show an upward trend, and the ac-
curacy of DNN is higher than that of LSTM; when EPS
increases from 5 to 10, the accuracy of LSTM exceeds that of
DNN. When EPS changes to 33, the attack success rate of
FGSM decreases rapidly, from about 45% to 25%. FGSM
algorithm is applied to DNN, CNN, and LSTM traffic
classification models, and the highest attack success rates are
45.45%, 13.7%, and 69.17%, respectively.

In Figure 6, the experimental results of BIM algorithm
are shown in (a), and the experimental results of MIM

algorithm are shown in (b). Compared with the experi-
mental results of FGSM algorithm, DNN, CNN, and LSTM
show similar change trends. However, for DNN curve, there
is no sharp decline in attack success rate within the range of
1–25 limited by EPS value. With the increase of EPS, the
corresponding attack success rate in the three curves shows
an upward trend. In addition, for MIM algorithm, the attack
success rate against DNN and LSTM finally achieves a
similar result. BIM algorithm is applied to DNN, CNN, and
LSTM traffic classification models, and the highest attack
success rates are 77.96%, 15.55%, and 89.43%, respectively.
MIM algorithm is applied to three traffic classification
models: DNN, CNN, and LSTM. )e highest attack success
rates are 89.66%, 17.1%, and 91.46%, respectively.

)e results of Experiment 1 show that the gradient it-
erative attack algorithm has a higher attack success rate than
the one-step gradient attack algorithm, and the MIM al-
gorithm has better performance than the BIM algorithm.
)e gradient-based adversarial attack algorithm is more
effective for DNN and LSTM, but not for CNN.

For the white-box attack of CNN, because Figures 5 and6
cannot describe the change trend of CNN curve in detail,
expand the EPS parameter range to 1–35 for CNN, and use
three gradient-based adversarial attack algorithms to ex-
periment, respectively. )e experimental results are shown
in Figure 7; three different color curves are used to depict the
change of attack success rate of FGSM, BIM, and MIM
gradient methods applied to CNN.When EPS changes to 28,
the attack success rate of MIM algorithm is significantly
improved, from 18.43% to 38.11%, and then the curve is still
stable. With the increase of EPS, FGSM curve and BIM curve
rise slowly.)e experimental results show that it is necessary
to set a larger EPS parameter value to improve CNN

Table 1: Original model and alternative model.

Prior knowledge Combination of original model and alternative model
Less training data DNN-DNN, CNN-CNN, LSTM-LSTM

Less training data + original model
DNN-KNN, DNN-random Forest, DNN-CNN, DNN-LSTM
CNN–KNN, CNN-random Forest、CNN-DNN, CNN-LSTM
LSTM-KNN, LSTM-random Forest, LSTM-DNN, LSTM-CNN

Table 2: Original model and alternative model.

Data set Number of flows Number of packets File size
ori_browsing 68239 833358 557MB
ori_e-mail 1225 55498 325MB
ori_chat 967 20109 7.83MB
ori_streaming 9702 318825 1.97GB
ori_filetransfer 2814 353272 2.78GB
ori_voip 7873 312191 229MB
ori_p2p 72070 1040642 4.01GB
tor_browsing 1797 89527 482MB
tor_e-mail 208 24818 349MB
tor_chat 273 14186 10.9MB
tor_streaming 1725 193356 2.14GB
tor_filetransfer 598 72026 3.05GB
tor_voip 1559 189749 625MB
tor_p2p 1484 188488 4.68GB
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Figure 5: One-step gradient attack algorithm.
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performance. )e experimental results show that the per-
formance of MIM is obviously better than FGSM and BIM
algorithms.

5.2.2. Comparison of White-Box Attack Algorithms. In Ex-
periment 2, four white-box attack algorithms FGSM, BIM,
MIM, and CW are completely applied to the deep learning
classification model, and the attack success rates of the above
four white-box attack algorithms are compared. )e ex-
perimental results are presented in the form of histogram, as
shown in Figure 8.

In Figure 8, for the three deep learning classification
models of DNN, CNN, and LSTM, the attack success rates of
FGSM algorithm are 45.45%, 14.73%, and 69.17%,

respectively, the attack success rates of BIM algorithm are
77.96%, 16.89%, and 89.43%, respectively, the attack success
rates of MIM algorithm are 89.66%, 42.95%, and 90.57%,
respectively, and the attack success rates of CW algorithm
are 59.53%, 15.24%, and 16.82% respectively. Experimental
results show that MIM algorithm is better than FGSM, BIM,
and CW algorithms. In addition, for LSTM, CW algorithm
shows worse attack effect. For the other three algorithms,
LSTM is easier to attack successfully. Compared with DNN
and LSTM, CNN is more robust against white-box attacks.

5.2.3. Improved White-Box Attack Performance.
Experiment 3 tests the performance of the improved white-
box attack algorithm. In order to ensure that the corre-
sponding packet size in the adversarial sample sequence
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Figure 6: Gradient iterative attack algorithm. (a) Basic iterative method. (b) Momentum iteration method.
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follows the monotonic nondecreasing rule, two improved
methods are proposed in Section 3.2.5. Method 1 is to
modify the adversarial sample after a fixed number of it-
erations. )e fixed number of iterations selected in this
experiment is 100 and the total number of iterations is 1000.
Method 2 is to delete the illegal disturbance (negative change
compared to the original value) in each iteration and set a
larger EPS for a single iteration and a smaller EPS for the
final output. )e larger EPS selected in this experiment is 25
and the smaller EPS is 21. Compared with other algorithms,
the MIM algorithm shows a better attack success rate.
)erefore, in experiment 3, the MIM algorithm is selected as
the basic method to test the performance of the improved
white-box attack algorithm, and DNN and LSTM are se-
lected as the attack objects, respectively. )e experimental
results are shown in Figure 9.

5.3.Black-BoxAttackExperiment. )e experiment is divided
into two steps. )e first step is to build an alternative model
and test its performance. )e second step is to test the
success rate of black-box attacks under different model
combinations.

5.3.1. Alternative Model Performance. )e experiment first
needs to build the original model and alternative model.
Figure 10 shows the prediction accuracy of the alternative
model and compares it with the experimental results of the
original model. Figure 11 shows the attack success rate
against the alternative model and compares it with the
experimental results of the original model.

In Figure 10, for the three deep learning algorithms of
DNN, CNN, and LSTM, the accuracy of the original model is
94.77%, 90.02%, and 97.68%, respectively, and the accuracy
of the alternative model is 92.74%, 86.34%, and 91.53%,
respectively. )e experimental results show that because the
training set used by the alternative model is smaller than the
original model, even if SMOTE data enhancement tech-
nology is applied, the recognition accuracy is still lower and
the change rate is smaller than the original model.

In Figure 11, the experimental results show that the
original model has a lower attack success rate than the al-
ternative model in the face of the same antiattack method;
that is, the larger the scale of the model training data set, the
stronger the adversarial attack ability of the model.

5.3.2. Black-Box Attack under Different Combinations.
For the combination of the original model and alternative
model listed in Table 1, MIM and CW are used to carry out
black-box attacks, respectively, to verify the transferability of
adversarial samples. )e experimental results are shown in
Table 3.

In Table 3, for KNN and random forest original
models, the obfuscation traffic set generated by MIM on
the LSTM alternative model is the most effective, and the
success rates of black-box attacks are 34.46% and 66.49%,
respectively. For the original models of DNN, CNN, and
LSTM, the obfuscation traffic set generated by the original

model of MIM under the same architecture is the most
effective, and the success rates of black-box attack are
47.2%, 42.12%, and 73.63%, respectively. )e original
LSTM is most vulnerable to black-box attacks. )e attack
success rate of the confused traffic set generated by MIM
on DNN, CNN, and LSTM alternative models is 67.39%,
65.1%, and 73.63%, respectively. Compared with MIM, the
adversarial traffic samples generated by CW are almost
nontransitive.

5.3.3. Comparison with AdvancedModels. Muhammad et al.
[29] proposed an advanced mutual information (MI) model
and adopts DNN and SVMmodels. Our SMOTE technology
for data enhancement is compared with it in binary class,
and the results are shown in Table 4. Obviously, the success
rate of smote attack is more than 20% higher than that of MI
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attack in DNN and SVM. In the black-box attack, the sample
size is small, and the MI method is prone to sample im-
balance. )e SMOTE method based on difference makes up
for the defect of MI.

6. Conclusions

In order to resist man-in-the-middle traffic analysis attack,
this paper focuses on network traffic obfuscation. We im-
plement and test adversarial attack methods based on gra-
dient, including FGSM, BIM, MIM, and optimization
adversarial attack methods (including CW). For the gradient
iterative method, an improved attack method adapted to the
real strategy is proposed. )e adversarial samples generated
by this method meet the monotonic nondecreasing rule of
packet size. Based on the white-box attack algorithm, we
design and test a black-box attack method by training the
alternative model. )is method needs to find a reliable al-
ternative model, and the decision boundary of the alternative
model is similar to the original model, so the adversarial

samples generated by the alternative model still have a
certain effect on the original model. A series of black-box
attack experiments are carried out for different original
model and alternative model combinations, in which the
alternative model uses SMOTE technology for data en-
hancement. Facing the same attack method, the original
model has a lower attack success rate than the alternative
model.
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Table 3: Black-box attack success rate under different combinations.

Combination KNN (%) Random forest (%) DNN (%) CNN (%) LSTM (%)
DNN+MIM 15.98 33.9 47.2 14.73 67.39
DNN+CW 1.5 11.69 7.1 3.5 6.88
CNN+MIM 33.83 58.18 17.68 42.12 65.1
CNN+CW 1.37 11.56 2.37 1.75 6.62
LSTM+MIM 34.46 66.49 18.31 16.27 73.63
LSTM+CW 3.62 11.95 1.62 0.21 2.17

Table 4: Black-box attack success rate in binary class between MI
and SMOTE.

ML MI (%) SMOTE (%)
DNN 22.58 47.2
SVM 22.62 43.4
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