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Since network systems have become increasingly large and complex, the limitations of traditional abnormal packet
detection have gradually emerged. 0e existing detection methods mainly rely on the recognition of packet features, which
lack the association of specific applications and result in hysteresis and inaccurate judgement. In this paper, a task-oriented
abnormal packet behavior detection method is proposed, which creatively collects action identifications during the
execution of network tasks and inserts security labels into communication packets. Specifically, this paper defines the
network tasks as a collection of state and action sequences to achieve the fine-grained division of the execution of network
tasks, performs Hash value matching based on random communication string and action identification sequence for packet
authentication, and proposes a mechanism of action identification sequence matching and abnormal behavior decision-
making based on a finite state machine, according to the fine-grained monitoring of task execution action sequence.
Furthermore, to verify the validity of the anomaly detection method proposed in this paper, a prototype based on the FTP
communication platform is constructed, on which the simulation experiments, including the DDOS attack and backdoor
attack, are conducted. 0e experimental results show that the proposed task-oriented abnormal behavior detection method
can effectively intercept network malicious data packets and realize the active security defense for network systems.

1. Introduction

Traditional network anomaly detection methods rely on the
recognition of abnormal features which are abstracted from
existing malware. Moreover, the existing assessment
mechanisms only analyze network packets without con-
sidering related applications that generate the packets.
Actually, network packets are one part of applications’
behaviors. 0us, the existing anomaly detection methods
always result in some limitations and inaccuracy [1].

Facing the lack of traditional anomaly detection tech-
nology, this paper proposes a task-oriented method that
associates data packets with terminals’ task running state.
Traditional detection methods tend to detect anomalies
through feature extraction, recognition, and matching.
When an unknown attack is encountered, traditional
methods are ineffective because there is no feature

extraction for the unknown attack before it occurs. Under
the proposed method, a network system model is designed
with a highly integrated security mechanism. Different
from current security defense mechanisms aiming at
extracting packets’ features of existing network attacks, the
method proposed in this paper concentrates on the task’s
process state to classify and obtain the execution state and
action identifications of each process. 0e acquired iden-
tifications can be inserted into data packets as security
labels. Finally, security decisions will be made based on
whether the packets are sent from normal tasks by ana-
lyzing the inserted labels.

Our proposed method separates the data layer and the
control layer, which is similar to the architecture of
Software-Defined Network (SDN) [2]. 0e network layer
of the existing SDN has not been concretely implemented,
while only its data layer and control layer are available.
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0us, the task-oriented anomaly detection method only
utilizes the data layer and the control layer of SDN. On the
data layer, the method realizes the transfer of security
labels based on the basic functions of the network system;
on the control layer, the controller makes security
judgement by using security labels that are transferred by
the data layer.

In order to combine task’s behavior with network
packet, our proposed method regards each task’s state and
action as application’s behavioral characteristics, and a
security label is used to associate data packet and appli-
cation’s behavior. Finite state machine (FSM) is used to
record the normal behavior of a task. By comparing the
information carried by packets with FSM, the proposed
method can detect unknown attacks effectively and prevent
attacks timely. In this paper, a network systemmodel is also
built according to the proposed method. Two related al-
gorithms are designed to realize some basic functions.
Algorithm 1 is designed to extract security labels from the
data packets in the transponder. Algorithm 2 achieves the
function of judging whether there is any abnormal behavior
in the network, which works in the controller. Finally, this
paper reforms the architecture of SDN to set up an ex-
perimental LAN. In this LAN, DDOS attack and backdoor
attack are simulated to verify the validity of the proposed
method.

0is paper makes the following contributions:

(i) We propose a task-oriented method for detecting
abnormal behaviors that associate data packets with
applications and build a task-oriented model for the
implementation of this method.

(ii) We insert security labels into data packets to carry
the state and action information at the terminal and
design an algorithm for extracting the security labels
in the transponder.

(iii) We design an abnormal data packet decision
mechanism that combines the task-oriented FSM
model with the security labels carried by the data
packets to judge whether there is any abnormal
behavior.

(iv) We evaluate the security performance of the pro-
posed method by simulating a DDOS attack and a
backdoor attack to demonstrate the validity of this
method.

0e remainder of this paper proceeds as follows. Section
2 introduces typical existing network traffic anomaly de-
tection methods. Section 3 presents some technologies used
in the paper to abstract the working principles of our task-
oriented model. Section 4 describes the method of gener-
ating a security label and shows how to extract the label from
a data packet. Section 5 designs the algorithms used in the
controller to judge whether the behavior of the task sending
related packet is abnormal. Section 6 shows the experiments
based on the constructed prototype platform, two different
attacks are simulated, and protection results are analyzed.
Section 7 concludes this paper and declares some future
work.

2. Related Work

Since network security has been a major concern in com-
puter networks and systems, many researchers have delved
into areas of network security and proposed different de-
tection mechanisms and technologies [3]. Data feature
matching is a common and traditional method to detect
abnormal network packets. Based on analyzing the packet
characteristics under the normal and abnormal states, ab-
normal packet features are deposited in the feature library
[4]. By extracting the characteristics of data packets and
comparing them with the feature library, whether packets
are normal or abnormal can be judged. 0e disadvantage of
this method is that it relies too much on the feature library,
which is constructed based on existing features.

At present, active detection technologies exploit nu-
merous statistics, data mining, and Machine Learning-
(ML-) based techniques to automatically detect attacks [5].
0ese technologies can be discriminated into shallow ML
and Deep Learning (DL) according to the involved network
architecture. ML-based anomaly detection approaches can
be further classified as supervised [6], semisupervised [7, 8],
and unsupervised [9, 10]. Supervised classification ap-
proaches have a high requirement for the training data,
which should include as many as anomalous examples along
with corresponding labels. Semisupervised anomaly detec-
tion methods extract training data from a sufficiently large
amount of collected logs or network measurements to
provide accurate estimates of the probability distribution of
the normal and malicious classes. Unsupervised anomaly
detection methodologies aim to automatically identify
normal network behaviors from abnormal ones without
exploiting labeled data [11]. Moreover, there are also three
main anomaly detection methods based on Deep Learning,
including Boltzmann Machine- (RBM-) based [12], Stacked
Auto Encoders- (SAE-) based [13], and Convolutional
Neural Network- (CNN-) based [14]. 0e RBM-based
method uses the self-coding network method to reduce the
feature dimension of the high-dimensional and nonlinear
original data, and then the optimal low-dimensional feature
vector obtained in the learning process can be identified by
SVM. 0e SAE-based anomaly detection method extracts
features by learning the traffic data layer by layer with high
accuracy, but the robustness of feature extraction is poor.
0e traffic features extracted by the CNN-based approach
have strong robustness and high detection performance.
However, this method needs to convert network traffic into
images first, which increases the burden of data processing
[15, 16]. All these active detection technologies are greatly
affected by the accuracy of training algorithms.

All the above anomaly detection methods are based on
the analysis of network data itself in the present situation,
which have no association with the state of the application.
0us, many researchers proposed that logs can be used to
correlate application workflow and anomaly detection. Xiao
et al. proposed a method to build an automaton for the
workflow of each management task based on normal exe-
cutions and then check log messages against a set of
automata for workflow divergences in a streaming manner
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[17] to detect anomalies. Du et al. proposed DeepLog, a deep
neural network model to model a system log as a natural
language sequence, which allowed DeepLog to learn log
patterns from normal execution and detect anomalies when
a log pattern deviates from the model trained from log data
during normal execution [18]. Brown et al. presented re-
current neural network language models augmented with
attention to anomaly detection in system logs [19]. Yao et al.
proposed an anomaly detection method based on the
multitask temporal convolutional network in cloud work-
flow, which relies on the feature extraction and recognition
of event sequences and time sequences of tasks in the
workflow [20]. Despite their contributions, these methods
have several limitations. Firstly, the information recorded in
logs is limited so that some anomalies can be missed.
Secondly, all the methods are based on a distributed
background, and it is difficult to aggregate logs of all
components in a normal network. Furthermore, these
methods are unable to detect abnormal packets in time as
they do not combine the information of workflows with
packets.

0us, this paper combines network data packets with
application behaviors to enhance the efficiency of network
abnormal behavior detection and builds finite state ma-
chines from the source code level to record the normal
workflows of applications.

3. Task-Oriented Model and definition

3.1. Task-Oriented Architecture. In order to achieve task-
oriented implementation, our model divides the process of
tasks into actions, states, and corresponding transitions.
Meanwhile, security labels that include the sender’s infor-
mation of states and actions are generated and inserted into
data packets. As we can see, the security labels carried by
data packets are the essential bases for security decision-
making. 0e processing of the information in data packet is
shown in Figure 1.

Data layer of the task-oriented model consists of ter-
minals, transponder, and switch, which are responsible for
the transmission of packets. On the data layer, all data
packets communicated between terminals must pass
through the security label transponder, which extracts se-
curity labels and forwards them to the controller. 0e main
component of the control layer is the controller that con-
ducts the security decision-making. On the control layer, the
controller makes the security decision on whether the data
packet should be intercepted by the switch. According to the
described functions, an example of the task-oriented net-
work system and its workflow is depicted in Figure 2.

Step 1. Terminal 1 sends data packet with security label to
terminal 2. Meanwhile, the encrypted state information of
terminal 1 will also be sent to the controller.

Step 2. 0e packet sent in Step 1 must go through the
transponder, which extracts the security label and forwards
it to the controller. 0en, the packet will be transported to
the switch.

Step 3. After receiving the information sent in Step 1 and
Step 2, the controller can make a security decision on
whether the data packet should be intercepted and then send
the decision to the switch.

Step 4. When the switch receives the decision from the
controller, it can execute a routing strategy to block or
transmit the packet.

3.2. Formal Definition of Task-Oriented Model. A task is
executed by a certain device or program in accordance with a
certain process. 0e form and state transitions of a pro-
gram’s task during the execution are called behaviors, which
are embodied in the flow of actions performed on the entity.
In order to successfully accomplish a task, some features
should be complied with, such as safety, feasibility, nor-
malization, and integrity [21]. We describe the task-oriented
detection abnormal model as follows:

ACTION SET: A � {a 1, a 2, . . ., an} represents a series
of actions executed by a task in a network system, and
each action is a single step.
STATE SET: s � {s 1, s 2, . . ., sn} represents a collection
of task states. A task can reach a certain state after it
executes a certain set of actions, and there are conti-
nuity relations between states.
0e transition between states requires a complete ac-
tion set. 0e state transition function Ti⟶j(A′, si)

represents that the state of task si turns to sj after all
actions in the action set A′ are executed.
NORMAL DATA: it is assumed that the current state
recorded in the controller is si. For the packet of
communication between terminals, if the action ak and
the state sj carried by the packet’s security label satisfy
that the value of T(ak, sj) is greater than 0, the data
packet is normal. T(ak, sj) is defined as follows:

T ak,sj  �
1, if si �� sj or Ti⟶j A′, si(  �� sj  akϵA′( ,

0,others.

⎧⎨

⎩

(1)

When si is equal to sj, that is, the current state does not
change, the task remains in the same state. Besides, when the
action ak triggers the normal transition Ti⟶j(A′, si), the
packet is normal in the current state transition process. On
the contrary, when the state is different from sj or not
triggered by ak, the related packet is abnormal.0erefore, we
can define the abnormal data as follows:

ABNORMAL DATA: consistent with the above situa-
tion, if the value of T(ak, sj) equals 0, the data packet is
labeled as abnormal.
NORMAL TASK: in the process of performing a
complete task, the state moves from s 1 to sn. For any
continuous task state si and sj, the following condition
is satisfied: sj � Ti⟶j(A′, si)|A′⊆A and si ∈ S . A′
represents the set of actions that triggers task’s state
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transition from state si to state sj. sj is not unique and
A′ can be empty.
ABNORMAL TASK: consistent with the above
situation, if the state transits under the condition
that the action sequences are incorrect or the final
state is not expected, the task is abnormal. 0at is, if
there is sj � Ti⟶j(A″, si)|si ∈ S (A″ ≠A′) or
sk � Ti⟶j(A′, si)|A′⊆A (sk ≠ sj), the task will be
judged as abnormal.

Based on the above formal descriptions, the abnormal
behavior can be detected by the deduction of abnormal data
packet. Besides, through the idea of task-oriented archi-
tecture, abnormal data packet is produced by abnormal task
of related terminal. Hence, the relationship among these
three concepts is shown in Figure 3.

4. Generation and Extraction of Security Label

4.1. Security Label Generation. In the task-oriented method,
security judgement can be integrated into every step of data
packet forwarding in the network. In order to associate current
state and action information with network data packet, action
sequence identification is designed in this paper. After being
inserted into data packet, the action sequence identification
becomes the security label of data packet and will be sent to the
controller by the security label transponder.

By analyzing the structure of the IPv4 data packet, the
action identification can be integrated into “Option field.”
As the Option field of IP packet is reserved for storing user-
defined data, inserting related security information into this
field will not affect other functions of data packet. In the
inserting process, two key factors should be considered as
follows.

decision making

packet security label

action state

extraction

other information

terminal

transponder

controller

data layer

control layer

Figure 1: Task-oriented data packet processing flow.

terminal1

controller

send state
information

send state
information

transponder switch terminal2

security
labels

security
decisions

Figure 2: Task-oriented structure and workflow.
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4.1.1. 0e Max Length of Option Field Is 40 Bytes.
Option code field (1 byte): according to RFC791 [22], the 8-bit
option code consists of a 1-bit copy flag, 2-bit option type, and
5-bit option number. As to option type, types “1” and “3” are
suitable for customized identification. 0is paper selects the
reserved type “3” as the customized type and the 11111 as the
5-bit customized option number. 0erefore, the value of 8-bit
option code field is 0x7F.

Action identification field (default 32 bytes): the Hash
value of the action identification sequence is generated by
the task of the terminal.

Communication random string field (default ≤ 7 bytes):
the terminal’s process and the corresponding controller
process can obtain the communication random string Kcs
through the key distribution algorithm.

If the length of Kcs is less than 7 bytes, adequate zeros can
be used to fill it up. Based on the above considerations, the
structure of the Option field can be designed as in Figure 4.

4.1.2. Confidentiality and Antitampering of Option Field.
0e steps for generating the option field are described in
Figure 5:

(a) Generate the Hash value of the message actionM,
which refers to the action identification:
actionHash�Hash(actionM).

(b) Generate the communication random string as the
salt, and get the data block: M′ � actionHash ||Kcs||
padding.

(c) Generate the Hash value of the message M′:
MHash�Hash(M′).

(d) Fill (opType || MHash) in the Option field to con-
struct a complete IP data packet.

As the above factors are considered, the security label can
be inserted into original data packet. 0e Hash computation
and Kcs in the generation steps can ensure the confiden-
tiality and antitampering of the carried information that will
be used in the future judgement mechanisms.

4.2. Security Label Extraction Algorithm. When data packet
reaches the security label transponder, it is necessary to
verify IP packet’s header and extract the security label from
the Option field. 0en, the legal security label will be for-
warded to the control layer. 0e procedure of processing a
single packet can be described in Figure 6.

As shown in Figure 6, the header information can be
extracted by analyzing and processing the IP data packet.
If the length of the header is less than or equal to 0x05, the
packet does contain an empty Option field and will not be
forwarded. As we can see in Section 4.1.1, if the value of
Option code field does not equal 0x7 F, the Option field is
unreasonable and will not be forwarded either.

Otherwise, the security label stored in the Option field
will be extracted and forwarded to the controller.
Meanwhile, the original IP data packet is normally
transmitted to the data forwarding device. 0is paper
proposes a security label extraction algorithm to im-
plement the extracting process.

0e input of Algorithm 1 is an array that consists of
different elements. Each element corresponds to the value of a
byte in a packet orderly. According to the structure of the IPv4
data packet, the ipStream[0] consists of the version number and
the header’s length. 0e version number is 4, and the header’s
length should be more than 5. So, the value of ipStream[0]
should be greater than 0x45 (as shown in Line 2, Algorithm 1).
Since ipStream [20] represents Option code field, the value
should be equal to 0x7f (as shown in Line 3, Algorithm 1). As
mentioned above, the version number is 4, so the header’s
length can be calculated by the formula in Line 4.0e data from
the 21st byte to the end is the security label (as shown in Line 5,
Algorithm 1), which is the output of the algorithm.

5. Abnormal Behavior Judgement

5.1. Task-Oriented FSM. Finite state machine (FSM) is an
abstract computing model [23], which is mainly used to
model the behavior of objects and study the process of
objects’ life cycle. In order to abstract the process of a task, a
basic model of FSM is established under the formal defi-
nitions in Section 3.2. Finite state machine is generally
defined as a six-tuple M � (S, s 0, A, Tx, s′, F):

(i) S: finite state set.
(ii) s 0: initial state, s 0 ∈ S.
(iii) A: input action set.
(iv) Tx: state transition function. Ti⟶j(A′, si) repre-

sents that the state si turns to s j after all actions in
A′ are executed (A′⊆A).

(v) s’: the secondary state, s′ ∈ S.
(vi) F: end state set, F ⊆ S.

0e state transition of a finite state machine mainly
involves four elements: the current state, conditions, the
secondary states, and input actions. 0e conditions refer
to the state transition rules. 0e input actions are the
actions that should be actually executed, while the sec-
ondary state s′ is an entered state. Tx refers to the
transition function between two states. For example,
Ti⟶j(A′, si) represents that the state of task si (initial
state) turns to s j (secondary state) after all the actions in
the action set A′ are executed.

5.2. Abnormal Behavior Detection Mechanism. 0e abnor-
mal behavior detection mechanism in the proposed model is
mainly divided into three parts: data packet authentication,

ABNORMAL DATAABNORMAL TASK ABNORMAL BEHAVIOR
produce deduce

Figure 3: 0e relationship among abnormal task, data, and behavior.
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action sequence identification matching, and security de-
cision generation. 0e relationship between each part is
shown in Figure 7.

0e basis of data packet identity authentication is the
communication random string Kcs which can only be ob-
tained through the key distribution of the public key en-
cryption system. 0erefore, we can assume that the terminal
process and the controller process can get the Kcs, while the
attacker cannot obtain it. 0at is, even if an attacker can
forge data packets, it cannot forge the security label in the
Option field. 0e basis of action sequence identification
matching is that if the action sequence of any data packet is
changed by the attacker, the Hash value in the Option field
cannot be matched successfully. 0e basis for generating
safety decisions is the matching of actual states and actions
with anticipant finite state machine. When the current state
and action of the task are reasonable, the related data packet
is forwardable. Otherwise, if any state transition is recog-
nized as not within the scope of finite state machine, the
related data packet will be intercepted. We can recognize
incorrect state transitions through the abnormal behavior
detection algorithm that is described as Algorithm 2.

0e encrypted message from the terminal contains the
state and action information that is encrypted by DES. 0e
current state and action can be acquired by decrypting the
message. 0e D function is used to decrypt the message (as
shown in Line 3, Algorithm 2). 0en, the Hash value is
computed by MD5 to verify the security label (as shown in
Line 4, Algorithm 2). 0e T function described in 3.2 is used
to distinguish abnormal data from normal data. If the value
of T function equals 0, the behavior is judged as abnormal (as
shown in Line 5, Algorithm 2). If the security label canmatch

OpDataOpType

0 1 40

Actions Kcs Padding

0 32 39
hash

Figure 4: 0e structure of the option field.

IP Header Option data

terminal actionM

=M' actionHash Kcs Padding

=opType MHash Option

produce

Figure 5: Generation of Option field.

start

get IP header

IHL>0x05

Option_code
=0x7F parsing failed

end

Y N

extract the security
label

get the value of IHL

get the value of
Option_code

Y

N

send the label to
controller

send the failure to
controller

Figure 6: 0e procedure of processing a single packet.
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with the action and the value of T function equals 1, it means
no abnormal behavior and the decision signal; that is, the
output of the algorithm is true. Otherwise, the output is false
(as shown in Line 6–12, Algorithm 2).

6. Evaluation

In our experiment, a network system is established based on
FTP [24] to test the file transfer in both normal and ab-
normal environments. 0e prototype system is mainly
composed of server, client, security label transponder,
switch, and controller. 0e network topology diagram of the
experimental system is shown in Figure 8.

6.1. State and Action. According to the division of the FTP
workflow, the entire communication process can be divided
into five states as shown in Table 1.

After the FTP process is started, the STARTstate is entered.
After inputting the user’s name and password, a control con-
nection and a data connection will be created, and the CON-
NECT state is entered. Meanwhile, the server will authenticate
the user’s name and password provided by the client, which is
the AUTHENTICATION state. After the above procedures are
all completed, the client can upload and download files, which is
the TRANSFER state. After finishing the client process, the FSM
will turn to the CLOSE state. 0e final finite state machine is
constructed as M_FTP� (S, s 0, A, Tx, s’, F):

(i) Finite state set: S� {CLOSE, START, CONNECT,
AUTHENTICATION, TRANSFER}.

(ii) Initial state: s 0� START.
(iii) Input action set: A � {Input_login, Input_fPath, ...,

ftp_close}.
(iv) State transition function: Tx.
(v) 0e secondary state: s’.
(vi) End state set: F � {CLOSE}.

After analyzing the source code of FTP, we can get the
mapping relation between states and functions. 0e se-
quence of the functions is shown in Figure 9.

Take downloading a single file as an example. 0e main
action identifications in the FTP process are divided into

multiple types, such as human-computer interaction, mem-
ory (cache) reading, and memory (cache) writing. 0e hu-
man-computer interaction part can be further subdivided into
keyboard inputting and mouse clicking. 0e action identifi-
cations of basic function are subdivided into specific action
identifications such as establishing a socket connection and
sending commands.0ememory (cache) reading and writing
identifications are subdivided into sending data to the system
cache and reading data from the system cache. Table 2 shows
all actions in the process of downloading a single file.

6.2. Normal FTP Workflow. In the process of file trans-
mission under our architecture, the data packet is sent by the
client and passes through the secure label transponder. 0e
secure label transponder extracts the security label and
forwards it to the controller. 0e security authentication
module in the controller uses the corresponding commu-
nication random string Kcs to decrypt the action identifi-
cation sequence sent by the FTP client. If the decryption
result is empty, it means that the identity authentication fails
due to the decryption error. Otherwise, the Hash authen-
tication on the security label is executed. If the Hash value is
matched correctly, action identification matching module is
triggered to verify state and action information. 0e con-
troller combines the current state of the task at the client
with the single packet action identification sequence and
compares related information with the finite state machine
model to determine whether the behavior is abnormal.
Under normal executing conditions, the running results on
the controller are shown in Figure 10.

6.3.DDOSAttack. DDOS is an attack method that exhausts
host resources and ultimately results in failure to respond
to requests from normal users in a timely manner [25]. 0e
attacker starts a daemon on client and uses the daemon to
send data packets with port number 21 to simulate FTP data
packets [26]. Some terminals are used to simulate zombies
as shown in Figure 11. To simulate this attack on our
experimental platform, a new process that can send the
same packets to request a control connection continually
should be created on these zombies. 0e port numbers of
these packets are all 21 to masquerade themselves as sent by

controller

transponder

terminal

authentication

action sequence
identification

matching

generating security
decisions switch

Figure 7: 0e logic of abnormal behavior detection.
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the FTP process. However, the attacker does not know the
random string Kcs of the communication between the real
FTP client process and controller process. 0erefore,
compared with the normal security label, the data packet
forged by the attacker is incomplete. 0e action identifi-
cation sequence that is sent to the controller cannot be
decrypted successfully by the controller using Kcs. It will be
judged as abnormal in the authentication module.

In Figure 12(a), since DDOS attack uses an abnormal
Kcs, an abnormal signal “0e Kcs is false!” is generated on
the controller in Line 4.0e judgement is “Identify failed!” in
Line 5. Because of the failure of identity authentication,
action identification sequence matching is not performed.
0e result “Fail!” is directly generated as shown in
Figure 12(b) and the packets generated by DDOS are
intercepted.

6.4. Backdoor Attack. Backdoor attack is a secret way to
access program and online service [27]. Attackers can
install a backdoor to bypass the system’s conventional

security control rules, thereby gaining control over pro-
gram or system [28]. In order to simulate a backdoor attack,
we set up a backdoor username in FTP and initialize a
global variable of Boolean type bd_flag to False. When the
login succeeds with the backdoor username, bd_flag is
changed to True. After the control connection is generated,
the program can jump to a judgement. If the bd_flag is
True, some files stored in the FTP server will be sent to a
non-FTP port accessible to the attacker by the send()
function. 0e flow of the simulated backdoor attack is
shown in Figure 13.

0e main purpose of the backdoor attack in this paper is
to transmit information to a non-FTP port, causing infor-
mation leakage as shown in Figure 14.0e backdoor attack is
mainly different from the normal transmission in the action
identification sequence.

In Figure 15(a), as all operations are carried out in the
FTP process, the judgement generates “Identify succeed!”
in Line 46. 0us, the authentication module successfully
passes the packet’s identification. In the matching module
of the action identification sequence, an action identifi-
cation for initiating a socket connection to an unknown
port is found in Line 48. 0is action identification does
not exist in the action identification library. 0us, an
action matching exception will occur, which leads to the
final decision result “Fail!” as shown in Line 13 of
Figure 15(b).

6.5. Performance Analysis

6.5.1. Packet Transmission Delay. Transmission delay refers
to the total transmission time consumed by data packets that
are sent from the client to the server. In this paper, Wire-
shark is used to capture network packets on the client and
the server, respectively. Tclient indicates the time when the

192.168.1.203

192.168.2.101

192.168.2.100 192.168.3.100

192.168.4.100

192.168.4.101

192.168.1.201 192.168.1.202 192.168.1.204

192.168.3.101

Client OVS Server

Controller

Figure 8: Network topology diagram of the experimental platform.

Input: IPv4 data packet: ipStream
Output: Security label: secLabel

(1) secLabel� []
(2) if ipStream[0]> 0x45 then
(3) if ipStream [20]� � 0x7f then
(4) headerLen� (ipStream[0] - 0x40) <<2
(5) secLabel� ipStream[20, headerLen - 1]
(6) end if
(7) end if
(8) return secLabel

ALGORITHM 1: Security label extraction algorithm.
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client sends a data packet, while Tserver indicates the time
when the server receives the same data packet. 0e delay
time of file transfer on the network with and without our
task-oriented network abnormal behavior detection method
is compared. 0e delay time is computed as follows:

Tdelay � Tserver − Tclient. (2)

0e Cumulative Distribution Function (CDF) [29] is
used to describe the probability distribution of the trans-
mission delay and is mainly used to visually express the
occurrence probability of transmission delay in a certain
range. 0e value of CDF can be calculated by the following
formula:

start_ftp
(START)

authenticate
(AUTHENTICATION)

data_transfer
(TRANSFER)

connect_21
(CONNECT)

close_ftp
(CLOSE)

Figure 9: FTP function transition diagram.

Input: Security label: secLabel0e encrypted message from the terminal: EncryptedMessage Communication random string: Kcs
Output: Abnormal behavior decision signal: signal

(1) authSig�True
(2) actionSig�True
(3) currentState, action�D(Kcs, EncryptedMessage)
(4) if Hash(Hash(action) || Kcs)� � secLabel then
(5) if T(action, currentState)� � 0 then
(6) actionSig� False
(7) end if
(8) else
(9) authSig� False
(10) end if
(11) signal� actionSig andand authSig
(12) return signal

ALGORITHM 2: Abnormal behavior detection algorithm.

. (a) (b)

Figure 10: Running results on the controller under normal conditions. (a) 0e process of judgement. (b) 0e result of judgement.

OVS Server

Controller

Zombies

...

Figure 11: 0e simulation of DDOS attack.
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CDF �
# of packets_in T

# of all_packets
. (3)

# of packets_in_T represents the number of packets
whose transmission delay is less than Tms. # of all_packets
represents the number of the total sample packets.

0e CDF comparison of the original network system and
the modified network system with the proposed method is
shown in Figure 16.

In the original network system, 82.6% of the packet
transmission delay is less than 0.23ms, while 71% of the
packet transmission is less than 0.23ms in the modified
network system of this paper. 0e data packet transmission
delay of the original network system mainly ranges from
0.18ms to 0.53ms, with an average of 0.34ms, while that of
the network system in this paper mainly ranges from
0.25ms to 0.58ms, with an average of 0.43ms. Packet
transmission latency increases by 0.09ms on average or
26% on average.

0e above experimental results show that the task-ori-
ented abnormal behavior detection method can improve the
defense ability of the network system and cause little
transmission delay of data packets.

6.5.2. Network Packet Detection Accuracy. In our analysis,
CTP denotes the number of correctly classified abnormal
packets,CTN denotes the number of correctly classified benign
packets, CFN denotes the number of incorrectly classified
abnormal packets, and CFP denotes the number of incorrectly
classified benign packets. 0e sum of all the collected packets
can be denoted by Call � CTP + CTN + CFP + CFN.

0us, we calculate the detection accuracy (Accuracy),
false positive rate (FPR), and false negative rate (FNR) by
using the following formulas:

Accuracy �
CTP + CTN

Call

, (4)

FPR �
CFP

CTN + CFP

, (5)

FNR �
CFN

CTP + CFN

. (6)

We conduct experiments and collect data packets in
three different scenarios to evaluate the performance of the
proposed method. Firstly, in the absence of simulated at-
tacks, we generate 1000 data packets to be sent by FTP client.
0en, DDOS and backdoor attacks are triggered to generate
abnormal packets. In the DDOS attack scenario, 500 packets
are sampled, among which 371 are abnormal and 129 are
benign. 0e detection results show that 373 of the sampled
packets are judged as abnormal and 127 as benign. In the
backdoor attack scenario, we also sample 500 packets,
among which 92 are abnormal and 408 are benign. 0e
detection results show that 87 of them are judged as ab-
normal and 413 as benign. According to the comparison
between the detection results of the proposed method and
the correct results, the values of CTP, CTN, CFP, and CFN in
different scenarios are shown in Table 3.

According to Table 3, the values of the above three
parameters Accuracy, FPR, and FNR can be calculated as
shown in Table 4.

(a) (b)

Figure 12: 0e running result of DDOS attack on the controller. (a) 0e process of judgement. (b) 0e result of judgement.

start

bd_flag = False

login with backdoor
username bd_flag = True

generate the control
connection

bd_flag = True

normal workflow

send files to a non-
FTP port

end

Y

N

Y

N

Figure 13: Flowchart of the simulated backdoor attack.
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Table 4 shows that the detection accuracy in normal
communication can reach 95%, with a 5% false positive
rate, meaning that the normal communication function of
the network system is not affected. 0e accuracy of the
network system can reach 80% in the case of DDOS attack,
with a 12% false positive rate and a 4% false negative rate.
As most attack packets are intercepted, the DDOS attack
cannot be effective. In the case of backdoor attack, the

proposed method can reach an accuracy of 87%, with a 1%
false positive rate and an 11% false negative rate. 0us, the
stolen files by the backdoor attack cannot be sent to the
unknown port completely.

6.5.3. Security Performance Analysis. In this paper, if a
packet is generated by normal behavior, it will be continuous
with the state and action of the packet that was previously
generated by the process. 0erefore, it can successfully pass
the authentication module and the abnormal behavior de-
tection module without an abnormal signal. When the
packet is generated by abnormal behavior, it can be divided
into two cases. First, if the data packet is generated by the
attacker disguising the target process, the identity authen-
tication module of the controller will generate abnormal
signal. Second, if the attacker deviates from the normal
execution of the target process, the abnormal behavior
detection module in the controller will output an abnormal
signal.

START AUTHENTICATION TRANSFER

CONNECT

CLOSE

non-FTP
port

Figure 14: State transition diagram of backdoor attack.

. (a) (b)

Figure 15: 0e running result of backdoor attack on the controller. (a) 0e process of judgement. (b) 0e result of judgement.
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CD
F
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Original network system
Modified network system

0

0.2

0.4

0.6

0.8

1

Figure 16: 0e CDF of transmission delay.

Table 1: Correspondence between state and function.

State name Function ID
START start_ftp
CONNECT connect_21
AUTHENTICATION authenticate
TRANSFER data_transfer
CLOSE close_ ftp
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7. Conclusion

0is paper proposed a task-oriented abnormal behavior
detection method, which realizes the linkage defense of the
entire network system. By inserting security labels, the as-
sociation of data packets and tasks is realized.We established
a finite state machine under normal conditions and mon-
itored the states and actions in real time to detect whether
there is any abnormal behavior. Under the FTP experimental
platform, two common attacks were carried out, which
proved the effectiveness of this method.

Nevertheless, the method proposed in this paper still
needs to be further improved. 0e generation of FSM for
more complex application requires adding tags to the
code to get the state transitions and action sequences
precisely. 0e automation method is also required to
generate FSM. Furthermore, the transponder can become
a bottleneck of our method, which needs more efficient
mechanisms for extracting and forwarding security la-
bels. In addition, in the case of large data volume, the
capacity of our method still needs to be improved. We
leave these areas that can be improved as open problems
and our future work.
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