
Research Article
Attacking Websites: Detecting and Preventing HTTP Request
Smuggling Attacks

Qi-Xian Huang ,1 Min-Yi Chiu,1 Ying-Feng Chen,2 and Hung-Min Sun 3

1Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan
2Institute of Information Security, National Tsing Hua University, Hsinchu, Taiwan
3Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Correspondence should be addressed to Hung-Min Sun; hmsun@cs.nthu.edu.tw

Received 6 September 2022; Accepted 13 October 2022; Published 27 October 2022

Academic Editor: Kuo-Hui Yeh

Copyright © 2022 Qi-Xian Huang et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Until the development of HTTP request smuggling in 2005, individual HTTP requests were considered as independent entities
and could not be split or merged. ,is is a security problem caused by inconsistent content length interpretation approach
between web servers, or the web server is not fully implemented in accordance with the RFC standard. It is especially dangerous
for web services with complex web architectures. It can route the victims to receive malicious responses, amplify the impact of
certain low-threat vulnerabilities, steal user credentials, or bypass network devices’ defenses. However, since its concept and
implementation are quite difficult to overcome, it is often ignored by many network administrators, making users who browse
such websites vulnerable to the HTTP request smuggling attacks. ,is paper proposes a general solution to deal with various
HTTP request smuggling attacks. A reverse proxy implemented by Flask validates and cleans dubious HTTP requests from the
client side and ensures that the original requests comply with RFC standards.,erefore, the website administrators no longer need
to configure complicated network settings or customize some open-source project codes to resist or minimize the risk of the
HTTP request smuggling attacks. A series of experiments demonstrate that this method is effective and practical.

1. Introduction

HTTP request smuggling is a unique attack first discussed in
2005 [1]. ,e attack forges an extra HTTP request inside a
normal HTTP request, which is due to the differences in
HTTP request interpretation between a front-end server and
a back-end server. ,e problem occurs when one or more
HTTP devices are running as a complex architecture such as
web servers, cache servers, and proxy servers. In addition,
HTTP request smuggling can be combined with other attack
vectors and make a low-impact vulnerability request dan-
gerous or make a non-vulnerability request vulnerable. For
HTTP request smuggling attacks, an attacker must send
specially made HTTP requests that cause different servers to
diverge in parsing the requests, and the malicious requests
can be passed to the target server without the knowledge of
the other server.

In the groundbreaking research of 2005, three attack
vectors of HTTP request smuggling were proposed. ,e first
is the web cache poisoning, in which attackers can launch
HTTP request smuggling attacks tomanipulate the entries in
a cache server and force regular users to access malicious
contents while using the “poisoned” caches. ,e second is to
bypass a firewall, which, due to the HTTP request smuggling
characteristics, prevents firewall’s security rules from being
applied in smuggled requests because of its inability to parse
the requests. ,is allows the attacker to introduce malicious
content without being detected by a firewall.

,e third is to assume that a user’s TCP connection can
be reused. An attacker can send a request to the web server
by resorting to the next users’ credentials connecting to the
same web server or stealing other users’ credentials by using
XSS (Cross-Site Scripting), making reflected XSS more
threatening.

Hindawi
Security and Communication Networks
Volume 2022, Article ID 3121177, 14 pages
https://doi.org/10.1155/2022/3121177

mailto:hmsun@cs.nthu.edu.tw
https://orcid.org/0000-0002-5507-8337
https://orcid.org/0000-0003-0870-9973
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3121177

1.1. Motivation. Research continued for almost a decade
with little progress until 2015, when an article “Hiding
Wookiees in HTTP” again attracted security researchers’
interest. In 2019, a new attack technique of HTTP request
smuggling was proposed on Black Hat 2019. ,is technique
is to change the structure of Transfer-Encoding in HTTP
protocol to achieve confusion.,en, in 2020, an article based
on Content-Length variants again made outstanding con-
tributions. In recent years, increasing research on HTTP
request smuggling has indicated the need for a simple de-
fense method.

1.2. Contributions. We here propose a method based on
Flask as a reverse proxy to detect and prevent HTTP request
smuggling. ,is method will require any user’s request to
comply with the RFC standard and pass the regex before the
request is sent to the back-end server to examine whether the
request is normal. ,is allows website operators to defend
against such attacks without complicated installation, op-
eration, or settings. ,is defense method is also easy to
extend to other attack methods.

1.3. Organization. ,is paper is organized as follows. Sec-
tion 2 presents the background for this paper, including
HTTP request smuggling, reverse proxy, and RFC standard.
Section 3 describes HTTP request smuggling related work in
detail and proposes the advantages and disadvantages of
various solutions. Section 4 presents the concept, method,
and structure of the implementation and how it can effec-
tively mitigate anHTTP request smuggling attack. In Section
5, evaluation results of our experiments are proposed and
validated. Conclusions are provided in Section 6. Finally,
future work is provided in Section 7.

2. Background

,is section introduces the background, attack methods,
threats, and some case studies of HTTP request smuggling in
more detail. It also introduces the technologies and
frameworks used in our defense system and the standards
referenced by this defense system, including Flask, reverse
proxy, regex, and RFC standard.

2.1. HTTP Request. In general, the normal process when
user is browsing a site is as follows:

(1) ,e user sends a request to the front-end server
(which can also be a load balancer or reverse proxy).

(2) ,e server forwards the request to one or more back-
end servers.

(3) ,e website makes a response to the user.

A simple example is shown in Figure 1. ,is type of web
architecture is very common and cannot be avoided in many
situations.

In an HTTP request, these formats will be included:
Request Line: Start with Method, then Request-URI and
HTTP Protocol version, and finally end with CRLF.

Headers: the header allows the client to pass the message
about the request and the message of the client itself to
the server. Basically, headers can be divided into four
types:

(1) General header fields.
(2) Request header fields.
(3) Response header fields.
(4) Entity header fields.

After the end of Header feild, there will be an Empty
Line. After the empty line, there will be the end of the
Request or the beginning of the Message Body. Message
body: this is not necessary in a request, but when

Browse
Website

Initiate
request

Front-end
Server

Back-end
Server

Database

Figure 1: Example of HTTP request/response from front-end to
back-end.

2 Security and Communication Networks

transmitting specific content or data (such as user ac-
count and password), it is usually used with the POST
method.

,e method in the Request Line will indicate the method
to be executed for the Request-URI, and Figure 2 will list the
request methods. Non-standard header field can also be
customized by the developer. Figure 3 shows a request sent
to https://google.com, illustrating the above content. Fig-
ure 4 is the response from https://google.com.

2.2. HTTP Request Smuggling. HTTP request smuggling is
an attack vector that interferes with website processing
procedures, where the website receives a series of HTTP
requests from malicious users.

HTTP request smuggling is usually very dangerous
because this vulnerability allows attackers to bypass security
controls and access sensitive data without authorization and
directly harm other users who use the application normally.
Figure 5 shows the process of HTTP request smuggling and
how this attack affects other users.

,e vulnerability of HTTP request smuggling [2–6] itself
is based on network communication of the website and has
nothing to do with the program language used. ,erefore,
the website cannot defend HTTP request retrial system from
the choice of program language. Because of the increasing
size and complexity of the website structure, it is difficult for
general developers to cover all possibilities. ,us, defense
solution needs to be as simple as possible so the defense
system does not become a weakness that attackers can
exploit.

2.2.1. Impact. ,is paragraph discusses the harm and impact
of some HTTP request smuggling attacks.

(1) Bypassing security control, some front-end servers
are used as the first defense. If a request is allowed to
pass, it will be forwarded to the back-end server, and
the back-end server will not conduct further in-
spections. However, if the web server contains HTTP
request smuggling vulnerabilities, this can be used to
bypass or invalidate the front-end security system
and smuggle malicious requests to the back-end
server.

(2) Expose front-end request rewriting: some front-end
servers will rewrite user requests before forwarding
them to the back-end, such as adding some required
headers. Attackers can use the functions provided by
the web application itself to attack, such as adding
another POST request to some data parameters, so
the back-end server will process the smuggled re-
quest and respond to it, exposing sensitive
information.

(3) Hijack other users’ requests: if the web application
stores and searches data, HTTP request smuggling
can hijack or obtain the content of other users’ re-
quests, which may contain sensitive information,
such as cookies or other user-sensitive information.

2.2.2. Type of HTTP Request Smuggling. To design a better
defense system, understanding the types of HTTP request
smuggling and attack methods is important, and the fol-
lowing section introduces common methods of exploiting.
Figure 6 shows a simple CL-TE example, showing that both
CL and TE are used in lines 7 and 8, and the value of CL is
14. ,is value (14) covers lines 11 through 13. However,
since TE are also present, the value is Chunked and shows
as 0 in line 11, which means the termination of TE.
,erefore, data after line 12 will be regarded as the be-
ginning of the next request. Figure 7 shows an example of
TE-CL. Similarly, both CL and TE are used in lines 7 and 8,
but here the value of CL is 3 which covers only line 11, and
the rest is regarded as the beginning of the next request
because TE also exists. ,is value is chunked and is
specified as 9 in line 11, so the TE will regard the data to be
transmitted this time as the content of line 12 to line 14.

CL-CL (also known as Double Content-Length attack)
is relatively straightforward. It is the use of most web
servers and middleware for the loose identification of the
request body in the GETmethod request, which leads to the
occurrence of vulnerabilities. Figure 8 shows that line 7 and
line 8 are both CL but the values are different. If the proxy
processes the first CL value first and includes line 11 as part
of the body content, then when the back-end server is
processing, the first CL is ignored and the second CL is
processed first, leading to an HTTP request smuggling
problem. Figure 9 shows an example of TE-TE. Since
writing TE will confuse the web server, the web server can
use parse CL instead of parse TE. Line 8 and line 9 show
that there is a normal TE and a TE with a non-standard
value. If the front-end server judges it as a wrong header
and parses the CL, then it will become a CL-TE attack.
Conversely, if the back-end server judges the TE as an
incorrect header and parses the CL, it will become a TE-CL
attack.

2.2.3. Case Study. To better understand the harm caused by
HTTP request smuggling, this section presents an actual
case.

Researcher Custodio 2020 discovered a large-scale ac-
count takeover that used CL-TE type HTTP request
smuggling to steal session cookies. Force the victim to be
hijacked and route into an open redirect.

(1) Use CL-TE vector to Poisoned Socket on slackb.
(2) Hijack the victim’s request and change the request on

slackb.com to use GET <url> HTTP/1.1.
(3) After the back-end server receives GET <url>

HTTP/1.1, it will cause a 301 redirect <url> and carry
the slack cookie.

(4) Use another server as the <url> in the exploit to steal
the victim’s cookie.

2.3. Flask. Flask is a lightweight web application micro-
framework that uses Python language and is based on the
Werkzeug WSGI (Web Server Gateway Interface)

Security and Communication Networks 3

https://google.com
https://google.com

Figure 2: Request methods.

Figure 3: Sending a request to https://google.com.

Figure 4: Response from https://google.com.

4 Security and Communication Networks

https://google.com
https://google.com

application toolbox. Because it uses a simple core while
maintaining scalability, we use it as the reverse proxy.

2.3.1. Abort. In the defense system, the abort function in
Flask is used extensively since it can respond to interrupt the
user’s request, such as “404 Not Found.” ,is defense plan
refers to the RFC standard to make a “Bad Request” response
to a problematic request with a status code of 400.

2.4. Reverse Proxy. In reverse proxy, the server will obtain
resources from the associated web server based on the user’s
request, and then it returns them to the user. Some common
functions of reverse are shown below, and Figure 10 shows a
simple reverse proxy example.

(1) Hide the IP address of the rear web server from the
user.

(2) As an application firewall, provide security re-
quirements for the website.

(3) Load balancing, through URL redirection to the web
server with lower resource load to obtain resources,
and balance the pressure of all servers.

(4) Provide a cache service, so that when users want to
obtain static content, they can get a faster response,
and also reduce the load on the web server.

(5) Provide NAT traversal to the intranet.

2.5. RegularExpression. Often abbreviated as regex, this uses
a single string to describe a string that meets a certain rule,
that is, an expression that describes a certain rule. Figure 11
shows an example of regex. Since a large part of this defense
system relies on determining the user’s request, it is nec-
essary to establish multiple sets of rules and make appro-
priate decisions based on 189 used scenarios, RFC standards,
and some automated smuggling tools. Since this rule is the
core of the entire defense system, it can neither allow le-
gitimate users to misjudge when making special requests,
nor allow attackers to bypass. ,erefore, we have spent a lot
of thought on the establishment of these rules.

2.6. RFC Standard. Request for Comment (RFC) is a series
of memos issued by the IETF, mainly collecting information
about the Internet. An RFC is issued after the review and is
issued after a given number. ,e standard for the same
subject is to replace the old RFC file with a new RFC file
through a statement so as to update it, and the old RFC file
will not disappear.

For example, the RFC 7230 standard declares that 2616
and 2145 are eliminated and 2817 and 2818 are updated. ,e
content mainly describes the structure of the HTTP system
and the interpretation of terms, while also defining the
HTTP and HTTPS URI schemes, HTTP/1.1 message syntax,
format and parsing methods, and security issues.

3. Related Works

Proposals concerning the detection and defense for HTTP
request smuggling have been presented in the past years.
For example, Watchfire [1] proposed using a strict HTTP
parsing procedure for web servers for not reusing the same
TCP connections after each request. Portswigger [7] made
three suggestions: first, use HTTP/2 as the communication
between front-end server and back-end server; second,
enforce that the entire web architecture uses the same
setting; and third, configure the front-end server to
standardize the format of all problematic requests for
detection. Portswigger has also developed a Burp Suite
extension named HTTP request smuggler for checking
HTTP request smuggling. ,is is an active checker that
issues a series of requests to targets that cause a vulnerable
system to timeout in order to verify the attack is successful.
Another detection technology is Ontology, which presents
a method of utilizing semantic technology in web appli-
cation security, and Munir et al. [8] propose the HTTP
protocol ontology to mitigate the communication proto-
col-related attacks. Klein [9] proposed a detection and
defense technology at the TCP level, which is based on
another proxy server or web server. SafeBreach Labs [10]
adopted a two-layer architecture. ,e first layer is Socket
Abstraction Layer (SAL), which implements multiple
hooks on the socket functions and collects any incoming
network bytes. ,e second layer is the HTTP/1.x request
smuggling firewall (RSFW). ,is layer will force each
request to comply with the HTTP/1.x standard to fulfill the
requirement of protection for HTTP request smuggling.

Attacker Normal User

Specialized
Request

Malicious
Request

Normal
Request

Back-end Server

Figure 5: Flow of HTTP request smuggling.

Security and Communication Networks 5

,e design principle hinges on whenever each request
containing malicious content is found, the socket will be
immediately closed and not forwarded to the web server
[11–18].

In other related research, an article [19] in 2015 once
aroused people’s interest in HTTP request smuggling.
,is article provided detailed introductions to the attack
vectors and exploits of HTTP request smuggling, which
are also pivotal to our experiment. Mantoro [20] pro-
posed a mechanism to detect and defend web attacks

through the reverse proxy. Although it is mainly aimed at
SQL Injection, its concept still brings us some
inspiration.

4. Methodology

4.1. Core Components. Since the method we propose must
strictly meet requirements of the HTTP protocol and request
header in the RFC standard, we briefly describe the concept
and structure of the HTTP request below.

Figure 7: Example of TE-CL.

Figure 8: Example of CL-CL.

Figure 6: Example of CL-TE.

6 Security and Communication Networks

4.1.1. HTTP Request. It must include the start line, protocol,
header, and body of the client’s message to the server.

4.1.2. Start-Line. Start with a method (such as POST, GET,
and OPTIONS), then request URI and protocol version
(such as HTTP/1.1), and end with CRLF (newline).

4.1.3. Header. Define HTTP operating parameters. Non-
standard HTTP headers defined as needed are allowed.
However, some headers are necessary, and a lack of them
may cause failure. ,e header can be divided into general

header, request header, and entity header.,is article mainly
discusses Transfer-Encoding in the general header and
Content-Length in the entity header.

4.1.4. Request Body. ,is carries entities related to the re-
sponse; however, depending on the request method, the
request body may not be needed. ,e request header related
to HTTP request smuggling is discussed below.

4.1.5. Connection. According to RFC7230 [21] (Section 6.1),
Keep-Alive is used by default in HTTP/1.1, which allows
multiple requests to be carried on the same connection. It
appears in the header field “Connection: Keep-Alive” of the
request, which tells the server not to close the TCP con-
nection after receiving the request. ,us, only one TCP
handshake is needed, and continuing to use the same TCP
connection reduces loading on the server. A keep-alive
connection is shown in Figure 12.

4.1.6. Transfer-Encoding (TE). Transfer-Encoding indicates
what type of conversion is applied to the message body.
,ere five main attributes: chunked, compress, deflate, gzip,
and identify. Here we discuss chunked, which wraps the
payload body and is used to divide it into a series of chunks
for transmission.

4.1.7. Content-Length (CL). Unlike Transfer-Encoding,
Content-Length is an entity header, representing the length
of the request body sent to the receiver in decimal. HTTP
request smuggling attack is based on inconsistent parsing
and processing between front-end server and back-end
server (or any middleware such as a reverse proxy) for the
length of HTTP request. ,ese differences enable attackers
to insert one HTTP request into others and achieve
smuggling.

A simple example is shown in Figure 13, a POST request,
including CL and TE. When a website with this vulnerability
receives a request and the front-end server does not support

User

Internet

Reverse Proxy

Server Server Server Server Server

Figure 10: Example of reverse proxy.

Figure 9: Example of TE-TE.

Security and Communication Networks 7

chunked, it resolves the request according to the CL, which
sends the entire request to the back-end server.When the back-
end server receives it, it supports TE and parses the request
body as chunked. When faced with zero, it deems that the
request has terminated and uses the unused G as the beginning
of the subsequent request. It is also necessary to know all
variants of requests that may lead to HTTP request smuggling,
so the requirements and processing specifications of RFC for
exceptional cases of the request are discussed below.

From RFC 7230 [21], specification when TE and CL exist
at the same time, TE has a higher priority than CL, so CL
should be removed before the Request is forward. A 400
error should be returned if any non-standard value exists in
the TE header. For RFC 2616 [22], it specifies that a 400 error

will be returned whenever there are two TE or CL. However,
in RFC 7230, explicitly states that only a valid CL field is
allowed to be reserved.

4.2. SystemArchitecture. Figure 14 shows the architecture of
our system, and Figure 15 shows the system flowchart of our
proposed scheme. ,e system consists of the following
components.

(i) Router. ,is module receives and intercepts all
requests from the client side. Intercepted requests
are passed to the Checker. If the Controller finds no
exception, it uses the function as a reverse proxy to
pass the request to the web server.

(ii) Controller. When this module receives an intercepted
request, it calls the Checker to determine if the re-
quest is an exception. If the Controller gets a “False”
from Checker, it returns a 400 Bad Request or keep
one valid header while removing redundant headers.

(iii) Checker. ,is module defines whether TE and CL
headers are exceptions according to the RFC stan-
dard. In addition to the header value, the headers
themselves need to be checked. For this, the regex is
used to check the header itself, and the header value is
simply the format defined by the RFC standard. If the
value does not belong to the five values of TE, it is
considered as an exception. ,e Checker also checks
if there is more than one TE or CLmixed in a request
and logs such requests as exceptions. ,ough CL or
TE is not necessary for some attack vectors, it can still
cause HTTP request smuggling, such as request
splitting using NULL character injection. ,erefore,
the Checker will also detect whether the header and
request body is abnormal. If any of the inspections
fail, the Checker will return False to the Controller.

(iv) Executor. After the Controller instructs this module,
the specified header is deleted from the underlying
WSGI environment of Flask to ensure that nomixed
or duplicated headers will be transmitted to the web
server.

5. Experimental Result

In this section, we manually send the problematic request to
evaluate whether or not the defense system is as expected.

Client

Open

Server

Close

Figure 12: Keep-alive connection.

Figure 13: Example of HTTP request smuggling.

Figure 11: Example of regex.

8 Security and Communication Networks

Figure 16 shows that the checker detected a non-stan-
dard TE value, Response 400 error, and marked it as a
WARNING to log the request. In the TE header field, the
value xchunked is used to mislead some web servers. As-
suming that the front-end treats xchunked as chunked and
legal but the back-end treats it as invalid, this difference in
interpretation may cause HTTP request smuggling. Also,
Figure 17 shows the content of the problematic TE header in
our system log. ,e difference between Figures 17 and 16 is
that the TE header itself, instead of the value, is the problem.
Figure 18 shows the original request in the green line area,
which sends both TE and CL headers to a server.,e red line
area indicates that the CL is detected and needs to be re-
moved. ,e last orange section shows that CL has been
removed from the underlying WSGI environment of Flask,
leaving only Transfer-Encoding.

Next, the experimental settings and payloads for testing
are selected from Yu [23], which was originally designed to
investigate the exploitation of HTTP request smuggling
attacks, but we took advantage of these environments to
evaluate our solution and test it with different HTTP request
smuggling attacks. ,e five experiment scenarios are listed
below.

(i) Lab1: HaProxy1.6, Apache Traffic Server 6.2.2/7.1.1,
and the latest version of Nginx.

(ii) Lab2: Apache Traffic Server 7.1.2, mattrayner/lamp-
1084 and fbraz3/lnmp 7.1.

(iii) Lab3: HaProxy 2.0 and Gunicorn 20.0.4.
(iv) Lab4: Nginx1.17.6 (CVE-2019-20372).

(v) Lab5: Jetty 9.4.9 (CVE-2017-7656).

More information can be obtained from [23]. ,e de-
fense system uses Flask as the reverse proxy with a port in
5000. Experimental results are shown below.

Figure 19 shows that the request is directly routed to
ATS/7.1.1 (port 8007) when the defense system is not
activated. ,e section outlined in green is the payload for
testing Lab1. Although there are no CL or TE headers, this
is still one variant of the HTTP request smuggling attack
vectors, and the first query contains two bad headers.
Usually, this payload is regarded as two queries, but it is
clear that ATS interprets it as having three queries and
sends back three responses: a 400 Invalid HTTP request, a
200 OK, and 404 Not Found. Figure 20 shows the situation
after executing our defense system that prevents the GET
method from containing any request body with data. One
example is highlighted under “Request Input Stream.” ,e

Request

Router

Checker

Controller

Standard header

False
False

False

True

True

TrueDelete
headers

True

Standard value
of header

CL header with other
 standard headers

False

Response 400 Bad Request

Standard data

Figure 15: System flowchart.

Client

Router

Controller

Checker

Web Server

Executer

Figure 14: System architecture.

Security and Communication Networks 9

Figure 16: Non-standard value of TE header detected in our system log.

Figure 17: Non-standard value of TE header detected in our system log.

Figure 18: Mixed-use case of CL header and TE header.

Figure 19: Payload and response of Lab1 without our system.

10 Security and Communication Networks

Figure 20: Log content of Lab1 generated from our system.

Figure 21: Payload and response of Lab2 without our system.

Figure 22: Log content of Lab2 generated from our system.

Figure 23: Payload and response of Lab3 without our system.

Security and Communication Networks 11

area outlined in green in Figure 21 is the payload used to
request HTTP smuggling tests on Lab2. ,is attack vector
is called “Request Splitting by NULL Character Injection,”

which is a technique that uses NULL character to make
ATS end queries prematurely, and ATS will not close the
connection that continues the second query. ,e ATS
server responds 400 Invalid HTTP Request twice. ,e first
time it responded for aa: \0, and the second time the
request did not comply with the HTTP request standard.
It can be seen that in Figure 22, the system effectively
prevents this situation.

,e green line area in Figure 23 is the payload for testing
Lab3, which is a case of mixed use of TE and CL and causes
the Gunicorn server to return 200 OK twice. It should be
noted that “Transfer-Encoding: \textbackslash x0b chunked”
will be treated by Haproxy as a request. ,erefore, Haproxy
ignores TE header and uses CL header to parse the body, not
dropping TE header but passing the request to the back-end
server. Figure 24 shows that our defense system determines
this request as a non-standard TE value and returns 400 Bad
Request.

,e green outlined area of Figure 25 is the payload used
to test Lab4, and the response is shown below. ,e server
returned a 302 Moved Temporarily and a 200 OK.,e result
of using our defense system in Lab4 is presented in Figure 26.
,e system here can detect any GETmethod containing CL
headers and return 400 Bad Request.

,e green outlined line area in Figure 27 is the payload
used to test Lab5. ,e attack vector is called Chunk size
attribute truncation. Jetty will treat 100000000 as 0, so
there will be two responses. Figure 28 shows that the
expected 400 Bad Request return is actually a 500

Figure 24: Log content of Lab4 generated from our system.

Figure 25: Payload and response of Lab4 without our system.

Figure 26: Log content of Lab4 generated from our system.

Figure 27: Payload and response of Lab5 without defense system.

12 Security and Communication Networks

INTERNAL SERVER ERROR, which may be because the
Flask itself cannot be too long or have a non-standard TE
length. However, this smuggling payload will not be
forwarded to the back-end server, so the defense was still
successful.

6. Conclusion

In the increasingly complex web architecture, attacks against
HTTP Protocol are more and more diverse. In this study, we
introduce a novel method to defend against HTTP request
smuggling. ,is approach provides an efficient scheme that
can be applied to almost any web server and makes web
servers more secure without complex configuration. Al-
though this methodology is just a proof of concept, it shows
potential to be applied tomitigate other similar attacks as well.

7. Recommendations for Future Work

,is research mainly presents a solution for HTTP request
smuggling, which can be effective in real-world scenarios.
However, because we do not use large-scale and complex
websites, as in real-world scenarios, if the architecture is
complex or a website has high traffic, there may be per-
formance issues requiring improvement. In addition, this
system can be further modified to incorporate load bal-
ancing, so it has the potential for future development.

Data Availability

,e data used to support the findings of this study can be
accessed from the following website: https://github.com/
ZeddYu/HTTP-Smuggling-Lab.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is research was supported in part by the Ministry of
Science and Technology, Taiwan, under project nos.
MOST110-2221-E-007-040-MY3 and MOST111-2221-E-
007-078-MY3.

References

[1] R. Heled, HTTP-Request-Smuggling, Portswigger, Chelford
Road, Knutsford, 2005.

[2] B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda, “T-reqs:
HTTP request smuggling with differential fuzzing,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS’21), November 2021.

[3] K. James, Http Desync Attacks: Request Smuggling Reborn.
PortSwigger Web Security BlogPortswigger, Chelford Road,
Knutsford, 2019.

[4] K. James, Password <eft login.newrelic.Com via Request
Smuggling, HackerOne, San Francisco, California, 2019.

[5] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana,
“Nezha: efficient domain-independent differential testing,” in
Proceedings of the 2017 IEEE Symposium on Security and
Privacy (SP), Jose, CA, USA, May 2017.

[6] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson,
“Host of troubles: multiple host ambiguities in HTTP
implementations,” in Proceedings of the ACM Conference on
Computer and Communications Security, Vienna, Austria,
October 2016.

[7] J. Kettle, HTTP Desync Attacks: Smashing into the Cell Next
Door, Portswigger, Black Hat USA, 2019.

[8] R. F. Munir, N. Ahmed, A. Razzaq, A. Hur, and F. Ahmad,
“Detect HTTP specification attacks using ontology,” in Pro-
ceedings of the 2011 Frontiers of Information Technology,
pp. 75–78, IEEE, Islamabad, Pakistan, December 2011.

[9] A. Klein, “Technical note: detecting and preventing http re-
sponse splitting and http request smuggling attacks at the tcp
level,” 2005, https://www.securityfocus.com/archive/1/
408135.

[10] A. Klein, HTTP Request Smuggling In 2020 – New Variants,
New Defenses and New Challenges, Portswigger, Black Hat
USA, 2020.

[11] E. E. Han, “Detection of web application attacks with request
length module and regex pattern analysis,” in Proceedings of
the International Conference on Genetic and Evolutionary
Computing, pp. 157–165, Springer, NewYork, NY, USA,
August 2015.

[12] M. Grenfeldt, A. Olofsson, V. Engström, and R. Lagerström,
“Attacking websites using HTTP request smuggling: empir-
ical testing of servers and proxies,” in Proceedings of the 2021
IEEE 25th International Enterprise Distributed Object Com-
puting Conference (EDOC), pp. 173–181, IEEE, Gold Coast,
Australia, October 2021.

[13] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson,
“Host of troubles: multiple host ambiguities in http imple-
mentations,” in Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna,
Austria, October 2016.

[14] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel,
“SWAP: mitigating XSS attacks using a reverse proxy,” in
Proceedings of the 2009 ICSE Workshop on Software Engi-
neering for Secure Systems, pp. 33–39, IEEE, Vancouver, BC,
Canada, May 2009.

[15] C. H. Lin, J. C. Liu, and C. C. Lien, “Detection method based
on reverse proxy against web flooding attacks,”vol. 3,
pp. 281–284, in Proceedings of the 2008 8th International
Conference on Intelligent Systems Design and Applications,
vol. 3, pp. 281–284, IEEE, Kaohsuing, Taiwan, November
2008.

[16] A. Lamba, “Analysing sanitization technique of reverse proxy
framework for enhancing database-security,” International
Journal of Information and Computing Science, vol. 1, no. 1,
2014.

[17] A. Razzaq, Z. Anwar, H. F. Ahmad, K. Latif, and F. Munir,
“Ontology for attack detection: an intelligent approach to web
application security,” Computers & Security, vol. 45,
pp. 124–146, 2014.

Figure 28: ,e response of Lab5 with our system.

Security and Communication Networks 13

https://github.com/ZeddYu/HTTP-Smuggling-Lab
https://github.com/ZeddYu/HTTP-Smuggling-Lab
https://www.securityfocus.com/archive/1/408135
https://www.securityfocus.com/archive/1/408135

[18] M. A. Wazzan and M. H. Awadh, “Towards improving web
attack detection: highlighting the significant factors,” in
Proceedings of the 2015 5th International Conference on IT
Convergence and Security (ICITCS), pp. 1–5, IEEE, Kuala
Lumpur, Malaysia, August 2015.

[19] R. Leroy, “Checking HTTP Smuggling issues in 2015 - Part1,”
2015, http://regilero.github.io/security/english/2015/10/04/
http_smuggling_in_2015_part_one/.

[20] T. Mantoro, “Log visualization of intrusion and prevention
reverse proxy server against Web attacks,” in Proceedings of
the 2013 International Conference on Informatics and Creative
Multimedia, pp. 325–329, IEEE, Kuala Lumpur, Malaysia,
September 2013.

[21] R. Fielding and J. Reschke, Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing, RFC-editor, Cal-
ifornia, 2014.

[22] R. Fielding, J. Gettys, J. Mogul et al., Hypertext Transfer
Protocol – HTTP/1.1, RFC-editor, California. , https://www.
rfc-editor.org/info/rfc2616, 1999.

[23] Z. Yu, “HTTP-Smuggling-Lab - github,” 2019, https://github.
com/ZeddYu/HTTP-Smuggling-Lab.

[24] R. Fielding and J. Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content,” 2014, https://www.rfc-
editor.org/rfc/rfc7231.txt.

[25] E. Custodio, “smuggler-GitHub,” 2021, https://github.com/
defparam/smuggler.

14 Security and Communication Networks

http://regilero.github.io/security/english/2015/10/04/http_smuggling_in_2015_part_one/
http://regilero.github.io/security/english/2015/10/04/http_smuggling_in_2015_part_one/
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://github.com/ZeddYu/HTTP-Smuggling-Lab
https://github.com/ZeddYu/HTTP-Smuggling-Lab
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.rfc-editor.org/rfc/rfc7231.txt
https://github.com/defparam/smuggler
https://github.com/defparam/smuggler

