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'e detection of botnets has always been a hot spot in the field of network security. However, there are still many challenges in
botnet detection. Most of the current botnet detection approaches, such as machine learning and blacklists, cannot discover
evolving botnet variants. 'ese methods are usually only valid for specific botnet protocols which are not general. Even they may
be difficult to deal with encrypted botnet traffic. In this paper, we design a protocol-independent botnet detectionmethod for these
challenges. Our detection method takes advantage of the group characteristic of the botnet, which is the inherent characteristics of
the botnet. We use the sequence of packet length as the characteristic of a flow. 'en, we calculate the similarity between these
sequences to detect botnets. Our method has an excellent generality, which is not affected by encrypted traffic and the protocols of
the botnet. Experiments on a challenging dataset ISCX show that the proposed method can effectively detect botnets with a high
average detection rate and low false alarm, which significantly outperforms the state-of-the-art methods. 'erefore, the proposed
detection method is robust and has a wide range of adaptability in detecting botnets.

1. Introduction

A botnet is a one-to-many network formed between the
controller and the infected host. 'ere are many methods
that can be used by botnet controllers (attackers) to
spread bot viruses. Once the host is infected with a bot
virus, it will become a part of this botnet. 'e infected
host will receive the attacker’s instructions through a
control and command (C&C) channel. 'e infected
computers (bots) are silently driven and commanded by
the botnet controller to launch cyberattacks. A botnet is
equivalent to a platform for attackers to control bots to
perform malicious activities. Attackers can conduct
distributed denial of service (DDoS) attacks, spread
spam, perform network blackmail, and steal personal
information through botnets. It brings great challenges to
network security and personal privacy protection. Hosts
infected as bots can avoid being discovered by network
monitoring agencies in a variety of methods, such as
constantly updating themselves, disabling antivirus ap-
plications, and preventing DNS from looking up certain

domain names. 'ese methods increase the difficulty of
botnet detection.

It is well known that the threat of botnets to the Internet
is exceedingly scary. With the development of new tech-
nologies, botnet detection is facing increasing challenges.
Mirai is a new type of botnet that has emerged in recent
years. It is the driving force behind the latest large-scale
DDoS attack [1]. Mirai infects more than 100,000 IoTdevices
to form a huge botnet, which may be the largest DDoS attack
in history. It is estimated that Mirai’s throughput has
reached 1.2 Tbps.

'e structure of botnet can be summarized into two
categories, namely, centralized and decentralized structure.
For a centralized botnet, a communication channel is
established between the C&C server and all bots. 'ere are
many botnets that are based on centralized structure, such as
AgoBot, SDBot, and RBot [2, 3]. 'e protocols adopted by
these botnets are mainly based on HTTP and Internet Relay
Chat (IRC) protocols. 'e flexible and simple structure of
the IRC protocol is favored by many hackers. Botnets based
on the HTTP protocol are usually concealed and difficult to
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detect. 'e decentralized botnet uses P2P-based protocols.
When issuing the command, the botmaster randomly selects
a bot as the C&C server to communicate with other bots.
Since the P2P-based botnets effectively avoid the problem of
a single point of failure, they greatly enhance the surviv-
ability of the botnet [4].

'e botnet detection technology has always been a re-
search hotspot in the field of network security. Researchers
have proposed a large number of methods to detect botnet
[5, 6]. 'ese methods can be summarized into five cate-
gories, that is, signature-based methods, anomaly-based
methods, honeypot-based methods, specific protocol
structure-based methods, and community-based methods.
'e signature-based methods [7] cannot detect unknown
botnets and their variants. Moreover, the encryption tech-
nology used in the botnet negates the effects of these
methods. Anomaly-based detection methods [8] are based
on the assumption that the communication pattern of the
botnet is different from that of the benign network. How-
ever, the bots can mimic the communication pattern of the
normal hosts to evade the anomaly detection technology.
Detection methods based on honeypot technology can only
detect existing botnets. 'is method has poor real-time
performance. Detection methods based on specific protocols
and structures [9] cannot detect botnets with different
protocols or structures. For community-based anomaly
detection algorithms [10], they cannot accurately identify
botnets when there is no complete communication graph.
Nowadays, cyberhackers are adopting new technologies to
constantly update botnets in terms of creation, maintenance,
and communication mechanisms. 'erefore, existing de-
tection technologies cannot cope with unknown and in-
creasingly complex botnets.

A botnet is defined as a coordinated group of malware
instances that are controlled by a botnet master via C&C
channels [11]. 'e bots in the same botnet have the same or
similar traffic characteristics. In this paper, we propose a
protocol-independent botnet detection framework to identify
botnet traffic by analyzing the similarity of the traffic flows.
Our method can discover bots who initiate these flows that
have similar traffic characteristics. More specifically, if the
network traffic initiated by a certain host has a great similarity,
it can be concluded that the traffic is generated by botnet
activities according to the attributes of the botnet. 'e hosts
involved in this traffic are bots in the monitored network. We
use the sequence of packet length as the characteristic of the
flow. 'e sequence of packet length is easy to obtain and is
very effective for detecting botnets. 'e sequence of packet
length is a vector composed of the length of all the packets in a
flow. Each element in the sequence is arranged in sequence
according to the order of packet transmission. 'e degree of
similarity between these flows determines whether these flows
are botnet traffic. In addition, although the length of the
ciphertext output by the encryption algorithm may be dif-
ferent from that of the plaintext, the length of the ciphertext
output by the same encryption algorithm is the same for the
plaintext of the same length. 'erefore, for the packets in a
network flow, the encryption algorithm will not change the
relationship between the lengths of these packets. Hence, the

length of packets applied as the characteristic of the flow
makes the detection method very robust.

'is paper makes the following major contributions:

(i) A protocol-independent botnet detection frame-
work is proposed based on the group characteristics
of botnets, which are the inherent characteristics of
botnets. Our botnet detection framework is not
affected by the C&C protocol. It can be applied to
detect bots in both centralized and P2P-based
botnets. Compared with the prior work, the detector
proposed in this paper is always reliable and effi-
cient, no matter what C&C protocol the botnet
adopts.

(ii) 'e sequence of packet length is proposed as the
characteristic of the flow, which is easy to obtain and
is effective for detecting botnets. 'e packet length
applied as the characteristic of the flow makes the
detection method very robust.

(iii) A bot detection prototype system is implemented.
'e detection effect of the system is evaluated on
dataset ISCX [12]. 'e results show that the system
has a high true positive rate and a low false positive
rate.

2. Related Work

Many researchers have been making continuous efforts to
detect botnet. BotMiner [11] is a framework to detect groups
of compromised machines that are part of a botnet. 'e
framework is independent of the C&C protocol. It identifies
bots by clustering similar malicious traffic and communi-
cation patterns. 'e authors implement the BotMiner
prototype system and evaluate the result using traces of
many real-world networks. 'e results show that BotMiner
can detect real-world botnets (such as P2P-based botnets,
HTTP-based botnets, and IRC-based botnets) with high
accuracy and low false positive rate [11]. However, BotMiner
needs to analyze the content of the traffic load, which may
fail when the traffic is encrypted.

An adaptive framework for detecting botnets is presented
in [13]. It is composed of three components, namely, Behavior
Extractor, Behavior Identifier, and Feedback Provider. Be-
havior Extractors generate Behavior Instances (BIs) of hosts
from network traffic periodically. BIs are representations of
host behavior in a time period. To classify malicious BIs,
Behavior Identifier is implemented, which employs a real-time
statistical model named Behavioral Model (BM). Feedback
Provider can alert the network administrator when it receives a
message that malicious BIs are found by Behavior Identifier. At
the same time, the Feedback Provider can update BM based on
whether the administrator confirms that the host found by
Behavior Identifier is malicious. When a new bot appears, the
framework requires the administrator to confirm whether the
bot is genuine. 'erefore, the professional level of the ad-
ministrator may be the bottleneck that affects its detection of
new bots.

DBod is a DGA-based botnet detection framework based
on analysis of the query behavior of DNS traffic [14]. 'e
research assumes that bots in the same DGA-based botnet
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query the same sets of domains in the domain list. Since only
a very limited number of the domains are actually associated
with an active C&C communication [14], most DNS requests
sent by bots will fail and generate NXDomains. 'e main
observation behind DBod is that DGA-based bots are dif-
ferent from benign hosts in the distribution of DNS query
time and the count of NXDomains. DBod consists of a
filtering module, a clustering module, and a group identi-
fication module [14]. DBod does not require prior knowl-
edge for training and can detect new bots. However, it will
fail when there is no DNS traffic.

Wang et al. [15] propose a two-stage approach for botnet
detection. In the first stage, they perform two different
anomaly detection, namely, flow-based anomaly detection
and graph-based anomaly detection. In the second stage,
they identify the pivotal nodes of the discovered anomalies,
evaluate pivotal interaction measures, and construct cor-
relation graphs. Community detection is used to identify
botnets. 'eir approach is based on two observations: (1)
Botmasters and victims communicate with many other
nodes, which are easy to be detected. (2) 'e infected hosts
often communicate with each other, resulting in a strong
correlation between them.

PsyBoG [16] applies signal processing technology to
botnet detection. 'ey analyze the time phase and similarity
of DNS traffic to identify botnet. PsyBoG uses power spectral
density (PSD) analysis, which is a signal processing tech-
nology, to detect the major frequency of periodic botnet
behavior.'en, it clusters the hosts based on the similarity of
traffic patterns [16]. PsyBoG detects previously unknown
botnets based on the suspicious DNS manner.

Zhuang et al. [17] propose an effective system, Enhanced
PeerHunter, to detect P2P-based botnet. Enhanced Peer-
Hunter is based on network flow level community behavior
analysis. It is capable of detecting P2P botnets when (a)
botnets are in their waiting stage; (b) the C&C channel has
been encrypted; (c) the botnet traffic is overlapped with
legitimate P2P traffic on the same host; and (d) no statistical
traffic pattern is known in advance (unsupervised). To detect
P2P botnets, Enhanced PeerHunter first detects P2P net-
work traffic. 'en, it builds a network flow level mutual
contacts graph. Finally, it uses community detection to
discover P2P-based botnets.

With in-depth research on machine learning, it is in-
creasingly applied to the detection of botnets.

Carl et al. [18] compare the performance of network
classifiers based on different machine learning techniques
(such as J48, naive Bayes, and Bayesian) to find the classifier
with the highest recognition rate. 'e result is that a naive
Bayes classifier performs best. In addition, the classification
sensitivity to the training set size is determined experi-
mentally by them in this paper. Accurate labels are critical,
however. Once the labels of the training data are inaccurate,
the performance of the classifier will suffer greatly.

Mohammad et al. [19] propose an approach that exploits
the reinforcement learning technique to detect infected hosts
in a peer-to-peer (P2P) botnet. Specifically, they develop a
traffic reduction method to deal with a high volume of
network traffic. However, botnets dynamically change their

operations through updating after several life cycle stages.
Hence, the proposed approach will fail if it is not improved
dynamically throughout time.

In addition, Pektas et al. [20] design a framework that
combines convolutional and recurrent neural network to
identify botnets. 'e proposed system extracts network flow
features, such as duration, size of packets, and other related
flow-based features. However, this method usually has weak
generalization ability and cannot effectively identify un-
known types of botnet traffic.

Mousavi et al. [21] focus on scalability in high-rate
network bandwidth. 'ey propose a fully scalable big data
framework based on Hadoop to deploy many different kinds
of botnet detection methods, including statistics-based
methods, machine learning-based methods, and graph-
based methods. 'e experimental results show that the
framework can perform well. In addition, the running time
of the proposed framework is logarithmic proportional to
the volume of the input. Despite its advantages, the
framework proposed in this paper has its drawback. It is not
affordable for smaller enterprises to provide enough com-
putational resources which are required to install the pro-
posed framework.

Soodeh et al. [22] propose a method based on convo-
lution neural networks and negative selection algorithms to
detect botnet. 'ey focus on the activity of incoming packets
and detect botnet traffic from them. Alharbi and Alsubhi
[23] exploit a graph-based machine learning model to detect
botnet traffic. 'ey consider the significance of graph fea-
tures and develop a generalized model for detecting botnets
based on features that are selected using five filter-based
feature evaluation measures derived from consistency,
correlation, and information theory. Biswas and Roy [24]
explore a method to detect botnet traffic using deep learning
approaches like Artificial Neural Networks (ANN), Gatted
Recurrent Units (GRU), and Long or Short Term Memory
(LSTM) model. 'e proposed method has shown how it can
perform against both normal attack data and botnet-specific
attack data. Javier et al. [25] focus on the method to increase
the performance of botnet traffic classification. 'ey use
Information Gain andGini Importance to select features and
evaluate the selected features through performing three
models, that is, Decision Tree, Random Forest, and
k-Nearest Neighbor. Wan et al. [26] design a multilayer
framework to detect botnet traffic. 'e detection model
consists of a filtering module and classification module
which exploits machine learning algorithms. 'eir detection
model is based on behavior-based analysis. 'is research
examines the features useful for creating a behavior-based
analysis method for detecting botnets in network traffic. 'e
computational complexity of the machine learning-based
method is relatively large, which is difficult to deploy in the
realistic setting. Moreover, the generalization ability of
models based on machine learning is limited and cannot
cope with the endless botnets.

In conclusion, these existing studies have some limita-
tions. Some methods can only be effective for botnets that
use specific protocols. 'ey cannot detect newly emerging
botnets. Moreover, some methods are based on historical
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data. Once the botnet variations appear, these methods will
be powerless.'e detectionmethod proposed in this paper is
based on the group characteristics of the botnet, which are
inherent characteristics of the botnet. Our method is in-
dependent of the botnet protocol and is not affected by
encrypted data.

3. Detection Framework and Implementation

3.1. Research Objectives. Our research goal is to find the bot
in the monitoring network by analyzing the traffic crossing
the boundary of the monitoring network. We exploit the fact
that all botnets have group characteristics, and the rela-
tionship between the length of packets in a flow will not be
affected by the encryption algorithm. Specifically, within a
certain period of time, the flows generated by bots in the
same botnet are similar. We analyze the similarity of net-
work traffic to detect bots of the botnet. It is commonly
known that the communication of most botnets is based on
Transmission Control Protocol (TCP) [2], such as Waledac
botnet [3], storm botnet [4], Conficker botnet [10], and Zeus
botnet [9]. 'erefore, the research of our method mainly
focuses on TCP flows. 'e process of normal hosts evolving
into bots can be divided into three stages. In the first stage,
hosts are infected by botnet malware. In the second stage,
hosts receive the command from the botmaster and join the
botnet. Finally, hosts initiate a network attack at an ap-
propriate time. 'e host will show malicious abnormal
behavior in the second and third stages. 'erefore, the
detection method proposed in this paper works during the
second and third stages to realize the detection of bots. It
cannot be able to recognize the hosts that have just been
infected by the malware. In this paper, we do not pay at-
tention to how the host is infected or how the botnet
malware is spread. Our research goal is to detect the bots that
generate malicious TCP flows in the monitored network.

Our research objectives are as follows:

(i) 'e bot detection framework is independent of the
protocol and structure adopted by botnet channels.
Its detection performance is not affected by the
botnet protocol and structure.

(ii) 'e bot detection framework does not need to
analyze the content of the traffic payload. Hence, it
is not affected by encrypted traffic and will not
violate the privacy of network users.

(iii) 'e bot detection framework can effectively detect
botnet traffic and identify bots with a high detection
rate and a low false positive rate.

(iv) 'e bot detection framework must have low com-
plexity. It cannot consume too much computing
resources and time.

3.2. Bot Detection Framework. As shown in Figure 1, the
bot detection framework includes five modules, that is,
network traffic acquirer, preprocessing module, attack flow
recognizer, infection flow recognizer, and result integration
module.

Formally, we define Fi � (sipi, dipi, sporti, dporti,

pktlenseqi) to denote the TCP flow with the sequence of
packet length of host hi, where sipi is the source IP address,
sporti is the source port number, dipi is the destination IP
address, and dporti is the destination port number.
pktlenseqi is the sequence of packet length, which is a vector
composed of the length of all the packets in a flow, as defined
in (1). Each element in the sequence is arranged in sequence
according to the order of packet transmission. 'e degree of
similarity between flows determines whether the monitored
traffic is botnet traffic. Although the length of the ciphertext
output by the encryption algorithm may be different from
that of the plaintext, the length of the ciphertext output by
the same encryption algorithm is the same for the plaintext
of the same length. 'erefore, for the packets in a network
flow, the encryption algorithm will not change the rela-
tionship between the lengths of these packets. 'erefore, our
method based on the packet length for detecting botnets is
robust.

pktlenseqi � leni1, leni2, . . . , lenin . (1)

Suppose there are two flows Fi and Fj, R(Fi, Fj) refers
to the communication relationship between Fi and Fj,
as defined in (2). 'e communication relationship indicates
whether the two flows have the same mapping of source
IP address or destination IP address. If there is a commu-
nication relationship, R(Fi, Fj) � True. Otherwise,
R(Fi, Fj) � False.

R Fi, Fj  �

True iff sipi(  � f sipj 

orf dipi(  � f dipj .

False others.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

In (2), f(ip) is the mapping function of IP address. 'e
simplest mapping is self-mapping; that is, f(ip) � ip. 'ere
are also some other mappings, such as f(ip) �

domain name, that is, the mapping relationship between IP
address and DNS domain names. If f(ipi) � f(ipj), it means
that ipi and ipj are the same in the “mapping sense.” Spe-
cifically, if f(ip) � ip, then according to f(ipi) � f(ipj), it is
obvious that ipi � ipj. If f(ip) � domain name, we can know
that ipi and ipj have the same domain name and ipi and ipj

belong to the same host. In this paper, we use the self-mapping,
namely, f(ip) � ip. FC denotes the set of flows that have
communication relationships between each other, as defined in

FC � F1, F2, . . . , Fk ∣ R Fi, Fj  � 1, 1≤ i, j≤ k . (3)

'e network traffic acquirer can be deployed not only
inside the monitored network to analyze the traffic in the
internal network to detect botnet but also at the boundary of
the monitored network. When the network traffic acquirer is
deployed at the boundary of the monitored network, it is
responsible for capturing the traffic entering and leaving the
boundary of the monitoring network. In this case, the traffic
captured by the network traffic acquirer is between the
internal network and the external network, which does not
include pure internal network traffic. 'e packet lengths are
obtained by parsing the IP header of the packet. 'en, they
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are integrated into the sequence of packet length in as-
cending order of the TCP sequence number for flow sim-
ilarity analysis.

'e preprocessing module is composed of three mod-
ules, namely, IP Partition, Port Partition, and Flow First
Time Filter. Since the bot detection framework is based on
the similarity of flows, we are only interested in flows that
have communication relationships with each other. 'ere-
fore, we must first know which hosts are involved in these
flows. 'e IP Partition module divides the traffic according
to whether the collected traffic has a communication rela-
tionship (as (3)). It mainly solves the problem of “which
hosts communicate with each other.” Moreover, the services
used for communication between these hosts are also very
important. We can determine the services through the TCP
port number. 'e Port Partition module aggregates flows on
the same source port number or the same destination port
number. It mainly solves the problem of “what communi-
cations do the hosts carry out.” According to the distribution
of port numbers, we divide the flows into two categories,
namely, attack flows and infection flows. 'e attack flows
refer to the traffic generated by bots when they launch a
network attack. 'e infection flows refer to the traffic
generated by bots when they are in the propagation phase.

We analyze the attack flows and the infection flows from
two perspectives, that is, the bot and the vulnerable victim.
When a botnet launches a network attack, the vulnerable
victims are the attack targets, which may be the target of
multiple attacks at the same time. When receiving the attack
instruction, the bot will use the maximum resources to
launch an attack on the target, such as the traffic of DDoS
attacks. 'erefore, when observing the attack flows from the
perspective of the bot, the distribution of the port numbers
presents a many-to-one situation, that is, multiple ports of
the bot actively establish TCP connections with the same
ports of the vulnerable victims. When observing the attack
flows from the perspective of the vulnerable victim, the
distribution of port numbers presents a one-to-many situ-
ation. 'e ports of vulnerable victims are passively con-
nected with multiple different hosts.

'e infection flows are traffic generated by bots during the
process of conducting malware propagation or vulnerability
scanning. Meanwhile, some traffic is the commands conveyed
by the botmaster to bots. Hence, when observing the infection
flows from the perspective of the bot, the unique TCP port of
bots actively establishes connections with multiple hosts. From
the perspective of the vulnerable victim, the infection flows
present that the unique TCP port is passively communicating
with the same port of multiple hosts. For each TCP flow, the
first packet time of the flow in both directions (upstream and
downstream) determines the initiative and passivity of
“establishing a TCP flow.”

Based on all the above observations, the TCP flows within a
certain period of time are grouped according to the IP address
and port number to form the TCP flow blocks. 'en, the
sequences of packet length of the flows in the blocks are ob-
tained. Afterward, the attack flow recognizer calculates the
similarity of the packet length sequences of these flows from the
perspective of the bot.Meanwhile, the infection flow recognizer
calculates the similarity of the packet length sequences of these
flows from the perspective of the vulnerable victim. Finally, the
result integration module is responsible for summarizing the
recognition results of the recognizer and obtains a collection of
malicious TCP flows.

'e following sections will detail the implementation of
each part of the detection framework.

3.3. Network TrafficAcquirer. We have developed an effective
network traffic capture module, namely, network traffic
acquirer. In this paper, we limit our interest to TCP flows. Each
flow contains the following information: source IP, destination
IP, source port, destination port, timestamp, and length of
packets in two directions. Our research is based on the fact that
the TCPflows generated by the bots in the same botnet within a
certain time frame are similar.'erefore, we set a flow window
according to the start time of the flows. 'e network traffic
acquirer captures a certain number of TCP flows based on the
flow window. Let WinSize denote the size of a flow window.
When the number of captured flows exceeds WinSize, these

PreProcess

Attack Flow
Recognizer

Bot Perspective

Vulnerable-Victim
Perspective

Vulnerable-Victim
Perspective

Infection Flow
Recognizer

Bot Perspective

Results
Integration

IP Partition

Port Partition

Flow First Time
Filter

Network Traffic
Acquirer

Figure 1: 'e framework of bot detection.
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flows are submitted as a collection to subsequent modules for
analysis to detect malicious flows. WinSize is the minimum
number of flows to detect botnet through traffic analysis. In
addition, the flow truncation is performed to reduce the
computational cost. We empirically use the first 16 packets of
the TCP flow rather than the whole TCP flow. If the packet
number of the TCP flows is greater than 16, the TCP flow is
truncated. 'e truncation algorithm is shown in Algorithm 1.

'e packet len seq, the input parameter of Algorithm 1, is
the sequence of packet length, which is composed of the length
of TCP payload. 'ere are two thresholds that have been set for
TCP flow truncation, that is, len limit1 and
len limit2(len limit1 > len limit2). 'ey correspond to two
situations. 'e first situation is that the TCP payload lengths of
all packets in the entire TCP flow are zero. In this case, the
strategy we adopt is to truncate the TCP flow according to
len limit1.'en, a sequence of length len limit1 is obtained. All
elements in this sequence are 0. 'e second situation is that the
number of packets with payload in the TCP flow exceeds
len limit2. In this case, the flow is truncated at the position
P(len limit2). P(x) is a function to obtain the position (index)
of the x-th packet with payload in the flow. Hence,
P(len limit2) can return the index of the len limit2-th packet
with payload in the flow. len limit1 has a higher priority than
len limit2. 'erefore, if P(len limit2)> len limit1, truncation
is performed according to len limit1. If the number of packets in
a complete TCP flow does not exceed P(len limit2) and
len limit1, all packets are reserved. In addition, the TCP flags are
used to determine the beginning and end of the flow. 'e SYN
flag indicates that a new TCP flow has started. If there is no SYN
packet in a TCP flow, the flow can be considered incomplete. In
this paper, the incomplete flows will be directly discarded. 'e
FIN flag and RST flag indicate the end of a TCP flow.

3.4. Flow Preprocessing. 'e flow preprocessing module is
responsible for preliminarily segmenting the collected flows
in a window according to the IP address and TCP port
numbers. In this way, it can determine which flows have
communication relations (as (2)) and which flows have the

same service. 'e flow preprocessing module consists of
three parts, namely, IP Partition, Port Partition, and Flow
First Time Filter.

3.4.1. IP Partition. 'e IP addresses of the flows captured by
network traffic acquirer are regarded as nodes. If there is a
TCP flow between two IP addresses, an edge is connected
between the nodes corresponding to the two IP addresses. In
this way, an undirected graph G is constructed to represent
the connection relationship between hosts, as shown in the
left subgraph of Figure 2. 'e undirected graph G can be
represented algebraically by the adjacency matrix. Firstly,
the source IP addresses and destination IP addresses of all
the flows are extracted. 'en, the duplicate IP addresses are
removed. Finally, we construct the adjacency matrix M

corresponding to the undirected graph G according to
whether there are TCP flows between these IP addresses.'e
adjacency matrix M is a square matrix. 'e size of M is the
number of unique IP addresses in the TCP flow collection. If
there are TCP flows between ipi and ipj, the elements at the

Require: packet len seq

Ensure: trunc packetlen seq

Param: len limit1, len limit2
if len(packet len seq)> len limit1 then
trunc packetlen seq � packet len seq[0: len limit1]
end if
packet index � 0
for packet len ∈ trunc packetlen seq do
if packet len> 0 then
packet index+ � 1

end if
if packet index> � len limit2 then
break

end if
end for
return trunc packetlen seq[0: packet index]

ALGORITHM 1: Truncation algorithm.

v6

v3

v5v4

v2

v1

v8
v7

v9

v11v10
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v9

v11v10

v1

v2
v6

v3

v4 v5

Figure 2: 'e hosts with communication relationships are sepa-
rated based on the IP adjacency graph.'e gray dots v1, v7{ } are the
edges of the subgraphs. By traversing the graph from the boundary
nodes, the subgraph can be obtained.
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positions (i, j) and (j, i) in the adjacency matrix M are set to
1. Otherwise, the elements are set to 0. 'erefore, the ad-
jacency matrix is symmetric about the main diagonal.

In a flow collection, there are local connections to form a
subgraph structure, which represents the block of nodes. For
example, the left of Figure 2 contains two subgraphs. Each
subgraph in G needs to be analyzed separately. IP Partition
can divide the hosts into blocks according to the connection
relationship.'e schematic diagram of IP Partition is shown
in Figure 2. In Figure 2, there are two blocks of nodes,
namely, Block1 � v1, v2, v3, v4, v5, v6{ } and Block2 � v7, v8,{

v9, v10}. 'e hosts in Block1 are connected by edges with
each other. 'e same is true between the hosts in Block2.
However, Block1 and Block2 are independent of each other.
'ere is no connection relationship between the hosts in
Block1 and the hosts in Block2. To extract the blocks from G,
two steps must be performed. Firstly, the boundary node of
the block needs to be located.'e boundary nodes only have
adjacent edges to nodes in the block where they are located.
'en, all nodes in the block can be obtained by walking
through the graph from different boundary nodes. If there is
an edge connecting two vertices, it can walk from one vertex
to another. 'e algorithm for finding the nodes of the same
block is shown in Algorithm 2.

In Algorithm 2, M is the adjacency matrix, and v is a
vertex of M. Block v denotes the block to which v belongs.
v all represents the set of vertices in M.

To find the “boundary” nodes, the undirected graph G

needs to be transformed into a directed graph D through
orientation. Due to the bidirectional nature of TCP flows, we
use arbitrary orientation in this paper. Firstly, the nodes in the
undirected graph G are assigned consecutive numbers. As-
suming that there are n nodes in graphG, the numbers of these
nodes are one to n. 'en, the direction of all edges in graph G

is determined from the node with the smaller number to the
node with the larger number. In this way, the undirected graph
G is converted into directed graph D, that is, G⟶ D.

LetMG andMD denote the adjacencymatrix of undirected
graph G and directed graph D, respectively. According to the
orientation process, it can be concluded that
MD � UpTriu(MG). UpTriu(MG) is the upper triangular
matrix of MG. 'e in-degree and out-degree of the vertex can

be calculated by MD. 'ere is exactly one directed edge be-
tween two vertices in the directed graph D. 'erefore, if the in-
degree or the out-degree of the vertex is zero, the vertex is
located in the “boundary” of the subgraph. Formally, V− refers
to the set of vertices whose in-degrees are 0, andV+ refers to the
set of vertices whose out-degrees are 0, as defined in

V
−

� v ∣ v ∈ G, andd
−

(v) � 0{ }

V
+

� v ∣ v ∈ G, andd
+
(v) � 0 .

(4)

Vertices in both V− and V+ can be used to determine the
boundary vertices. In this paper, the vertices in V− are used
to find boundary vertices. As shown in the subfigure on the
right side of Figure 2, V− contains two vertices, namely,
v1, v7. When starting from the vertices of V− and walking
through the undirected graph G, the subgraphs (blocks) are
obtained. 'e algorithm for dividing all nodes into different
blocks according to the connection relationship is shown in
Algorithm 3. In Algorithm 3, Sections is the set of all blocks.

3.4.2. Port Partition. In the above sections, we have divided
different nodes into different blocks according to the
communication relationship between nodes. In this section,
the Port Partition module aggregates TCP flows between
hosts in the same block.

Given an IP address ipi in a block, according to (3), we
can get the set FC of TCP flows that have communication
relationships. As introduced in Section 3.2, the Port Par-
tition module firstly divides FC into attack flows and in-
fection flows and then analyzes them from two perspectives
of the bot and the vulnerable victim. 'e attack flows have
the following two characteristics when they are observed
from the perspective of the bot: (i) the destination port
numbers of all attack flows are the same, and (ii) the
initiator of the TCP flows is the bot. In addition, there are
different characteristics when observing the attack flows
from the perspective of the vulnerable victim: (i)'e source
port numbers are the same, and (ii) the initiator of the TCP
flows is the bot. As shown in Figures 3 and 4, the direction
of the arrow is from the initiator of the TCP stream to the
receiver. Figure 3 shows the attack flows from the per-
spective of the bot. 'e IP shared by these TCP flows is the

Require: M, v

Ensure: Block v

if v ∉ Block v then
Block v � Block v∪ v

else
return

end if
for v s ∈ v all do

if M[v, v s] �� 1andv s ∉ Block v then
Recursively call FindBlocks to add all vertices adjacent to v s to the Block v

end if
end for
return trunc packetlen seq[0: packet index]

ALGORITHM 2: FindBlocks, the algorithm for finding the blocks of nodes.

Security and Communication Networks 7



IP of the bot. Moreover, the attack flows from the per-
spective of the vulnerable victim are shown in Figure 4. 'e
hosts at the noncentral location of these TCP streams are

bots. 'ere is one bot shown in Figure 3, and there are three
bots shown in Figure 4.

However, the features of infection flows are different.
When observing them from the perspective of the bot, there
are the following two characteristics: (i) the infection flows
have the same source port number, and (ii) the initiator of
the TCP flows is the bot. In addition, when observing the
infection flows from the perspective of the vulnerable victim,
there are the following characteristics: the infection flows
have the same destination port number, and the initiator of
the TCP flows is the bot. No matter from which point of
view, the initiators of the TCP flows are always the bots, as
shown in Figures 5 and 6.

Based on the above analysis, we get the following port
division schemes. Firstly, the directions of TCP flows in the
set FC are adjusted to take ipi as the “source direction.”
'en, these flows are clustered according to the following
four strategies: (i) the flows that with the same destination
port number and whose initiators are ipi, (ii) the flows that
with the same source port number and whose initiators are
not ipi, (iii) the flows that with the same source port number
and whose initiators are ipi, and (iv) the flows that with the
same destination port number and whose initiators are not
ipi. 'e attack flows are aggregated based on (i) and (ii). 'e
infection flows are aggregated based on (iii) and (iv). 'e
initiator of the flows is determined by the Flow First Time
Filter.

3.4.3. Flow First Time Filter. Flow First Time Filter module
determines the initiator of the TCP flows according to the
timestamp of the first packet of the TCP flows. Given an IP
address ipi, the TCP flow with ipi as the source address is
downstream, and the TCP flow with ipi as the destination
address is upstream. If the timestamp of the first packet of
the downstream flow is less than that of the first packet of the
upstream flow, the initiator of this TCP flow is ipi; otherwise,
the initiator is not ipi.

Vulnerable Victim Vulnerable Victim Vulnerable Victim

808080

1963
1857

1990

1993

Bot

1992

1988

Figure 3: Attack flows from the perspective of bot.

Vulnerable Victim

Bot Bot

2048

2049

2030
2031

1088

1089

80

Bot

Figure 4: Attack flows from the perspective of vulnerable victim.

Require: M # adjacencymatrix of undirected graphG

Ensure: SectionsMD � UpTriu(M)

for column of MDdo
# get the set of in − degrees of all vertices
InDegree.append(sum (column))

end for
for v ∈M do

# get the boundary vertices
if InDegree(v) �� 0 then

boundary vertices.append (v)

end if
end for
# divide all nodes into blocks
for v ∈ boundary vertices do

block v � FindBlocks(M, v)

Sections.append (block v)

end for

ALGORITHM 3: FindSections, dividing all nodes into blocks.
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3.5.Malicious FlowRecognition. 'e group nature of botnet
makes that the flows of bots often present a certain sim-
ilarity between the flows of the bots. Once the botnet is
active, the traffic generated by different bots has a high
similarity with each other. In addition, some botnets use
encryption algorithms to avoid detection. However, the
relationship between the length of packets in a flow will not
be affected by the encryption algorithm. In this paper, we
focus on the method of calculating the similarity of TCP
flows. 'e sequence of the packet length is adopted to
evaluate the similarity of the flows.'e method we adopt to
calculate the similarity of the packet length sequence of
TCP flows is the Levenshtein algorithm [27]. If the two
sequences are completely the same, the similarity is 1. If the
two sequences are completely different, the similarity is 0.
'e Levenshtein algorithm is mainly used to calculate the
distance between two strings, which is the minimum
number of editing operations required to convert one
string to another. Editing operations allowed during the
conversion process include (i) replacing one character with
another character, (ii) inserting a character, and (iii) de-
leting a character.

Given two strings a and b, the Levenshtein algorithm can
be formally defined as (5) to calculate the similarity between
the string a and b. In (5), i(i> 0) represents the i-th position
of string a, and j(j> 0) represents the j-th position of string
b. When i � 0 or j � 0, the distance of string a and b is zero.
Let SimRatio denote the similarity of the packet length
sequences. 'en, SimRatio(a, b) equals leva,b(len(a),

len(b)), where len(a) is the length of string a.

leva,b(i, j) � min

leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i − 1, j − 1) + 1ai ≠ bj.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

When calculating the similarity of the sequences of the
packet length, the sequences of packet length are regarded as
strings. Hence, the Levenshtein algorithm is applicable. In
actual application, some tips are introduced to improve the
performance of the algorithm. Firstly, suppose that the el-
ements of the two sequences are the same, and only the
length of the two sequences is compared. 'e similarity of
two sequences in terms of length Simlen is defined as (6).
Given the similarity threshold Simthre, if Simlen is less than
the similarity threshold Simthre, it can be directly recognized
that the two sequences are different, and the Levenshtein
algorithm is no longer required. 'e complexity of Simlen is
much less than that of the Levenshtein algorithm.'erefore,
the computational complexity can be reduced when cal-
culating the similarity of sequences.

Simlen � 1 −
len s1(  − len s2( 




len s1(  + len s2( 
. (6)

'e overall process of bot detection is shown in Figure 7.
In Figure 7, the dots are used to represent the hosts.'e gray
dots represent the hosts in the internal network, and the
black dots represent the hosts in the external network. 'e
black solid lines indicate that there are TCP flows between
the hosts. 'e dotted lines represent TCP flows. Figure 7
shows an IP Block with 10 hosts, namely, n1, n2, . . . , n10. We
analyze the hosts in the IP Block in turn. 'e process of
analyzing the host n1 is shown in the dashed box. First, the
TCP flows that have a communication relationship with the
host n1 are collected. 'ese TCP flows are denoted as
FC � f1, f2, f3, . . . , f12 .'en, the flows in FC are divided
by the Port Partition algorithm to generate some TCP flow
blocks. Finally, the Levenshtein algorithm is used to calculate
the similarity of these flows in the flow blocks.'e flows with
high similarity (exceeding the threshold Simthre) are
regarded as malicious flows, and the bots are identified
according to the strategy adopted in the Port Partition al-
gorithm. In Figure 7, f1, f4 , f10, f12  are finally detected
as malicious flows. 'erefore, the host n1 can be identified as
a malicious bot.

4. Experimental Analysis

'e detection performance of the proposed bot detection
method is evaluated in this paper. 'e detection perfor-
mance is mainly evaluated from three aspects: (i) the

Vulnerable Victim

1963

1857
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1993

1992

1988

Bot

21 21 21
Bot Bot

Figure 6: Infection flows from the perspective of vulnerable victim.
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Figure 5: Infection flows from the perspective of bot.
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detection accuracy (true positive rate and false positive
rate) of the detection system on the dataset ISCX, (ii) the
influence of different parameter settings on the detection
effect, and (iii) comparing the performance of the method
proposed in [13].

4.1. Dataset. We employ the ISCX botnet dataset for our
experiments. ISCX [12] is a publicly available dataset that
combines nonoverlapping subsets of three other datasets.
ISCX dataset contains traffic from 16 different IRC, P2P-
based, and HTTP-based botnets, which makes the ISCX
dataset more general, realistic, and representative. 'e ISCX
dataset consists of two subsets: training and testing. 'e
training dataset is 5.3GB in size, of which 43.92% is mali-
cious traffic (including 7 types of botnets). 'e testing
dataset is 8.5GB in size, of which 44.97% is malicious traffic
(including 16 types of botnets). Figures 8 and 9 show the
distribution of the number of TCP flows in the ISCX dataset.
Figure 8 shows the traffic distribution in the training dataset,
and Figure 9 is about the testing dataset.

4.2. Experimental Evaluation. Since the detection method
we designed does not require a training process, the training
dataset and the testing dataset are treated the same, and we
conducted experimental evaluations in both datasets. 'e

experimental results are compared with [13] from two as-
pects: bot detection rate (TPR) and false alarm rate (FPR),
as defined in

TPR �
the number of detected bots

total number of bots
,

FPR �
false alerts

total number of benign hosts
.

(7)

TPR measures whether our method can effectively
detect bots. FPR measures the side effect of our method
that benign hosts are incorrectly identified as bots. 'e
higher TPR is, the better it is. 'e lower FPR is, the better
it is.

'ere are two parameters that need to be set. One is the
size of the flow window WinSize. 'e other is the similarity
threshold Simthre. Firstly, we set the similarity threshold
Simthre � 0.99 to observe the influence of different flow
window sizes on the recognition results. WinSize is set to 10,
50, 100, and 200 in turn, and the recognition results are
recorded for comparison, as shown in Table 1. When the
WinSize increases, the method proposed in this paper can
detect traffic in a larger range, which helps to improve the
detection rate of the method. In addition, the number of
benign traffic flows will also increase with the increase of
WinSize, and the probability of detection errors will also
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Figure 7: 'e overall process of bot detection.
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increase slightly.'erefore, FPR increases to a certain extent
with the increase of WinSize.

'e experimental results show that a high detection rate
can be achieved without setting an excessively large win-
dow size. When the window size continues to increase, TPR

will quickly reach the optimal stable state. However, FPR

increases slightly. 'e experimental results show that a
large window size will increase the false positive rate. In
addition, there are 28 bot hosts (or host pairs) in the ISCX-
Testing dataset. Our method successfully detects 27 of them
(27/28 � 0.96428); only Osx trojan (IP: 172.29.0.109) is not
detected. 'e reason is that there is only one Osx trojan
TCP flow in the ISCX-Testing dataset, as shown in Figure 9.
Our detection method requires at least two related TCP

flows to get a conclusion. Hence, the detection of
Osx trojan failed.

In addition, we set the flow window size WinSize � 10 to
observe the influence of different thresholds Simthre on the
recognition results. Simthre is set to 0.7, 0.8, 0.9, and 0.99 in
turn, and then the recognition results are recorded for
comparison. 'e results are shown in Table 2.

'e experimental results show that the optimal effect can
be achieved in the training dataset when Simthre is set to 0.7.
With the increase of Simthre, the detection rate and false
alarm rate have not changed. In the testing dataset, the
detection rate does not change when Simthre keeps in-
creasing, but the false alarm rate (FPR) gradually decreases.
'erefore, the larger Simthre, the lower the false alarm rate.

Many research works choose different datasets for
method verification. 'e verification results are different by
selecting different datasets.'erefore, to be relatively fair, we
compare the methods proposed in this paper with those of
others who also choose the ISCX dataset to verify the model
effects. 'e methods in Table 3 have achieved remarkable
results in botnet detection. Meanwhile, they are influential
research works. 'e authors of [13] propose an adaptive
botnet detection framework, which uses the SVM model to
detect botnet. 'ey train the model on the ISCX-training
dataset and then evaluate the effect on the ISCX test dataset.
Beigi et al. [8] focus on the proper selection and experi-
mental assessment of features for accurate detection of
botnets. Mohammad Alauthaman et al. [28] present a
method based on an adaptive multilayer feedforward neural
network in cooperation with decision trees to detect P2P-
based bots. Soodeh Hosseini et al. [22] use a novel botnet
detection and classification method based on convolution
neural networks and negative selection algorithms. 'ey all
more or less select the ISCX dataset or partial samples in the
dataset to verify the performance of the proposed methods.
'e comparison results are shown in Table 3. 'rough the
comparison of the experimental results, it can be seen that
our method is more effective.

4.3. Flow Window Fluctuation. Since WinSize is the mini-
mum value of the flow window, the size of the flow window
fluctuates actually, as shown in Figure 10.

'e fluctuation of the flow window size affects the use of
memory, which is an important aspect of model perfor-
mance. Figure 10 shows the fluctuation of the size of the
flow window when setting different WinSize. Figures 10(a)
and 10(b) are the fluctuations of the flow window size in the

Table 1: Evaluate the effect of different WinSize on the results.

WinSize
ISCX-training

dataset ISCX-testing dataset

TPR FPR TPR FPR
10 1.0 0.00706 0.92857 0.05034
50 1.0 0.00797 0.96428 0.06013
100 1.0 0.00813 0.96428 0.07015
200 1.0 0.00889 0.96428 0.08041
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Figure 8: TCP flow distribution in the training dataset. 'e
abscissa represents the botnet, and the ordinate represents the
number of flows.
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represents the botnet, and the ordinate represents the number of
flows.
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training and testing datasets, respectively. It can be seen
that most of the window sizes fluctuate around the
WinSize, except for a sharp increase in the size of individual
windows.

In addition, the running time of our detection method
implemented in python is evaluated on a personal laptop
(Intel i7-6500U CPU, 2.59GHz, 16 GB Memory, Windows
10) with the ISCX-Testing dataset. When evaluating the
running time, the time of the network traffic acquirer
module is not considered. TCP flow windows are con-
tinuously fed to the subsequent TCP flow processing
modules (preprocess module, attack flow recognizer
module, infection flow recognizer module, and result in-
tegration module). 'e running time is shown in Figure 11.
'e result is that the larger the window, the longer the
running time.
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Figure 10: 'e fluctuation of the flow window size with different WinSize. (a) and (b) are the fluctuations of the flow window size in the
training and testing datasets, respectively.

Table 2: Evaluate the effect of different Simthre on the results.

Simthre

ISCX-training dataset ISCX-testing dataset
TPR FPR TPR FPR

0.7 1.0 0.00706 0.92857 0.05239
0.8 1.0 0.00706 0.92857 0.05193
0.9 1.0 0.00706 0.92857 0.05056
0.99 1.0 0.00706 0.92857 0.05034

Table 3: Comparison of experimental results.

Methods TPR FPR
Javier et al. [13]-1 1.0 0.082
Javier et al. [13]-2 0.48 0.0017
Beigi et al. [8] 0.75 0.023
Alauthaman et al. [28] 0.992 0.0075
Hosseini et al. [22] 0.99 —
Our method 1.0 0.00706
“—” indicates that the corresponding result is not presented in the paper.
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Figure 11: 'e impact of different WinSize on runtime.
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5. Conclusion

In this paper, we have proposed a protocol-independent bot
detection framework based on the similarity of flows to detect
botnets. 'e proposed method does not rely on the protocol
and structure of botnets, which exploits the fact that all botnets
have group characteristics and the sequence of packet length is
not affected by encryption. 'erefore, the sequence of packet
length is used as the characteristic of the TCP flow, and the
similarity of TCP flows is calculated to detect botnet traffic.We
evaluated the experimental results on the ISCX dataset, and the
results show that our method has excellent performance.

In the future, we will consider UDP packets to better deal
with the new botnet technology. Meanwhile, we will make
the detection system more robust and prevent botnets from
using UDP to escape detection. In addition, the performance
of the system will be further optimized to enable the system
to process traffic in real-time.
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