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In the internet of things, user information is usually collected by all kinds of smart devices.*e collected user information is stored
in the cloud storage, and there is a risk of information leakage. In order to protect the security and the privacy of user information,
the user and cloud provider will periodically execute a protocol called proof of retrievability scheme. A proof of retrievability
scheme ensures the security of the data by generating proof to convince the user that the cloud provider does correctly store the
user information. In this paper, we construct a proof of retrievability scheme using the blockchain technology. Using the
advantage that the stored data cannot be tampered with in blockchain, this ensures the integrity of the data. Specifically, some
related definitions, security models, and a blockchain-based construction of a proof of retrievability scheme are given. *en the
validity and security of the scheme are proved later. As a result, user information can be protected by our scheme.

1. Introduction

1.1. Background. With the information systems coming into
our life, there are many user private information appliances
such as surveillance cameras, smartwatches, smart door
locks, and the online supermarket. *ey provide a lot of
convenience for our life. However, these providers will
collect user information and store it in the cloud where new
technologies are widely used [1–7]. Due to the vulnerability
of the cloud, user information could be attacked by hackers
in information systems and can be easily stolen if the cloud
storage provider is compromised. Among the problems and
challenges of cloud storage [8–10], only the problem of how
to ensure the security and integrity of the information is
considered in the paper. In order to solve it, three kinds of
methods are used [11]: proof of ownership (PoW), provable
data possession (PDP), and proof of retrievability (PoR). We
focus on the PoR and for the state-of-the-art of PoR, the
reader is referred to [11–25].

Generally, the schemes of PoR are under different set-
tings and security models. On the one hand, some schemes
[11–14] are for static data. Some schemes [15–17] discussed

the multiserver setting. In these schemes, the client can
identify machines and recover the data from the others by
using the audit mechanism. Other schemes [18–25] are for
dynamic data. On the other hand, works in [18–21] are about
security. *e authors of [22–24] researched on memory
checking and study how to authenticate remotely stored
dynamic data. *e scheme in [25] is for the multiserver and
dynamic data setting.

Recently, blockchain is used to eliminate a trusted third
party in many protocols [26]. However, it is still unknown
how to utilize blockchain in PoR schemes, which is also a
new challenge in constructing a PoR scheme.

1.2.MotivationandContribution. *e concept of blockchain
was first proposed in 2008 in “Bitcoin: a peer-to-peer
electronic cash system” [27] published by the cryptography
mailing group by a scholar known by the pseudonym
“Satoshi Nakamoto.” *e verification, bookkeeping, storage,
maintenance, and transmission of the data in blockchain are
all based on the distributed system structure, and the trust
relationship between distributed nodes is established by the
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pure mathematical method instead of the central mecha-
nism. *us, a decentralized and reliable distributed system
can be formed.*e goal of blockchain is to provide trusty for
transactions between untrusted entities, without the need for
a trusted third party. At present, many institutions have
combined the industry conditions with the characteristics of
blockchain andmade beneficial attempts in many industries,
including payment, Internet of things, credit investigation,
transaction settlement and clearing, crowdfunding, equity
transaction, audit, supply chain, digital asset management,
notarization, and other fields [28–33]. We consider using
blockchain technology to solve the problem of the trusted
third party in the verification of the PoR scheme.

In this paper, we first define a security model for the
blockchain-based proof of retrievability by modifying the
model in [14, 34, 35]. Secondly, we propose the first concrete
PoR scheme based on blockchain. Finally, we demonstrate
that the proposed scheme is provably secure in the new
model.

1.3. Organization. *e rest of the paper is organized as
follows. Preliminaries are given in Section 2. In Section 3, we
formally define the framework and security model for
blockchain-based PoR schemes. *en a concrete construc-
tion of a blockchain-based scheme is presented in Section 4.
We analyze the security of the proposed scheme in Section 5.
Finally, conclusions are made in Section 6.

2. Preliminaries

In this section, some notions are introduced such as hash
function, Merkle tree, blockchain, and bilinear pairing.

2.1.HashFunction. *e hash function H is used to map data
x of an arbitrary length (input) to data y � H(x) of fixed
length (output). y is called the hash of x. Many Hash
functions [36] are widely publicly available and can be se-
lected based on the context.

H: 0, 1{ }
∗ ⟶ 0, 1{ }

n
. (1)

*is transformation is a compression mapping, which
has the following properties:

(i) *e space of the hash value is usually much smaller
than the space of the input.

(ii) Different inputs may hash into the same output, but
it is hard to find two different inputs x, x′ such that
H(x) � H(x′).

(iii) It is infeasible to determine the input value x from
the hash value y.

Assumption 1 (hash function preimage assumption). Given
y � H(x), it is hard to compute x.

Assumption 2 (hash function collision assumption). Given
x, it is hard to compute x′ such that H(x) � H(x′).

2.2. Merkle Tree. Merkle tree, also known as a Hash tree, as
the name implies, is a tree that stores hash values. A leaf node
of a Merkle tree is attached to the hash value for a data block.
A nonleaf node is attached to the cryptographic hash of its
corresponding child nodes.

Figure 1 presents a simple example of a Merkle tree with
4 pieces of data. Let f be a hash function and
X � x0, x1, x2, x3􏼈 􏼉 denotes the set of data used to generate
the Merkle tree. A Merkel tree is generated as follows:
firstly, for all leaf nodes, ybin(i) � f(xi) where i � 1, 2, 3, 4
and bin(i) is the binary form of i; secondly, for all inside
nodes, the value of the node is f(yl‖yr) where yl and yr are
the value of left child and right child, respectively. An
Merkle tree is valid if and only if the value of each inside
node equals to f(yl‖yr). As a result, this example outputs
the following:

y0,0 � f x0( 􏼁, y0,1 � f x1( 􏼁, y1,0 � f x2( 􏼁, y1,1 � f x3( 􏼁,

y0 � f y0,0‖y0,1􏼐 􏼑, y1 � f y1,0‖y1,1􏼐 􏼑,

y � f y0‖y1( 􏼁.

(2)

In a Merkle tree, the value of the root node is called the
hash of theMerkle tree. For the example in Figure 1, the hash
of that tree with data X is

y � f f f x0( 􏼁‖f x1( 􏼁( 􏼁‖f f x2( 􏼁‖f x3( 􏼁( 􏼁( 􏼁. (3)

In the rest of this paper, we use Merkel(X) to denote the
Merkle tree created by the data set X and use H(T) to denote
the hash of a Merkle tree T, where H is the underlying hash
function. For example, the hash of theMerkle tree created by
the data set X can be denoted by H(Merkel(X)).

2.3. Blockchain. Within a blockchain, the hash function is
used to determine the state of the blockchain and Figure 2
shows the structure of blockchain which can be viewed as a
linked list of blocks. Every block has four basic objects: the
hash of the previous block, the timestamp of generation, the
random number of security, and the hash of a Merkle tree.
Usually, the corresponding Merkel tree is linked with the
block too. Two neighbor blocks are linked by a hash pointer
that points from the previous block and thus it creates a
chain of connected blocks, hence the name blockchain. By
linking blocks in this manner, the ordered hashes of all the n

blocks represent the entire state of the blockchain, namely,

f(f)(Block(0)‖f(Block(1))‖ · · ·‖f(Block(n))), (4)

where f is a hash function. A blockchain is valid if
f(Block(i − 1)) equal to the value of the field hash of
Block(i − 1) in the structure of the block Block(i), for all
1≤ i≤ n.

To utilize blockchain for a data set X (see the example in
Subsection 2.2), a corresponding Merkel tree T will be
constructed by the data set X. *en a new block B denoted
by B(X) can be generated with the help of a timestamp
provider. Adding more parameters, we use B(X; ts) to
denote a block where X is the data set to generate the hash of
the Merkle tree, ts is the timestamp of the current time, and
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rand is the random number. Moreover, a blockchain pro-
vides the following operations:

(i) NewBlock(X;ts): create a valid block B(X; ts).

(ii) AppendBlock(B): append the block B to the
blockchain by filling a suitable random number in
the block.

(iii) FetchBlock(ts): return the block at a time ts in the
blockchain. If there are no blocks at that time, then
NULL is returned.

Recently, there are issues in maintaining a blockchain,
such as generating blocks [37, 38] and updating with effi-
ciency [39]. Anyway, to summarize the characteristic of
blockchain, we have the following assumption.

Assumption 3 (blockchain assumption). All the state and
blocks of blockchain is hard to modify after they were
generated.

2.4. Bilinear Pairing. Bilinear pairing is also called bilinear
mapping, which was first used to construct tripartite key
exchange protocol [40]. It involves threemultiplicative cyclic
groups G1, G2, and GT which have a prime order p. Bilinear
pairing is a mapping e: G1 × G2⟶ GT satisfying the fol-
lowing conditions:

(1) For any g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zp, it always has
e(ga

1 , gb
2) � e(g1, g2)

ab

(2) *ere exists two elements g1 ∈ G1 and g2 ∈ G2 such
that e(g1, g2)≠ 1GT

where 1GT
is the identity in GT

(3) For any g1 ∈ G1, g2 ∈ G2, it is feasible to compute
e(g1, g2)

Let c1, c2, c3 ∈ Zp and g1, g2, g be the generators of
G1, G2, GT, respectively. *ere are two security assumptions
related to bilinear pairing.

Assumption 4 (bilinear decisional Diffie–Hellman). Given a
bilinear pairing e, g

c1
1 ∈ G1, g

c2
2 ∈ G2, gc3 ∈ GT, e(g1, g2)

c1c2c3

and a randomly selected element T ∈ GT, it is hard to
distinguish e(g1, g2)

c1c2c3 from T.

Assumption 5 (bilinear computational Diffie–Hellman). Given
a bilinear pairing e, g

c1
1 ∈ G1, g

c2
2 ∈ G2, gc3 ∈ GT, it is hard to

compute e(g1, g2)
c1c2c3 .

3. Security Model

3.1. System Setting. Our system has three entities, the user,
the cloud storage provider where user information is stored,
and a blockchain where several timestamp providers are
available to all entities. *e structure of the system setting is
shown in Figure 3.

(i) 2e User. *e user is the entity who wants to store
the data on the cloud storage. Whenever the user
wants to check whether the data is correctly stored
on the cloud storage, then a request of PoR will be
generated and sent to the cloud storage. With the
help of blockchain, the user can verify the retriev-
ability of stored data by the proof received from the
cloud storage provider.

(ii) 2e Cloud Storage Provider. A Cloud storage pro-
vider is an entity who exactly stores the data for the
user. Besides, the cloud storage provider generates
and sends the proof of retrievability after receiving
the request from the user.

NULL

Block (0)

Timestamp

Hash of Merkle Tree (0)

Random Number

Hash of Block (0)

Timestamp

Hash of Merkle Tree (1)

Random Number

Hash of Block (i-1)

Timestamp

Hash of Merkle Tree (i)

Random Number

Block (i)Block (1)

Figure 2: *e structure of blockchain.
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Figure 1: *e structure of the Merkle tree.
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(iii) BlockChain. BlockChain is mainly for keeping the
transcripts of PoR scheme constant. Moreover,
timestamp providers in a blockchain can help the
cloud storage providers to generate PoR and the
user to verify the generated PoR.

3.2. TimestampUsage. *e timestamps are provided to both
the user and the cloud storage provider. *e existence of the
data is guaranteed by timestamp through computing the
hash value which is included in the next timestamp. In our
scheme, we will modify the traditional timestamp compu-
tation. At the end of every proof generation, the timestamp
provider proceeds to compute a timestamp on the current
time and makes the timestamp published on the blockchain.
*e timestamp is used to compute the hash value in
blockchain by the cloud storage provider.

We benefit the security from the usage of timestamps.
On the one hand, running a PoR scheme twice at two
different moments would be the PoR for the duration be-
tween the two moments. On the other hand, it gives a
timeline of PoR records which can be used to analyze the
efficiency.

3.3. Definition. *ere are five algorithms in the blockchain-
based PoR which are described as follows:

(i) Keygen: *e input of the algorithm is the security
parameter, and the output is the public key and
private key of the system and the user.

(ii) Outsource: In this stage, it inputs the private key
and user data M, and outputs a data set Y with n

blocks and one tag σ for each block. For the
blockchain, also generates new blocks for the data.

(iii) RequestChallenge: *e user randomly selects a
challenge r and sends it to the cloud storage
provider.

(iv) ResponseProof: *e proof process is an interactive
protocol.*e input is a public key, the file name and
tag of the file and the output is proof for a proof
response.

(v) VerifyProof: *e input is a system parameter and
proof, the output of the algorithm is accepted or
rejected.

Remark 1. Note that system parameter includes the struc-
ture and the state of selected blockchain, as well as another
luxury public information such as the hash function
implementations and bilinear pairing implementations.

3.4. Security Model. Under the assumptions mentioned in
Section 2, a blockchain-based PoR scheme is secure if it
satisfies the following two properties.

(1) Correctness. If all the effective proofs generated by
the algorithm (KeyGen, outsourcing, Request Chal-
lenge, Response Proof, and Verify Proof ) are defined
above, the verification algorithm outputs accept,
then a blockchain-based PoR scheme is correct.

(2) Reasonableness. For reasonableness, if any malicious
cloud storage provider can generate proof such that
the Verify Proof outputs accept. *at is, the user
believes that the cloud storage provider can generate
the proof only if it correctly stores the user data.

If the probability that an adversary with arbitrary
probabilistic polynomial-time wins the game described
below is negligible, then a blockchain-based PoR scheme is
reasonableness.

(a) Setup: *e challenger runs the Keygen algorithm to
obtain the public key and private. *en the public
key is sent to the adversary.

(b) Outsource:*e adversary selects a data set and sends
it to the challenger, who runs the Outsourcing al-
gorithm and responds with the output.

(c) ChallengeProof:

(1) In the Request Challenge algorithm, the chal-
lenger randomly generates a challenge message
and sends it to the adversary.

(2) *e adversary generates a data set first by run-
ning an arbitrary algorithm that returns a proof.
*e proof will be sent to the challenger in the
Response Proof algorithm.

(d) Verify: *e challenger runs the VerifyProof algo-
rithm to verify the proof received from the adversary.
It outputs accept if and only if the proof is accepted
by the challenger.

*e adversary wins the game if accept is outputted in the
last Verify step.

4. Our PoR Scheme

4.1. High Description. In this section, we will propose a
blockchain-based PoR scheme. To cut costs, the cloud
storage provider only needs to generate a Merkle tree for a
data set and store the hash of the Merkle tree in the
blockchain. *e data set can be stored anywhere by the
cloud storage provider. When the user requests a challenge
of PoR, the cloud storage provider fetches back the Merkle
tree and generates a PoR to the user with the help of
blockchain.

TimeStamp

Cloud Storage
Provider

TimeStamp

User

BlockChain

Timestamp
Provider

Store User Information, Request
PoR

Response PoR

Figure 3: System setting.
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4.2. Blockchain-Based Proof of Retrievability Scheme. Our
scheme consists of five algorithms, namely, Keygen, Out-
source, RequestChallenge, ResponseProof, and VerifyProof.

4.2.1. Keygen. Both the user and the cloud storage provider
make consensus on public system parameters: a hash
function H, a blockchain BC, a block size t, a prime number
p, a generator g of the cyclic multiplicative group (Zp, ×),
and a bilinear pairing e on Zp.

*e user chooses a nonzero element s ∈ Zp randomly as
a private key and computes and publics gs ∈ Zp as a public
key.

4.2.2. Outsource. When a user wants to store a file on the
cloud storage, the interactive algorithm is run between them.

(1) Given a data set X � x1, x2, . . . , xm􏼈 􏼉, the user uses
an error correction code to get the encoded dataY. In
the case that some blocks Y′ ⊂ Y may be lost by the
cloud storage, an error correction code is used to
reconstruct the original data set X [41].

(2) Divide the encoded data Y into n blocks,
Y � y1, y2, . . . , yn􏼈 􏼉, where yi ∈ 0, 1{ }t.

(3) For each data block yi, the user computes the au-
thentication tag σi as follows:

(i) Randomly choose a nonzero element ri ∈ Z∗p
called block nonce.

(ii) σi � y
H(ri‖i)
i

(4) *e user outsources Y and Σ � σi|1≤ i≤ n􏼈 􏼉 to the
storage server.

(5) *e cloud storage provider creates a Merkle tree
Merkel(Σ) by Σ, and stores the hash of the Merkle
tree H(Merkel(Σ)) into the blockchain by doing an
operation AppendBlock(Merkel(Σ); ts,NULL).

Remark 2. When we compute y
H(ri‖i)
i , yi and H(ri‖i) are

treated as a big integer number.

4.2.3. RequestChallenge. To verify that the provider has
stored the data correctly, the user randomly selects an in-
teger 1≤ k≤ n indicating which block should be checked.
*en k and rk are sent to the provider for requesting
challenge.

4.2.4. ResponseProof. For the cloud storage provider, there
are n blocks of data and the k-th block is requested to be
checked. Now when the provider receives a request chal-
lenge, a PoR can be generated as follows:

(1) Randomly select a nonzero element x ∈ Zp.
(2) Compute σ � σx

k and gx.
(3) Fetch out Y and Σ from storage devices to retain the

hash of the Merkle tree Merkel(Σ).
(4) Send H(Merkel(Σ)) to the timestamp provider in

the blockchain.

(5) *e timestamp provider verifies that H(Merkel(Σ))
is valid when received it. If it is valid, then a time-
stamp ts is generated to run

AppendBlock(NewBlock(Merkel(Σ), ts)), (5)

and is sent back to the cloud storage provider.
Otherwise, the algorithm is terminated.

(6) *e cloud storage provider generates the proof

proofk � σ, σk, g
x
, ts, H1, H2( 􏼁, (6)

where H1 � H(Merkel(Σ)) and H2 � H(ts‖Merkel(Σ)).
*en proofk is sent back to the user.

4.2.5. VerifyProof. After receiving the proof, the user does
the following operations in order:

(1) Send ts to the timestamp provider in the block-
chain. If no accept is returned, then the algorithm is
terminated with a reject.

(2) If the blockchain is invalid (See Section 2.3), then
the algorithm is terminated with a reject.

(3) Run FetchBlock(ts) to obtain the corresponding
Merkle tree Merkel(Σ) and the hash H0 of that
Merkle tree from the blockchain.

(4) If H0 ≠H(Merkel(Σ)), then the algorithm is ter-
minated with a reject.

(5) If Merkel(Σ) is invalid (See Section 2.2), then the
algorithm is terminated with a reject.

(6) If H(σk) does not equal the value of the corre-
sponding leaf node in the Merkle tree, then the
algorithm is terminated with a reject.

(7) If e(σ, gs)≠ e(σs
k, gx), then the algorithm is ter-

minated with a reject.
(8) If H1 ≠H(Merkel(Σ)), then the algorithm is ter-

minated with a reject.
(9) If H2 ≠H(ts‖Merkel(Σ)), then the algorithm is

terminated with a reject.
(10) Return accept.

Remark 3. Firstly, the above operations first check that the
blockchain (without Merkle trees) and the Merkle tree re-
lated to the last block are valid. Secondly, the existence of the
k-th block is checked.

5. Security Analysis

5.1. Correctness

Theorem 1. 2e verify process is correct. It means that

e σ, g
s

( 􏼁 � e σs
k, g

x
( 􏼁, (7)

holds where σ � σx
k .
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Proof. It follows from the property of bilinear pairing that

e σ, g
s

( 􏼁 � e σx
k , g

s
( 􏼁 � e σk, g( 􏼁

sx
� e σs

k, g
x

( 􏼁. (8)

□

Remark 4. Due to Assumptions 4 and 5, the private key s is
still secure even the result of bilinear pairing computation is
public.

5.2. Reasonableness

Theorem 2. If the cloud storage provider is honest, the final
proof must be

proofk � σ, σk, g
x
, ts, H1, H2( 􏼁, (9)

where H1 � H(Merkel(Σ)), H2 � H(ts‖Merkel(Σ)) and ts is
the current timestamp.

Proof. If the cloud storage provider is honest, the following
points hold true:

(i) σ and σk guarantee that at least the cloud storage
provider stores the k-th block which is not revealed
to the public in the bilinear pairing computation
(See Remark 5.1).

(ii) *e Merkle tree is created by the cloud storage
provider at the time ts was required, and the leaf
nodes of the tree are all part of the data set Y. It
follows from Assumptions 1 and 2 that these hashes
cannot be found without knowing the original data
set Y.

(iii) ts generated by blockchain is trusted according to
Assumption 3.

(iv) *e consistency of the Merkle tree and timestamp
are assured by H1 and H2, respectively.

To sum up, the cloud storage provider must store the
data set correctly if VerifyProof return is accepted. □

5.3. Traceability

Theorem 3. 2e blockchain-based PoR scheme in Section 4 is
traceable.

Proof. If the cloud server is dishonest, that is, the server
modifies, deletes, or tampers with a piece of file without
authorization of the user, S cannot compute the value of the
root node correctly, so it cannot prove that he has completely
stored the data. By verifying the Merkle tree, it will get which
piece of file S has been modified finally.

For example, to verify whether the fifth block file has
been modified, the following procedure can be followed and
the structure as shown in Figure 4:

(i) Verify Node 1. Verify that the calculated value of
node 1 is correct through the values of node 2 and
node 3.

(ii) Verify the Value of Node 3. *e receiver computes
the value of node 3 through the values of node 6 and
node 7 that he has received and verifies whether the
calculated value of node 3 is correct.

(iii) Compute the Value of Node 6. *e receiver com-
putes the value of node 6 through the values of node
12 and node 13 that he has received and verifies
whether the calculated value of node 6 is correct.

(iv) *e receiver computes the value of node 12 from the
value of Y5 and verifies that the calculated value of
node 6 is correct.

*e correct value can be determined by whether the
value of node 6 is consistent. *is allows you to track down
blocks of files that have been modified. □

5.4. Resistance to Two Kinds of Attacks. In this subsection,
two kinds of attacks are considered, i.e., replay attacks and
collusion attacks.

5.4.1. Resistance to Replay Attack. In Section 4.2.4, note that
there is a timestamp ts attached to the proofk, where

proofk � σ, σk, g
x
, ts, H(Merkel(Σ)), H(ts‖Merkel(Σ))( 􏼁.

(10)

(i) If a data storage provider uses an old timestamp ts,
then it would be rejected in the first step (1) in
Section 4.2.5 since the timestamp provider can easily
find that such ts is expired. In other words, such ts

may be valid in a short time. However, the user could
not run this protocol twice in such a short time.

(ii) If a data storage provider uses an old proof proofk,
then it would be rejected in the seventh step (7) in
Section 4.2.5 since gx is attached with a challenge x

that is randomly generated by the user. x should be
different in two runs of this protocol.

In a word, our protocol is resistant to replay attacks with
old timestamps ts or old proof proofk.

5.4.2. Resistance to Collusion Attack. If we consider the
case that the timestamp provider (and by extension the

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

1

2
3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 4: *e example of traceability.

6 Security and Communication Networks



blockchain provider) colludes with the data storage
provider, then, in other words, the data storage provider
would also play as a timestamp provider in the block-
chain context. However, due to the security analysis of
blockchain [42, 43], such malicious timestamp providers
could be detected by the nodes in the blockchain net-
work. Under Assumption 3 (BlockChain assumption),
our protocol is resistant to such collusion attacks which
can be reduced to an attack in a blockchain context.

6. Conclusion

In order to protect the security and integrity of user data, we
formally defined a novel security model for a blockchain-
based PoR scheme and proposed a secure scheme under the
defined security model. *e properties of the PoR scheme
and the characteristics of blockchain, ensure the security and
the integrity of data, respectively. Furthermore, we prove the
correctness and reasonableness of our scheme. Our scheme
makes user data more secure. In our scheme, blockchain
plays an irreplaceable role in the privacy and security of user
data. It is believed that as a blockchain improves the PoR
scheme, it will continue to promote the progress of
technology.

However, there are still many attacks not being
considered, such as reset attacks and malicious attacks.
To improve the performance, it is interesting to remove
the bilinear mapping while reserving the same security
level.
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