Hindawi

Security and Communication Networks
Volume 2024, Article ID 9865215, 1 page
https://doi.org/10.1155/2024/9865215

Retraction

WILEY | Q@) Hindawi

Retracted: High-Concurrency and High-Performance
Application of Microservice Order System Based on Big Data

Security and Communication Networks

Received 8 January 2024; Accepted 8 January 2024; Published 9 January 2024

Copyright © 2024 Security and Communication Networks. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. This in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research
reported

(3) Discrepancies between the availability of data and
the research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Manipulated or compromised peer review

The presence of these indicators undermines our con-
fidence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] X. Zhou, X. Wu, and Y. Chen, “High-Concurrency and High-
Performance Application of Microservice Order System Based
on Big Data,” Security and Communication Networks, vol. 2022,
Article ID 3424283, 11 pages, 2022.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9865215

Hindawi

Security and Communication Networks
Volume 2022, Article ID 3424283, 11 pages
https://doi.org/10.1155/2022/3424283

Research Article

WILEY | Q@) Hindawi

High-Concurrency and High-Performance Application of
Microservice Order System Based on Big Data

Xueyun Zhou ©®," Xinling Wu,' and Yihong Chen®

ISchool of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, Guangdong, China
2School of Computer, China West Normal University, Nanchong 637002, Sichuan, China

Correspondence should be addressed to Xueyun Zhou; zhouxy@gzgs.edu.cn

Received 26 April 2022; Revised 27 May 2022; Accepted 9 June 2022; Published 28 June 2022

Academic Editor: Dan Deng

Copyright © 2022 Xueyun Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The order system plays the role of the central nervous system in the integrated logistics operation. Theoretically speaking, the
whole operation process of logistics service is to complete the order, the order information runs through all the links of the whole
logistics, and the order processing efficiency affects the logistics process. This paper studies the high-concurrency and high-
performance applications of the microservice order system based on big data, which prove that on the basis of big data technology,
the performance of the microservice order system will be greatly improved. To this end, the analysis provides an overview of big
data technologies and related content of microservices. It describes their application scenarios and then combines the devel-
opment of the order system with a comprehensive analysis to prove its feasibility. At the same time, we compared multiple
algorithms applied in microservices and found the most suitable algorithm for the order system and applied it, so that the order
system can achieve high concurrency and high performance. The big data-based microservices control system proved to be useful
for reasonable resource planning and for improving system performance in experiments. The final experiment found that in the

microservice order system using big data, its transaction average response time was 0.01 s, and the success rate was 100%.

1. Introduction

The third-party logistics enterprises are changing from the
traditional outsourcing type to the integrated logistics-type
operation mode. It is precisely because of this change in
mode that logistics enterprises have greatly improved in
resource allocation and efficiency. Logistics enterprises will
concentrate more resources and business capabilities
(warehousing, transportation, distribution, information
processing, and other logistics auxiliary functions). It ac-
tively expands the scope of logistics services, providing raw
material supply, cargo storage, and management services to
manufacturers. It can provide distribution and delivery
services for dealers, and at the same time, complete the
transfer of business flow, capital flow, information flow, and
logistics. The application of the logistics information system
is increasingly important for the operation of third-party
logistics, and the control system will play a central role in
managing the operation of integrated logistics. In the

management of the integrated logistics operation mode,
a high-performance order system is used to manage the
operation, which can make the logistics information man-
agement easy, and at the same time, it can play the role of
a bridge to connect the client and the client. In recent years,
domestic large-scale, third-party integrated logistics enter-
prises have actively developed and implemented order
systems, such as Baosu Logistics Comprehensive Order
System and Guangdong Sinotrans Order System. The suc-
cessful application of these order systems in third-party
logistics companies has played a positive role in promoting
the development of domestic logistics companies’ order
systems, and has shortened the gap with foreign-order
systems. However, from the overall perspective of China’s
third-party logistics industry, the level of informatization of
order management is still relatively low, and there is still
a big gap between the popularity and application level of the
order system and foreign countries. Foreign-order systems
are fully functional, fully consider the application of

mailto:zhouxy@gzgs.edu.cn
https://orcid.org/0000-0001-9636-763X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3424283

human-computer interaction, and have the advantages of
high concurrency and high performance, and the application
of the order system is more urgent for the third-party lo-
gistics enterprises that are transforming to the integrated
logistics model. The order system can improve and optimize
the operation management capability, internal resource
allocation, logistics operation efficiency, and service quality
of logistics enterprises. It has important application value
and practical significance to meet the needs of enterprise
users for specialized, integrated, and personalized high-level
logistics services.

Many operational aspects of order fulfillment deal di-
rectly or indirectly with customers and affect customer
satisfaction. Therefore, the order system is an important step
in the successful construction of the logistics information
system. The order system will play a positive role in the
improvement of logistics enterprise operation and service
quality: First of all, the order system will effectively integrate
the internal warehousing and transportation resources of
logistics enterprises and improve the efficiency of operation
management and the level of collaborative management. It
cooperates with suppliers, enterprises, distributors, cus-
tomers, and logistics units to achieve information-sharing
and resource optimization, all five of them can use the same
order system for business operations at the same time, which
can be well coordinated. It establishes the whole-process
supervision and control of order execution, improves op-
eration performance, reduces costs, and improves the op-
eration and management level of logistics enterprises.
Second, the order system can provide customers with real-
time logistics information services through network in-
formation technology, which allows customers to grasp the
execution status of orders in time and conduct logistics
service supervision and complaints, The microservice order
system based on big data involves the realization of these
functions and improves customer satisfaction. It establishes
monitoring and early warning of abnormal orders, and
handles emergencies in a timely manner, improves the
quality of logistics services, and enhances the customer
service level of logistics enterprises.

At present, many scholars are studying the application of
microservices under big data technology, and the research of
many scholars is very valuable. The fast growth of machine
learning and big information system stacks, according to
Miao et al., encourages constant iterative upgrades of in-
formation scientific study or working methodologies. He
produces data science and large data analytical cloud plat-
form based on distributed system for schools or non-
professional research disciplines, paying special attention to
the goal of pleasant collaboration among existing data sci-
ence teams. It is simple to alter the constituents of each
component in a serverless system. The platform includes
a personal software experiment atmosphere, JupyterHub
depending on Diamond and HDFS for cross use, and a visual
ways to construct based on data science engineering’s
modular architecture; however, his technique does not reach
actual results [1]. So according Herman et al., big data
techniques are used to develop a big data platform that
combines micro and canisters for versatility and scalability

Security and Communication Networks

in a unique way. He employs a hybrid architecture that
incorporates polyglot persistence, data lake, and Lambda
architectural characteristics. The system was built for an
architectural services firm, and MongoDB was utilized as the
major data store. Seven studies were produced as a conse-
quence of the implementation, demonstrating the influence
of big data on choice at all levels of an organization.
However, his approach is not ideal for the approach of
servers in the case of huge data [2]. To decrease system cost
while ensuring system QoS and stability, Zhao et al
structured bucket web service activation as a random op-
timization problem. To address the outlined problem, he
created a value elastic serverless deployment mechanism that
balances the transfer between operating costs and QoS.
However, the results demonstrate that this approach has
a relatively low cost [3]. The fast growth in the number
computing paradigms trying to leverage the cloud contin-
uum, according to Taherizadeh et al., has had a serious
influence on microservices adoption, notably in dynamic
systems for which workload numbers wax and wane or
Online world of Things (IoT) gadgets change their locales
dynamically. A diverse range of complicated technologies
must be deployed at the same time to fully realize the
promise of cloud-persistent computing applications. In this
modern computer context, this complicated mix of tech-
nologies is now causing data interoperability challenges. As
a result, a conceptual model is required to formally explain
the notions of distinct cloud application concepts. It is often
difficult to put this statement into practice [4]. Big data,
according to Gramigna, has altered the way the financial
enterprise provides clients. When coupled with current data
records, skill in use of the Program Administrator Data
(PAD), which itself is part of the usual provision of services,
allows the government to comprehend cost and practical
paradigms and utilize this as a foundation for circular de-
cision-making. It is ideal to utilize links to specific data
records when records are connected with unique IDs. His
study is not effectively integrated in microservices because
using these connected datasets necessitates a robust legal and
technological infrastructure for data exchange and data
consumption [5]. Zahra et al.’s distributed software concept
helps HPC applications to enhance processing capacity
while lowering communication expenses. To ensure sus-
tainability for Single Programs Multiple Data (SPMD)
systems, templates create a valid virtual compute nodes
(MsVPUs) collaborate utilizing an offline connectivity via
the Sophisticated Network Control Protocol (AMQP)
protocol. Fine-grained parallel algorithms for large data
categorization are used to test and evaluate their proposed
virtual machine. However, the processing unit’s message
passing paradigm has a substantial influence on HPC, and
communication costs are large, which can degrade the speed
of these models [6].

Virtualization technology can expand the capacity of
hardware and simplify the process of software reconfigu-
ration. The CPU virtualization technology can simulate
multiple CPUs in parallel on a single CPU, allowing one
platform to run multiple operating systems at the same time.
The computer system’s resource scheduling problem has

Security and Communication Networks

a significant impact on the order system’s computing per-
formance, efficiency, and service quality. However, when
confronted with the diversity and dynamism of large-scale
microservice servers’ systems and resources, the user groups
alter, as do the limits placed by users on activities. In a large
data-based system, these jobs are planned. It has become
a nice and warm and complex question in order to develop
the system to efficaciously pace, reasonably allocate, and
allocate funds in the serverless system, so that if the
scheduling algorithms cost of a huge number of participants
is low, the submission time is of the essence, the adequate
testing is balanced, and the usage rate is high. It is a very
innovative idea to apply big data technology and use
microservices to design and develop the order system.

2. Overview of Big Data and Microservices and
Model Building

2.1. Big Data. Various big data systems, machine learning
based, open source tools or platforms, and big data data
technologies have been created and may be utilized for
distributed databases as a result of the rapid growth of big
data technology and analytical technology [7, 8]. Big data
processing and commercial services have pushed large-
scale commercial needs and demands into people’s daily
lives, as seen by this. Today, big data-based application
systems such as recommender system, predicting, analyt-
ical thinking, and analytical report tools are extensively
employed. Business, science education, science and tech-
nology, school, biomedical, medicine and related fields,
online networks and networks, smart cities and transit, and
traffic, among other fields and applications, may all benefit
from catastrophic big data processing and services. Big
data-based applications, on the other hand, provide ad-
ditional challenges and issues to quality assurance scientists
owing to the massive volume of data created, the rapidity at
which data comes, and the large range of heterogeneous
data [9, 10]. There are still certain challenges and problems
in the development of the microservice order system.
Veritying the validity of analysis and prediction based on
big data, for example, is challenging owing to the features of
massive data volume and timeliness. Figure 1 shows an
example of a large data application.

These quality parameters relate to different big data
application scenarios, including parallelism and accuracy.
Quality assurance scope and procedure for big data apps. It
also includes the primary quality metrics as well as asso-
ciated aspects. Statistical computation based around di-
versified massive datasets, system development machine
learning algorithms and understanding, rational decision
with uncertainty, semifunctions, and sophisticated visuali-
zation are some of the distinctive characteristics of big data
applications. These distinct capabilities result in more in-
triguing QA and QoS needs, problems, and requirements
[11]. According to recent feedback from engineers, how to
ensure the quality of application systems based on big data
has become an important concern.

Utilizing massive datasets and complicated intelligence
algorithms, big data solutions deliver functions for

prognosis, recommendation, and decision assistance. Big
data program quality assurance, in general, refers to the
study and implementation of different assurance pro-
cedures, methodologies, standards, guidelines, and systems
in order to assure the quality of database systems based on
a set of performance characteristics [12]. Figure 2 is an
example of the extent of validation for a big data applica-
tion’s quality assurance.

2.2. Microservices. The design concept of microservices is to
divide a huge business system into independent micro-
services, and each microservice contains a complete struc-
ture from data storage to business logic. This also means that
they can function as a separate entity, but they are connected
to each other. Each microservice is highly “autonomous,”
which is reflected in: each microservice can use different
technologies to implement architecture and data storage
technology as needed; each microservice can be deployed
and maintained independently, with an independent life
cycle and service boundary; there is no dependency between
microservices from development, deployment to operation,
and data exchange is only carried out through lightweight
interface calls [13, 14]. Data transmission can be performed
when calling through the lightweight interface, and at the
same time, it can improve cohesion and reduce coupling.
The microservice architecture realizes the high cohesion of
a single service and the effect of low coupling between each
service, which is more conducive to the local flexible change
and deployment of the system.

The concept minibuses has lately gained a lot of traction
in the context of distributed system software architecture.
Microservices may be regarded of as a type of software
architecture [15]. In a nutshell, microservices is a way of
building a system out of a collection of tiny services: each
service runs individually (processed zone), uses its own
knowledge (database), and communicates with other ser-
vices using a lightweight method (usually over HTTP or
HTTPS). Each of their independent services has a complete
structure and can perform corresponding operations in-
dependently. Services are designed on business skills in this
manner, which fosters separation of concerns. Because big
systems’ design is often arranged in layers, team is usually
made up of professionals that specialize in certain levels such
as user experience, processing, and information [16]. The
structure of this strategic priority will be comparable to the
system’s architecture. Even if the system is arranged in
a variety of separate service modules on the middleware
layer, updates or extra services may only be merged with a lot
of work after it reaches a certain degree. The latter is due to
the interconnectedness of layers inside them, as well as layers
directly beneath them. Changing a single service frequently
necessitates rebuilding and deploying the complete mid-
dleware layer [17]. Due to information systems de-
pendencies, a modification, for example, is not confined to
a single job. Microservices teams must be organized dif-
ferently since they focus on a particular business feature and
employed a large execution stack (containing user experi-
ence, storage, and external communication). The skills

Big Data

Big Data Based
Application System

LJ

Sample Data
Sets

—

Security and Communication Networks

Ficure 1: Typical types of big data applications.

V!

System Accuracy

System Data
Security

e Statistical
> A/I Report
i
< §S Recommend
ations
—> ‘.lk Prediction
: 43
qy Decision
ct
System
Correctness

System
Performance

- S

System Robustness

FIGURE 2: Example of validation scope for quality assurance for big data applications.

required to design uis, functionality, data warehouses, and
product development are often found in cross-functional
teams.

When necessary, companies can relocate their services.
Of course, this comes at a cost, and most teams employ
a completely automated deployment technique to make
updates live. In addition, because modifications to one
service may have an impact on another, each team must keep
an eye on the overall health of the service. As a result,
operations are delegated to teams (often called devops). Each
vertical has all technological layers (temperature, func-
tionality, and data services), and each vertical can contain
numerous microdevices [18, 19]. An additional layer is
required to handle communication between the many

verticals, as well as to integrate the findings of the several
verticals into a single page and provide it to the user. Figure 3
is a vertical decomposition instance of an e-commerce
platform.

In the serverless workflow scheduling system, the user
initially accesses the web service asset scheduling system
over the web. It enters in to the software platform via various
terminals, chooses cloud services that fit its requirements,
and submits tasks, or cloud tasks. Microservices and cloud
services are closely related, but there are many differences.
Cloud service technology can be applied in the construction
of microservice frameworks. Because most cloud computing
uses the Map/Reduce methodology, the microservice plat-
form separates user-submitted cloud jobs into several

Security and Communication Networks

Presentation

Frontend-Integration

Product Server

Product DB

Search Server

Search Engine

Order Server

Order DB

Vertical 1 Vertical 2

Vertical N

Data Intergration

F1GURE 3: Decomposition based on organizational abilities and use situations.

&

User

oy

IO

Sumission
Cloud task
Division

Task

Division

< Sub task) C Sub task >

Request

Virtual machine

Call virtual machine Call physical machine

/
TITHT

™ ~

FIGURE 4: Microserver resource scheduling architecture diagram.

subtasks [20]. These subtasks are self-contained and can
operate in parallel, after which virtual machine requests are
initiated. Figure 4 depicts the web service resource sched-
uling structure.

The schedule center calls the relevant virtual machine
after obtaining the virtualization request signal from each
subtask by evaluating the information and resources for
every vms and matching it with the related scheduling al-
gorithm to execute the planned task resource. Power control,
which incorporates virtual machine load balanced and
physically host load balancing, should be considered
throughout this planning. It not only makes high-

performance hosts vulnerable to failure, but it also influences
job completion times.

2.3. Scheduling Model of Microservices in the Order System.
Because each demand response and container have a one-to-
one relationship, the architecture of the matching container
should be defined. To accommodate for variations in exe-
cution time, sufficient resource redundant should be in-
troduced to the same kind of jobs in various workflows.
To do so, we first compile records on cpu workloads for
various jobs, and then use that data to determine the most

cost-effective arrangement for each type of web service in-
stance. We receive the carton setup scheme CE = {ce|j=1, 2,
., h} when there are h forms of administrations, for which
ce is a matrix indicating the set-up of the view that includes
the j-th type of web service, including the number of pro-
cessor cores. When an application wishes to scale up the
amount of service instances for the j-th microservice, it must
first construct a container with the appropriate configuration.
To handle multiworkflows, we combine workflows by
adding tasks to a workflow’s predecessor tasks, then all in-
gress tasks and subsequent tasks’ tasks to exit all tasks (Line 1
Algorithm 1). Because there is no data transmission or ad-
ditional jobs between computer workload and other activi-
ties, this technique can ensure that multiworkflow scheduling
is fair. This strategy ensures that the initial state of each task is
controlled at the same level, avoiding unfair situations. As the
foundation for task ranking, we calculated the scheduler
urgency u; from each ready job in the combined workflow.
An available task is one that has finished its previous task;
therefore, an entrance assignment is also a ready job.

"= sd — XFT(ti)))
l hop (;)

where hop (¢;) is the percentage of unfilled tasks mostly on

critical route from the exit task to the release task and

XFT (¢;) is the estimated completion time, which is defined

as follows:

XFT (ti) = min {EFT (ti,ms, T)}, (2)

mseMS (ti)

where MS (t;) denotes the collection of instances capable of
dealing with ¢;. The frequency of the example necessary to
determine the EFT is adjusted to the pace of instance ms
because the specified instance is still undetermined.

Select the ready job with the simplest user interface for
schedule based on the urgency. Task mapping must take into
account how to take the most of existing capabilities as well
as how to establish new eventually transfer and containers.
In MS(t;), laxity is calculated for all occurrences:

Laxity (timsj,k) = sd; — EFT (t;,ms, T),

incr Cost (t,-msj,k) =cost' —cost, (3)

w;

sd; = 1T(cjz)

If budget and costs represent the costs that was over, and
the assignment is assigned. It is difficult to accomplish in
time if minSpeed is larger than the largest speed of the
allocated virtual machine. There are two plans in the EFT
that we compute: the initial stage is to determine tasks to
previously created instances. The second option is to con-
struct a fast instance and then allocate tasks to it using the
plan with the smallest EFT.

The divergence rate between the wealth of programs
offered by the vessel and the quantity of required resources
for computation is calculated using the following formula:

min Speed =

Security and Communication Networks

S -7, .
i,j,cpu i,j,cpu
Fop = 22 PP % 100%,
ri,j,cpu
Si, jram ri, j,ram
F,=— P % 100%, (4)
¥ jram
S —7r. .
i,j,ram i,j,ram
F., =2 PR % 100%.
ri,j,ram

Here, F.p, and F,,,, can represent the supply and de-
mand deviation rate of the container CPU resources and
memory resources of the j-th basic service in the ith ag-
gregate service. The delay sensitivity model expression is

tij
t.’. = . (5)
Y chu(1+FCpu)+Kram(l +Fram)

The model expression for the edge computing terminal
to provide computing resources for aperiodic and non-
associative aggregated services is

Acpu Zsz;cpu((tijami) —e(t = 1)),

n

A (1) = Z Si,j,ram(e(t - ti,j,imi) - e(t - th))»

J=1

(6)

where A, (t) and A,,,,(f) are the timing curves of the edge-
computing terminal supplying CPU resources and memory
resources for the ith aperiodic nonassociative aggregate
service, respectively.

The model expression for counting the memory re-
sources of microservices is

N
Bcpu (t) = fz Al,f,cpu,B (t -
=1

y=1
7
N f 7
Bram(t) = Z Al,f,ram,B t- Z T}’*l >
f=1 y=1

Where Z_f 1AlfcpuB(t Zy 1Ty 1) and Zf lAlframB(t
Z =1 T'y-1) respectively, constitute the I-th aperiodic asso-
ciative aggregate.

The timing curve of the CPU resources and memory
resources of the f-th aperlodlc nonassociative aggregate
service of the service; Z y=1 T,y is the sum of all aggregation
service delays before the f-th aggregation service in the
association sequence.

The model expression for counting the external memory
resources of microservices is

Q
Copu (1) = Y Ay g couc (t = HT = hAY),
h=
’ 8)
Q
Cram (1) = Z Ay grame (t = HT = hA®),
h=0

where C.py(t) and Cioy(f) are the timing curves of the
microservice computing terminal supplying CPU resources

Security and Communication Networks

and memory resources for the gth cycle nonassociative
aggregated service, respectively, and Q is the number of
executions.

The investment cost of resource integration is repre-
sented by Ci,y, Cope represents the cost of container usage,
and Ce, represents the penalty cost of aggregate service
delay exceeding the limit. Their expressions are as follows:

minC = Gy + Cype + Cpens
Cinv = Ecpuccpu + Eramcram’
Cope = Eopeccpu + Eopecram’
m
ok
Copecpu = Z Si,jicpuli,jb (9)

i=1

m
ok
Cope,ram = Z Si,j,ramli,ja’
i=1

N
Y |
i=1

Here, E p, and Eram are the configuration amounts of
CPU resources and memory resources of edge computing
terminals, respectively; Cp,, and C,,yy, are the configuration
costs of unit CPU resources and memory resources, re-
spectively. The microservice running logs can be collected
and stored through the real-time data collection engine
Logstash and the log framework Log4j. The search server
Elastic search and the visual analysis platform Kibana are
used to query and analyze logs, which greatly facilitate the
operation and maintenance personnel to analyze and
quickly locate the failure of microservice calls.

3. Experiment and Result Analysis of the
Microservice Order System

3.1. Experimental Process. Although many order solutions
provide web-based modeling editors, the majority of order
systems are client-server oriented. The degree of application
logic embedded on the client side of the user can be sep-
arated between large and small client architectures. On the
server side, a monolithic design with a database (large user)
and business logic is typically used (small client). Individual
aspects in business logic frequently use the same techno-
logical stack and interface via method calls, resulting in tight
coupling between them. Figure 5 shows the architecture of
the order system business process management tool.

Two functional scenarios are selected to test the running
performance of the platform: The test environment is two 8-
core, 16G virtual machines, one deploys the microservice
Docker, and the other deploys the MySQL database. They are
connected with 100 M network bandwidth and use Load
Runner-software. The test environment and equipment of
this test are shown in Figure 6.

A task’s computational effort is defined as the time it
takes to complete it on a typical compute service (in sec-
onds). A workflows application is employed as a server
application in this case, with each job corresponding to
amicroservice and each microservice handling only one type

Presentation

Designer

Logic

Designer

Designer

Designer

Designer |—| Designer
I

Data Access Layer

Repository

FIGURE 5: Architecture of business process management tools.

of task. Each task’s cost of execution and other details are
recorded. The ECU of Linux environment has been used to
represent the virtual machine’s computational capacity and
resources, and the discontinuous unit is considered to be 0.5
ECU. In addition, the VM and container starting times are
chosen based on relevant tests. Four distinct types of virtual
machines (VMs) were employed in the studies, as indicated
in Table 1.

3.2. Experimental Results. A number of methods may be
employed in the building of a big data-based microservice
order system to make it operate with diverse workflows,
workload patterns, and workloads. We ran many sets of
trials to evaluate each method’s performance, then chose
a steady workload pattern and ran the algorithm in a variety
of workflow applications. The number of jobs in each
workflow is fixed at around 50 (Because of its unusual
structure, SIPHT is around 30 square feet in size).

We observed that, with the exception of SCS, the success
rate gradually increased with increasing factors. The results
show that ESMS outperforms the others. According to the
data given in Table 2, ESMS can produce more appropriate
solution than other methods.

If the order system wants to get the advantage of high
performance, it needs to ensure its success rate and also
control the cost. ESMS uses minimal machines while
keeping costs to a minimum. Reduced operational costs
complexity can also be achieved by using fewer equipment.
ProLiS has the most machines in Montage. As previously
discussed, its arbitrary deadline allocation causes greater and
greater instances to be created, faster and faster, requiring
more VMs. In obviously, the cost is determined not only by
the number of virtual machines (VMs) but also by their
configuration. When costs are near, however, fewer VMs are
preferable, as shown in Table 3, which illustrates the VM
used by various workflows.

The success rate of ESMS in the LIGO experiment was
18.31%, 36.39%, and 6.02% greater than ProLiS, SCS, and IC-
PCPD2, respectively. SCS’s success rate varies greatly because

8 Security and Communication Networks
Fi1GURE 6: Experiment apparatus.
TaBLE 1: Virtual server layouts and costs.
Version ECU vCPU Memory (GB) Cost
m4.large 5.4 3 9 0.23
mbd.large 6 4 5 0.24
m4.xlarge 12 2 13 0.31
mb5d.xlarge 18 3 13 0.321
TaBLE 2: The number of reasonable choices for various workflows.

Series of pictures LIGO Chromosome SIPHT
ProLiS 7 2 8 9
SCS 1 0 1 0
IC-PCPD2 0 2 15 4
ESMS 9 9 12 9

TasLE 3: The number of virtual machines (VMs) employed in certain workflows.

Series of pictures LIGO Chromosome SIPHT
ProLiS 7598 2154 3684 758
SCS 654 2015 2357 421
1C-PCPD2 357 1567 2458 363
ESMS 125 1587 1029 245

there is no practical answer. SCS determines number of
cases based on the network vector before using the EDF
scheduling method. However, the load vector’s expected
outcomes diverge somewhat from the EDF scheduling
algorithm’s requirements, forcing some activities to queue.
The ensuing delay builds up during workflow execution,
eventually leading it to time out. Additionally, as the factor
rises, the VM’s cost-efficiency varies and the configuration
steadily reduces. As a result, so if the limit is loosened, the
success rate remains unchanged. The success rate is higher
because the other three mechanisms are all dependent on
scheduling problem, and resource requirements may be
established through the task-scheduling problem. The
findings further show the value of scheduling tasks and
autoscaling integration. IC-performance PCPD2’s is like-
wise inconsistent: it can obtain a viable solution in the
genome with high success rate, low cost, and quantity close
to ESMS, but could not get any working solution in

Montage. Figure 7 shows the success rates for different
workflows and stable workloads.

The mean hit rate of Circuit is similar to that of ESMS for
SIPHT; however, IC-PCPD2 has just three possible schemes.
This is due to the fact that the hit rate of Circuit is usually
between 99% and 100%, as shown in Figure 8.

In terms of value for money, all possible solutions from
trials with various factor values are gathered, their costs are
standardized, and the overall price is computed. ESMS
costs 79.08% less than ProLiS, 6.80% less than ProLiS,
15.37% less than ProLiS, and 18.29% less than ProLiS.
Except for IC-PCPD2, which has no realistic option at
Montage, and cost of ESMS in other three processes is
4.57%, 0.58%, and 11.39% cheaper than IC-PCPD2. Their
typical expenses are shown in Figure 9.

The improvements in success rate and cost for four
workflow applications (referred to as M, L, G, and S) and
three workload modes (referred to as S, D, and I) for five

Security and Communication Networks

120

100

g 80} l
8
S 60} [
g
§ 40 +
20 [
factor
= ProLiS IC-PCPD2
n SCS n ESMS

(a)

120

100

80

60

40

success ratio (%)

20

factor
= ProLiS IC-PCPD2
n SCS s ESMS

(b)

FIGURE 7: With a variety of workflows and consistent workloads, the success rate is high. (a) Montage. (b) LIGO.

120

100 |

80

60

success ratio (%)

40

20
0 1 1 1
Montge LIGO GENOME SIPHT
workflow
W ProLiS
W SCS

120

100

80

60

success ratio (%)

40

20
O 1 1 1
Montge LIGO GENOME SIPHT
workflow
W IC-PCPD2
m ESMS

FiGUrE 8: The success ratio.

groups are presented in Table 4. Compared with IC-PCPD2,
ESMS has a performance improvement of 0.58-14.64% in
cost. Overall, ESMS has a success rate of 0.00-7.40% greater
than IC-PCPD2, and in Montage, it may reach 72.97%.

In the algorithm comparison experiment of the
microservice framework based on big data technology, it can
be seen that the performance of the ESMS algorithm is
excellent in all aspects. Applying it in the development order
system can make the system meet the requirements of high
concurrency and high performance and can well meet the
needs of order system development. The graphic simply does
not matter when in the longer processes, the stores are
utilized, it always fails, its response time basically does not
change much, and the effect of real-time response can be
achieved. The order system can perform up to six tasks at the
same time, with good concurrency. The figure shows the
trend of the response time over time when the big data-based
microservice order system is used and also describes how
many tasks the system can perform at the same time in

different states. Figure 10 shows its response time and
number of parallel tasks.

4, Discussion

It can be seen from the above experiments that the algo-
rithms for selecting microservices based on big data have
their own advantages. When compared to ProLiS, the ESMS
algorithm offers an overall success rate improvement of
0.16%-1.30%. The improvement of LIGO, in example, is as
high as 18.31%. In terms of money, the improvement ranges
from 6.80 to 22.66%, with a Montage of 85.84%. Except in
two rare circumstances, when the success rate is 82.01% and
99.8%, the gain in accuracy rate is generally between 27.50%
and 67.62% when compared to SCS. SCS can also be
compared in terms of the cost since it is unable to find
a feasible solution. In GE-NOME, IC-PCPD2 can reach
performance comparable to ESMS, as previously stated. In
the platform performance test, multiple virtual uses, and

10 Security and Communication Networks

0.92 0.25
091
0.9 0.2
~ 0.89 -
§ 0.88 § 0.15
g -
S 087 =
<
£ 0.86 E 01}
o o
= 0.85 =
0.84 0.05
0.83
0.82 1 1 1 0 1 1 1
Montge LIGO GENOME SIPHT Montge LIGO GENOME SIPHT
workflow workflow
W ProLiS B SCS
1 0.9
0.9 | 0.8 |
0.8 - 0.7 |
- 07} -
2 2 0.6
9 0.6 |- S
2 = 05]
S 05t =
E S 04|
E o4t g
g 03l S 03}
02 L 0.2+
0.1 | 0.1 -
0 . 1 1 1 0 1 1 1
Montge LIGO GENOME SIPHT Montge LIGO GENOME SIPHT
workflow workflow
B ProLiS | MSMS
FIGURE 9: The normalized cost.
TaBLE 4: The percentage improvement of ESMS above other algorithms.
Group ProLiS (%) IC-PCPD2 (%) SCS (%)
1 1.30 35.54 47.68
2 0.69 70.51 48.09
3 1.17 72.97 62.00
4 18.31 6.02 36.39
5 12.30 7.20 40.25
; — N —
+ State + |
£ 5 I % State > |
o 7]
2 | State 2 |
| I— State 1
1 1 1 1 1

0 0.005 0.01 0.015

time number

o
)
~
[o)}
©

M Response time B Number of tasks

FIGURE 10: System response time and number of parallel tasks.

Security and Communication Networks

external users concurrently executed the order system for 5
days. The average transaction response time was 0.01 s, and
the success rate was 100%. The results show that the smart
energy service platform designed and developed according
to the microservice architecture performs well in the
functional performance of the order system according to the
industry performance test.

5. Conclusions

The application of the microservice architecture based on big
data enables the platform to easily release tests and achieve
continuous integration. During the construction of the order
system, as the microservices are completed one after another
and have the conditions for deployment and testing, the
update and launch of a single microservice is realized by
relying on the microservice architecture without affecting
other microservices, which greatly improves the flexibility of
deployment. During service debugging, the demand re-
sponse microservice had a problem and crashed. However,
thanks to the microservice architecture and front-end and
back-end separation technology, the platform’s portal, en-
ergy trading, multienergy collaboration, and other modules
still operate normally. In the operation and maintenance
phase, the upgradation of demand-response microservices
does not require shutting down the overall service, but only
needs to update a single microservice. This not only im-
proves the flexibility of update deployment but also im-
proves the reliability of platform operation, and truly realizes
the uninterrupted service of the system.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (61871330). Quality engi-
neering project: University-level quality engineering re-
search project of Guangzhou College of Technology and
Business in 2021 (Project's number: ZC20211122).

References

[1] K. Miao,J. Li, W. Hong, and M. Chen, “A microservice-based
big data analysis platform for online educational applica-
tions,” Scientific Programming, vol. 2020, no. 239, Article ID
6929750, 13 pages, 2020.

[2] J. Herman, H. Herman, M. J. Mathews, and J. C. Vosloo,
“Using big data for insights into sustainable energy con-
sumption in industrial and mining sectors,” Journal of Cleaner
Production, vol. 197, no. 1, pp. 1352-1364, 2018.

[3] P.Zhao, P. Wang, X. Yang, and J. Lin, “Towards cost-efficient
edge intelligent computing with elastic deployment of

11

container-based microservices,” IEEE Access, vol. 8, no. 9,
pp- 102947-102957, 2020.

[4] S. Taherizadeh, D. Apostolou, Y. Verginadis, M. Grobelnik,
and G. Mentzas, “A semantic model for interchangeable
microservices in cloud continuum computing,” Information,
vol. 12, no. 1, 40 pages, 2021.

[5] G. Gramigna, “Evaluating SME policies and programmes-

micro-level datasets, analytical toolkits and institutional

factors,” Journal of Entrepreneurship and Innovation in

Emerging Economies, vol. 3, no. 2, pp. 134-142, 2017.

F. Zahra, M. Youssfi, O. Bouattane, O. Serrar, and H. Ouajji,

“Toward a new massively distributed virtual machine based

cloud micro-services team model for HPC: SPMD applica-

tions,” International Journal of Advanced Computer Science

and Applications, vol. 8, no. 8, pp. 238-249, 2017.

Z. Jia, J. Zhan, L. Wang et al., “Understanding big data an-

alytics workloads on modern processors,” IEEE Transactions

on Parallel and Distributed Systems, vol. 28, no. 6,

pp. 1797-1810, 2017.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices

architecture enables DevOps: migration to a cloud-native

architecture,” IEEE Software, vol. 33, no. 3, pp. 42-52, 2016.

[9] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and
N. Josuttis, “Microservices in practice, Part 1: reality check and
service design,” IEEE Software, vol. 34, no. 1, pp. 91-98, 2017.

[10] S. Verma and S. Sekhar Bhattacharyya, “Micro-foundation
strategies of IOT, BDA, cloud computing,” Strategic Direction,
vol. 32, no. 8, pp. 36-38, 2016.

[11] R. Alkurd, I. Abualhaol, and H. Yanikomeroglu, “Big-data-
driven and Al-based framework to enable personalization in
wireless networks,” IEEE Communications Magazine, vol. 58,
no. 3, pp. 18-24, 2020.

[12] H.-N.Kang, H.-R. Yong, and H.-S. Hwang, “Brand clustering based
on social big data: a case study,” International Journal of Software
Engineering and its Applications, vol. 10, no. 4, pp. 27-36, 2016.

[13] F.Zhao,J. Liu, J. Zhou, and L. T. Yang, “LS-AMS: an adaptive
indexing structure for realtime search on microblogs,” IEEE
Transactions on Big Data, vol. 1, no. 4, pp. 125-137, 2015.

[14] P. Barkavi and J. S. Vimali, “Sentiment analysis methods and
approaches: a survey,” International Journal of Pharmacy and
Technology, vol. 8, no. 4, pp. 22814-22823, 2016.

[15] S. Heitmann, S. Buri, G. Davico, and F. Reitzug, “Oper-
ationalizing ethnographic research to grow trust in digital
financial services,” Ethnographic Praxis in Industry - Con-
ference Proceedings, vol. 2018, no. 1, pp. 537-565, 2018.

[16] R. Alkurd, I. Y. Abualhaol, and H. Yanikomeroglu, “Per-
sonalized resource allocation in wireless networks: an Al-
enabled and big data-driven multi-objective optimization,”
IEEE Access, vol. 8, no. 9, pp. 144592-144609, 2020.

[17] D.Rojas-Torres and N. Kshetri, “Big data solutions for micro-,
small-, and medium-sized enterprises in developing coun-
tries,” IT professional, vol. 21, no. 5, pp. 67-70, 2019.

[18] C. Yu, “A method of public opinion analysis in big data
environments,” International Journal of Simulation: Systems,
vol. 17, no. 10, pp. 1-16, 2016.

[19] A.Elmouatamid, Y. Naitmalek, M. Bakhouya et al., “An energy
management platform for micro-grid systems using Internet of
Things and Big-data technologies,” Proceedings of the In-
stitution of Mechanical Engineers-Part I: Journal of Systems &
Control Engineering, vol. 233, no. 7, pp. 904-917, 2019.

[20] K. C. Finch, K. R. Snook, C. H. Duke et al., “Public health
implications of social media use during natural disasters,
environmental disasters, and other environmental concerns,”
Natural Hazards, vol. 83, no. 1, pp. 729-760, 2016.

[6

[7

[8

