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Since Internet of Everything (IoE) makes all the connections that come online more relevant and valuable, they are subject to
numerous security and privacy concerns. Cybersecurity ontology is a shared knowledge model for tackling the security in-
formation heterogeneity issue on IoE, which has been widely used in the IoE domain. However, the existing CSOs are developed
and maintained independently, yielding the CSO heterogeneity problem. To address this issue, we need to use the similarity
measure (SM) to calculate two entities’ similarity value in two CSOs and, on this basis, determine the entity correspondences, i.e.,
CSO alignment. Usually, it is necessary to integrate various SMs to enhance the result’s correctness, but how to combine and tune
these SMs to improve the alignment’s quality is still a challenge. To face this challenge, this work first models CSO matching
problem as a Constrained Multiobjective Optimization Problem (CMOOP) and then proposes a Coevolutionary Multiobjective
Evolutionary Algorithm (CE-MOEA) to effectively address it. In particular, CE-MOEA uses the multiobjective evolutionary
paradigm to avoid the solutions’ bias improvement and introduces the coevolutionary mechanism to trade off Pareto Front’s
(PF’s) diversity and convergence. ,e experiment uses Ontology Alignment Evaluation Initiative’s (OAEI’s) bibliographic track
and conference track and five real CSO matching tasks to test CE-MOEA’s performance. Comparisons between OAEI’s par-
ticipants and EA- and MOEA-based matching techniques show that CE-MOEA is able to effectively address various hetero-
geneous ontology matching problems and determine high-quality CSO alignments.

1. Introduction

Internet of Everything (IoE) is one such technological ad-
vancement that represents an interconnected network of
people, processes, data, and things. Since IoE makes all the
connections that come online more relevant and valuable,
they are subject to numerous security and privacy concerns
[1]. Cybersecurity ontology is the shared knowledge model
for standardizing the security terminologies, setting up the
relationship among them, and eliminating semantic dif-
ferences between different security policies on IoE [2].
Figure 1 shows a fragment of a CSO, where an oval node
denotes a concept, such as concept “SecurityPolicy” and
“SecurityObject”; the edge connecting two nodes represents

the relationship of two concepts; e.g., concept “Secur-
ityToken” is subsumed by concept “SecurityAssertion”; a
concept might have properties; e.g., concept “Alter-
nativeType” owns the properties “Capability” and
“Requirement.”

However, the existing CSOs are developed and main-
tained independently, yielding the CSO heterogeneity
problem. Finding the semantically equivalent entity pairs in
two security ontologies, i.e., CSO matching, is an effective
solution to this issue. When matching two CSOs, it is
necessary to use the similarity measure (SM) to calculate two
entities’ similarity value. However, no SM can ensure its
effectiveness in all contexts, and we usually need to com-
prehensively aggregate several SMs to improve the results’
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confidence. In recent years, Evolutionary Algorithm (EA)
[3] has become a popular method of optimizing SM’s ag-
gregating weights [4, 5], being dedicated to maximizing the
alignment’s f-measure [6]. According to Xue et al. [7], the
single-objective EA tends to improve the solution’s quality
by improving recall (which measures the alignment’s
completeness) or precision (which measures the
alignment’s correctness) while sacrificing the other, yielding
solution’s bias improvement. To improve the ontology
alignment’s quality, this work makes the following contri-
butions: (1) A Constrained Multiobjective Optimization
Model for the CSO matching problem is constructed, trying
to simultaneously optimize the alignment’s completeness
and correctness. (2) A Coevolutionary Multiobjective
Evolutionary Algorithm (CE-MOEA) is proposed to de-
termine the solutions that represent the trade-offs between
the alignment’s completeness and correctness. In particular,
CE-MOEA uses a new paradigm of coevolutionary frame-
work to solve the Constrained Multiobjective Optimization
Problem (CMOOP) with the assistance of solving a helper
problem. ,e helper problem is a simpler version of the
original MOP, and they are separately addressed by the same
multiobjective optimizer. CE-MOEA is characterized by the
weak cooperation between two populations, which can be
more effective than strong cooperation in existing MOEAs
for solving CMOOP [8].

,e rest of this paper is organized as follows: after
surveying EA-based ontology matching techniques (Section
2), the definition of the cyber ontology matching problem is
given (Section 3), and the problem-specific CE-MOEA for
addressing this problem is presented (Section 4), followed by
the experiment and the corresponding analysis (Section 5).
Finally, the conclusion is drawn and future work is presented
(Section 6).

2. Related Work

2.1. Evolutionary Algorithm Based Ontology Matching
Technique. How to combine and tune different similarity
measures to improve the ontology alignment’s quality is a
challenging problem [9], and EA is a state-of-the-art
methodology to face it [10]. Martinez et al. [11] first propose
to improve ontology alignment through EA. ,ey are
dedicated to finding a suitable weight set for aggregating
three kinds of similarity measures in parallel. After that,
Ginsca et al. [12] and Naya et al. [13] further optimize
another parameter for the matching process, i.e., the
threshold for determining the final alignment. ,e above
three works with the objective of maximizing the align-
ment’s quality suffer from two drawbacks: (1) a reference
alignment should be provided in advance to evaluate the
alignment’s quality, but it is not always available in the
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Figure 1: An example of sensor ontology matching.
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practical matching task; (2) a bias improvement on the
solutions caused by f-measure would bring negative impacts
on the results. To overcome these issues, Xue et al. [14]
propose the approximate evaluating metrics on alignment’s
quality and introduce Unanimous Improvement Ratio
(UIR) to ensure the solutions’ unanimous improvement
during algorithm’s search process. ,eir work is able to
match more than one pair of heterogeneous ontologies and
find the uniform aggregating weights. Later on, Lv et al. [15]
not only use the approximate metrics to evaluate the so-
lutions, but also introduce the adaptive selection pressure to
improve the algorithm’s efficiency. Moreover, the local
search strategy and compact encoding mechanism are also
combined with EA to improve its searching efficiency [16].
More recently, Lin et al. [17] propose to use EA to aggregate
several similarity measures and optimize the alignment’s
quality. To better trade off the completeness and correctness
of the alignment and improve the searching efficiency,
Acampora et al. [18] and Xue et al. [19, 20] regard the
matching problem as a multiobjective optimizing process
and, respectively, used two popular MOEAs, i.e., NSGA-II
[21] and MOEA/D [22], to address it. ,eir approaches aim
to find a set of non-dominated solutions that represent a
balance between an alignment’s completeness and correct-
ness, and the solutions with the best sub-objective values in
the Pareto Front (PF) are selected as the output. To improve
the algorithm’s efficiency, the meta-model is introduced to
evaluate the solution’s fitness, which can effectively address
the expensive evaluating issue [23]. However, the con-
strained multiobjective CSO matching problem poses stiff
challenge to the existing MOEA-based matching techniques,
because it is difficult for them to handle both objectives and
constraints so as to ensure the solutions’ convergence and
diversity.

2.2. Coevolutionary Algorithm for ConstrainedMultiobjective
Optimization Problem. For decades, MOEAs have shown
their effectiveness in solving Multiobjective Optimization
Problem (MOOP) [24], and in recent years, more attention
has been drawn to CMOOP, such as collaborative CTAEA
[25] and PPS with biphasic search [26]. A CMOOP is
formally defined as follows:

max f(x) � f1(x), f2(x) · · · fm(x)( ,

s.t.x ∈ Ω,

gi(x)≤ 0, i � 1, · · ·p,

hj(x) � 0, j � 1, · · ·, q,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x � (x1, · · ·xD) ∈ Ω is D-dimensional decision vari-
able; Ω ∈ RD is the decision space; f: Ω⇄RD consists of M
objectives; and gi(x) and hj(x) are, respectively, the in-
equality constraints and the jth equality constraints. ,e
constraints define a feasible region for CMOOP, and the
algorithm should determine the feasible solutions to min-
imize the objectives as much as possible. Since the con-
straints and the objectives should be separately handled and
balanced, CMOOP should not be regarded as the extension
of classical MOOP.

With the development of Coevolutionary Algorithm
and its effectiveness on many challenging problems, the
coevolutionary constraint handling technique is used in
addressing CMOOP. Ceollo [27] and Huang et al. [28],
respectively, propose a Coevolutionary EA and Coevo-
lutionary Differential Evolution (DE) Algorithm to ad-
dress the CMOOP. To balance the constraints and
objectives, they assign each subpopulation an indepen-
dent penalty factor and evolve them simultaneously. Liu
et al. [29] propose a coevolutionary framework that
consists of two subpopulations. One subpopulation is
dedicated to optimizing the objectives without consid-
ering the constraints, while the other tries to minimize the
violation of constraints. Kieffer et al. [30] first decompose
the constraints and assign each constraint to a subpop-
ulation. After that, each subpopulation tries to satisfy
more constraints with the requisition that its assigned
constraint is met. Wang et al. [31] use M subpopulations
to address M constrained single-objective optimization
problem, and then find a new subpopulation for solving
M-objective CMOOP.

Although CMOOP has been studied for two decades and
various techniques have been suggested in the state-of-the-
art MOEAs, it is still difficult to address the CMOOP with
small feasible region, which might lead to a poor conver-
gence and diversity [32]. In addition, the strong cooperation
between subpopulations yields the difficulties of keeping the
population’s convergence and diversity. To address these
issues, we propose a CE-MOEA, which makes use of two
subpopulations with weak cooperating framework to ad-
dress the multiobjective CSOmatching problem. CE-MOEA
is able to better balance the solutions’ convergence and
diversity.

3. Cybersecurity Ontology Matching Problem

A CSO consists of the class set, the datatype property set,
and the object property set [17], and the existing CSOs can
be generally categorized into three categories, i.e., gener-
alized security ontologies, specialized security ontologies,
and miscellaneous security ontologies [33]. Due to the
human subjectivity, these CSOs might have different ways
of class definitions, yielding the ontology heterogeneity
problem, which hampers their communications. Ontology
matching is dedicated to finding the set of entity corre-
spondences between heterogeneous entities, i.e., ontology
alignment. Each entity correspondence consists of two
entities, their relationships (typically equivalence ≡ ) and
the confidence that it holds [34]. Figure 2 shows the
flowchart of matching two ontologies. Each SM is used to
construct a similarity matrix for two ontologies under
alignment, whose row and column are the entities of two
ontologies, and its element is the similarity value of two
corresponding entities. After that, these similarity matrices
are aggregated into one matrix, which is then converted
into the ontology alignment.

Recall and precision are two classical metrics for eval-
uating the quality of an alignment [5], which, respectively,
measure an alignment’s completeness and correctness:
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Figure 2: �e �owchart of matching ontologies.
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Recall �
|A∩RA|

|RA|
,

Precision(A) �
|A∩RA|

|A|
.

(2)

where |A| and |RA| are, respectively, the numbers of cor-
respondences in the alignment A and the reference align-
ment RA, and |A∩RA| is the number of the true positive
correspondences in A.

It is difficult to obtain a perfect ontology alignment,
whose recall and precision are both equal to 1.00; therefore,
we need to balance them during the matching process [34].
Assume n is the number of similarity measures; CSO
matching problem forigin is formally defined as follows:

maxf(x) � f1(x), f2(x)( ,

s.t. X � x1, x2, . . . , xn( , xi ∈ 0, 1{ },

 xi � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where xi is the aggregating weight of i − thith similarity
matrix, and (f1) and (f2), respectively, calculate the de-
cision variable X′s corresponding alignment’s recall and
precision.

We can also use the statistic-based approach to ap-
proximately calculate the recall and precision of an align-
ment, which are, respectively, defined as follows [35]:

Recall′(A) �
EntityMapped





O1


 + O2



,

Precision′(A) �
isimi

|A|
.

(4)

where |O1|, |O2|, and |A| are, respectively, the entity numbers
of ontologies O1 and O2, and their alignment A;

|EntityMapped| is the number of mapped entities in A; and
simi is the i th correspondence’s similarity value. ,e mo-
tivations behind the metrics (recall′) and (precision′) are
that the more the mapped entities are, the more the correct
mappings found could be (i.e., the higher the recall could
be), and the higher the average similarity value is, the higher
the confidence of the alignment could be (i.e., the higher the
precision could be). On this basis, we define the helper
problem fhelp as follows:

maxf′(X) � f1′(X), f2′(X)( ,

s.t. X � x1, x2, . . . , xn( , xi ∈ 0, 1{ }

 xi � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, (5)

where f1′(X) and f2′(X), respectively, calculate the decision
variable X’s corresponding alignment’s approximate recall
and precision. forigin uses the most sound metric to ensure
the population’s convergence, while fhelp is relatively re-
laxed, and the population for addressing it could be more
diverse. ,e cooperation between two populations, which
aim to address forigin and fhelp, respectively, can bring
mutual benefits for them and guide the algorithm to ensure
both convergence and diversity of the population.

4. Coevolutionary Multiobjective
Evolutionary Algorithm

,is work uses the binary encoding mechanism; please see
also our previous work [36] for more details. As shown in
Algorithm 1, two subpopulations with size N are first
randomly initialized and then evaluated by the original
problem forigin and helper problem fhelp. In each genera-
tion, two parent sets parent1 and parent2 with size N/2 are
randomly selected from population1 and population2. Each
parent set generates an offspring population with size N/2

(1) initialize population1;
(2) initialize population2;
(3) evaluate population1 byforigin;

(4) evaluate population2 byfhelp;
(5) gen � 0;

(6) While gen<MaxGen do
(7) parent1 � Random_Selection(population1, N/2);

(8) parent2 � Random_Selection(population2, N/2);
(9) offspring1 � Generate_Offspring(population1, N/2);
(10) offspring2 � Generate_Offspring(population2, N/2);
(11) population1� population1Èoffspring1Èoffspring2;
(12) population2 � population2Èoffspring2Èoffspring1;
(13) evaluate population1 byforigin;
(14) evaluate population2 byfhelp;
(15) Non − dorminated_Sorting(population1);
(16) population1 � Environmental_Selection(population1, N);
(17) population2 � Environmental_Selection(population2, N);
(18) gen� gen+1;
(19) end while
(20) Return population1

ALGORITHM 1: Pseudocode of CE-MOEA.
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with the single-point crossover operator and flip-bit mu-
tation [37]. Afterwards, population1 and population2 are
both combined with two offspring populations, offspring1
and offspring2, which are, respectively, evaluated by forigin
and fhelp. Finally, we execute NSGA-II’s non-dominated
sorting and environmental selection on population1 and
population2. When the generation gen reaches the maxi-
mum generation MaxGen, the algorithm terminates and
returns population1 as the output.

CE-MOEA always evaluates population1 by forigin and
evolves population2 to solve fhelp, and since fhelp is a
simplified version of forigin, the evaluation by fhelp does not
increase the algorithm’s computational complexity. fhelp is

simpler, and thus populations2 usually converges quickly
and has better diversity. fhelp assists in solving forigin by
sharing its offspring, which is able to improve population1′s
converging speed and helps it jump out of the local opti-
mums. Different from other MOEAs which make subpop-
ulations cooperate in the whole evolving process, CE-MOEA
evolves two subpopulations separately except for sharing
their offspring in each generation. CE-MOEA uses a weak
cooperation to offer each subpopulation freedom to evolve
and makes one subpopulation to assist the other to address
the original optimization problem. According to Tian et al.
[7], the coevolutionary paradigm with weak cooperation is
more effective than a strong cooperation.

Table 1: Comparison on OAEI’s testing cases in terms of recall and precision.,e symbols r and p, respectively, denote recall and precision.

OAEI’s bibliographic track

Testing case AMLC [51] LogMap [52] LogMapLt [52] XMap [53] EA NSGA-II CE-MOEA
r (p) r (p) r (p) r (p) r (p) r (p) r (p)

101 1.00 (1.00) 0.88 (0.96) 0.78 (0.64) 0.93 (1.00) 0.78 (0.84) 1.00 (1.00) 1.00 (1.00)
202 0.80 (0.92) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.72 (0.87) 0.80 (0.91) 0.88 (0.96)
221 0.49 (0.53) 0.87 (0.98) 0.76 (0.69) 0.95 (1.00) 0.87 (0.87) 0.97 (0.92) 1.00 (1.00)
222 0.71 (0.32) 0.00 (0.00) 0.76 (0.69) 0.80 (0.75) 0.78 (0.85) 0.97 (0.92) 1.00 (1.00)
223 0.40 (0.62) 0.90 (0.98) 0.76 (0.69) 0.98 (0.96) 0.87 (0.87) 0.86 (0.95) 1.00 (1.00)
224 0.58 (0.45) 0.90 (0.98) 0.82 (0.98) 0.98 (0.96) 0.94 (0.85) 0.86 (0.95) 1.00 (1.00)
225 0.51 (0.52) 0.92 (0.97) 0.76 (0.69) 0.98 (0.96) 0.78 (0.85) 0.82 (0.87) 1.00 (1.00)
228 1.00 (1.00) 0.92 (0.97) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
232 0.51 (0.52) 0.87 (0.98) 0.88 (0.93) 0.98 (0.96) 0.81 (0.95) 0.86 (0.95) 1.00 (1.00)
233 1.00 (1.00) 0.92 (0.97) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
236 1.00 (1.00) 0.92 (0.97) 0.72 (0.87) 1.00 (1.00) 0.82 (0.88) 0.92 (0.92) 1.00 (1.00)
237 0.42 (0.58) 0.00 (0.00) 0.88 (0.93) 0.80 (0.75) 0.87 (0.80) 0.82 (0.87) 0.94 (0.94)
238 0.51 (0.52) 0.96 (0.93) 0.88 (0.93) 0.98 (0.96) 0.82 (0.92) 0.86 (0.95) 1.00 (1.00)
239 1.00 (1.00) 0.91 (0.93) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
240 1.00 (1.00) 0.91 (0.93) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
241 1.00 (1.00) 0.91 (0.93) 0.72 (0.87) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
246 1.00 (1.00) 0.88 (0.96) 0.72 (0.87) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
247 1.00 (1.00) 0.88 (0.96) 0.72 (0.87) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
Average 0.77 (0.77) 0.75 (0.80) 0.69 (0.68) 0.91 (0.90) 0.89 (0.91) 0.93 (0.95) 0.99 (0.99)

OAEI’s conference track
Testing case AMLC LogMap LogMapLt XMap EA NSGA-II CE-MOEA
cmt-conference 0.53 (0.67) 0.53 (0.73) 0.33 (0.56) 0.00 (0.00) 0.68 (0.76) 0.68 (0.76) 0.73 (0.92)
cmt-confOf 0.56 (0.90) 0.31 (0.83) 0.38 (0.67) 0.44 (0.88) 0.65 (0.68) 0.65 (0.68) 0.75 (0.75)
cmt-edas 0.77 (0.91) 0.62 (0.89) 0.62 (0.73) 0.69 (0.75) 0.65 (0.72) 0.68 (0.76) 0.82 (0.95)
cmt-ekaw 0.55 (0.75) 0.55 (0.75) 0.45 (0.56) 0.64 (0.70) 0.65 (0.68) 0.65 (0.68) 0.80 (0.77)
cmt-iasted 1.00 (0.80) 0.84 (0.80) 0.90 (0.89) 0.93 (0.80) 0.75 (0.89) 0.83 (0.87) 0.88 (0.93)
cmt-sigkdd 0.92 (0.92) 0.88 (0.95) 0.67 (0.89) 0.83 (0.91) 0.75 (0.75) 0.87 (0.90) 0.92 (0.94)
conference-confOf 0.87 (0.87) 0.73 (0.85) 0.60 (0.90) 0.80 (0.71) 0.78 (0.67) 0.80 (0.88) 0.88 (0.93)
conference-edas 0.65 (0.73) 0.65 (0.85) 0.53 (0.75) 0.65 (0.79) 0.78 (0.67) 0.68 (0.78) 0.79 (0.79)
conference-ekaw 0.72 (0.78) 0.48 (0.60) 0.32 (0.62) 0.60 (0.58) 0.74 (0.66) 0.70 (0.78) 0.79 (0.85)
conference-iasted 0.36 (0.83) 0.50 (0.88) 0.29 (0.80) 0.36 (0.62) 0.68 (0.52) 0.75 (0.60) 0.75 (0.75)
conference-sigkdd 0.73 (0.85) 0.73 (0.85) 0.53 (0.80) 0.60 (0.58) 0.75 (0.75) 0.75 (0.75) 0.78 (0.82)
confOf-edas 0.58 (0.92) 0.53 (0.77) 0.58 (0.58) 0.53 (0.91) 0.65 (0.72) 0.65 (0.72) 0.71 (0.79)
confOf-ekaw 0.80 (0.94) 0.70 (0.93) 0.50 (0.77) 0.80 (0.76) 0.88 (0.75) 0.88 (0.75) 0.88 (0.75)
confOf-iasted 0.44 (0.80) 0.54 (0.89) 0.54 (0.90) 0.67 (0.43) 0.62 (0.51) 0.69 (0.51) 0.71 (0.78)
confOf-sigkdd 0.88 (0.95) 0.81 (0.90) 0.68 (0.88) 0.57 (0.80) 0.88 (0.73) 0.89 (0.78) 0.88 (0.96)
edas-ekaw 0.48 (0.79) 0.52 (0.75) 0.43 (0.59) 0.52 (0.75) 0.65 (0.68) 0.65 (0.68) 0.65 (0.79)
edas-iasted 0.47 (0.82) 0.37 (0.88) 0.37 (0.88) 0.42 (0.57) 0.63 (0.57) 0.62 (0.82) 0.65 (0.88)
edas-sigkdd 0.75 (0.84) 0.47 (0.88) 0.47 (0.88) 0.62 (0.81) 0.75 (0.75) 0.68 (0.76) 0.76 (0.88)
ekaw-iasted 0.70 (0.84) 0.70 (0.78) 0.60 (0.60) 0.70 (0.58) 0.68 (0.76) 0.82 (0.74) 0.85 (0.85)
ekaw-sigkdd 0.73 (0.80) 0.70 (0.78) 0.70 (0.78) 0.64 (0.78) 0.78 (0.67) 0.70 (0.81) 0.78 (0.83)
iasted-sigkdd 0.87 (0.81) 0.88 (0.82) 0.73 (0.73) 0.87 (0.68) 0.76 (0.75) 0.80 (0.85) 0.87 (0.89)
Average 0.68 (0.83) 0.62 (0.82) 0.53 (0.75) 0.61 (0.68) 0.70 (0.69) 0.73 (0.55) 0.79 (0.84)
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Table 2: Comparison on OAEI’s testing cases in terms of f-measure.

OAEI’s bibliographic track
Testing case AMLC LogMap LogMapLt XMap EA NSGA-II CE-MOEA
101 1.00 0.95 0.71 0.97 0.81 1.00 1.00
202 0.86 0.00 0.00 0.00 0.79 0.85 0.92
221 0.51 0.94 0.72 0.97 0.87 0.95 1.00
222 0.50 0.00 0.72 0.78 0.82 0.95 1.00
223 0.51 0.94 0.72 0.97 0.87 0.90 1.00
224 0.51 0.94 0.90 0.97 0.90 0.90 1.00
225 0.51 0.95 0.72 0.97 0.82 0.85 1.00
228 1.00 0.92 0.48 1.00 1.00 1.00 1.00
232 0.51 0.94 0.90 0.97 0.88 0.90 1.00
233 1.00 0.92 0.48 1.00 1.00 1.00 1.00
236 1.00 0.92 0.80 1.00 0.85 0.92 1.00
237 0.50 0.00 0.91 0.78 0.84 0.85 0.94
238 0.51 0.95 0.90 0.97 0.87 0.90 1.00
239 1.00 0.92 0.48 1.00 1.00 1.00 1.00
240 1.00 0.92 0.48 1.00 1.00 1.00 1.00
241 1.00 0.92 0.80 1.00 1.00 1.00 1.00
246 1.00 0.92 0.80 1.00 1.00 1.00 1.00
247 1.00 0.92 0.80 1.00 1.00 1.00 1.00
Average 0.77 0.78 0.68 0.91 0.91 0.94 0.99

OAEI’s conference track
cmt-conference 0.59 0.62 0.42 0.00 0.72 0.72 0.84
cmt-confOf 0.69 0.45 0.48 0.58 0.66 0.66 0.75
cmt-edas 0.83 0.73 0.67 0.72 0.68 0.72 0.88
cmt-ekaw 0.63 0.63 0.50 0.67 0.68 0.72 0.79
cmt-iasted 0.89 0.89 0.89 0.89 0.82 0.85 0.90
cmt-sigkdd 0.92 0.91 0.76 0.87 0.75 0.89 0.93
conference-confOf 0.87 0.79 0.72 0.75 0.78 0.83 0.90
conference-edas 0.69 0.73 0.62 0.71 0.73 0.73 0.79
conference-ekaw 0.75 0.53 0.42 0.59 0.70 0.74 0.82
conference-iasted 0.50 0.64 0.42 0.45 0.59 0.68 0.75
conference-sigkdd 0.79 0.79 0.64 0.69 0.75 0.75 0.80
confOf-edas 0.71 0.62 0.58 0.67 0.68 0.68 0.75
confOf-ekaw 0.86 0.80 0.61 0.78 0.82 0.82 0.88
confOf-iasted 0.57 0.62 0.62 0.52 0.58 0.60 0.75
confOf-sigkdd 0.92 0.83 0.73 0.67 0.80 0.85 0.92
edas-ekaw 0.59 0.62 0.50 0.62 0.66 0.62 0.72
edas-iasted 0.60 0.52 0.52 0.48 0.60 0.66 0.77
edas-sigkdd 0.80 0.61 0.61 0.64 0.75 0.72 0.82
ekaw-iasted 0.78 0.74 0.60 0.64 0.72 0.78 0.85
ekaw-sigkdd 0.76 0.74 0.74 0.70 0.73 0.76 0.81
iasted-sigkdd 0.84 0.85 0.73 0.76 0.76 0.82 0.88
Average 0.74 0.70 0.61 0.64 0.71 0.74 0.82
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Figure 3: Comparison on cybersecurity ontology matching tasks in terms of recall.
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5. Experiment

5.1. Experimental Configuration. In the experiment, we first
compare our approach with EA-based matching technique
[17], NSGA-II-based matching technique [19], and OAEI’s
participants on bibliographic track and conference track
provided by Ontology Alignment Evaluation Initiative (OAEI).
In particular, OAEI’s bibliographic track requires matching
two bibliographic ontologies, and the target ontology’s entity
names could be random strings or synonyms. ,e hierarchy
could be expanded or flattened, the properties could be sup-
pressed, and the classes could be refined by several subclasses or
flattened. OAEI’s conference track requires matching 16 dif-
ferent ontologies on the conference organization, which have
been used in some actual conference series and the corre-
sponding conference web sites. After that, we compare CE-
MOEA with EA-based and NSGA-II-based matching tech-
niques on five pairs of real CSOs, which are all popular on-
tologies in the cybersecurity domain and own large quantities
of heterogeneous entities:

(1) Network Security Ontologies: Network Attack On-
tology (NAO) [38] and Ontology-based Attack
Model (NAM) [39].

(2) Security Requirement-related Ontologies: Security
and Domain Ontology for Security Requirement
Analysis (SDOSRA) [40] and Extended Ontology for
Security Requirements (EOSR) [41].

(3) Miscellaneous Security Ontologies: Ontological ap-
proach toward Cybersecurity in Cloud Computing
(OCSCC) [42] and Ontology in Cloud Computing
(OCC) [43].

(4) Application-Based Security Ontologies: Security
Ontology for Mobile Applications (SOMA) [44] and
Security Ontology for Mobile Agents Protection
(SOMAP) [45].

(5) Cloud Security Ontologies: Cloud Security Policy
(CSP) [46] and Cloud Ontology (CO) [47].

Finally, we carry out the T-test to statistically compare
three EA-based matching techniques. In particular, the
configurations of EA and NSGA-II are referred to in their
papers, and the configuration of CE-MOEA is as follows:

(1) Population size� 20.
(2) Maximum generation� 2000.
(3) Crossover rate� 0.65.
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Figure 4: Comparison on cybersecurity ontology matching tasks in terms of precision.
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Figure 5: Comparison on cybersecurity ontology matching tasks in terms of f-measure.
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(4) Mutation rate� 0.012.

,ree categories of similarity measures used by CE-
MOEA are as follows:

(1) Syntax-based similarity measure: Levenshtein dis-
tance [48].

(2) Linguistic-based similarity measure:WordNet-based
distance [49].

(3) Taxonomy-based similarity measure: context-based
distance [50].

,e algorithm’s configurations are determined through the
empirical experiments, and their robustness against different
heterogeneous matching tasks is verified through the experi-
mental results. ,ree similarity measures are the classical ones
that belong to three categories of similarity measures in on-
tology matching domains, which have been proved to have
mutual benefits in enhancing the results’ confidence [11].

5.2. Experimental Results. Tables 1 and 2 make comparisons
on OAEI’s testing cases in terms of recall, precision, and

Table 3: Comparisons between EA, NSGA-II, and CE-MOEA in terms of mean f-measure and standard deviation.

OAEI’s bibliographic track

Testing case EA NSGA-II CE-MOEA
f-measure (stdDev) f-measure (stdDev) f-measure (stdDev)

101 0.81 (0.01) 1.00 (0.01) 1.00 (0.01)
202 0.79 (0.03) 0.85 (0.02) 0.92 (0.02)
221 0.87 (0.02) 0.95 (0.02) 1.00 (0.01)
222 0.82 (0.02) 0.95 (0.01) 1.00 (0.01)
223 0.87 (0.01) 0.90 (0.02) 1.00 (0.01)
224 0.90 (0.01) 0.90 (0.02) 1.00 (0.01)
225 0.82 (0.02) 0.85 (0.01) 1.00 (0.01)
228 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
232 0.88 (0.01) 0.90 (0.01) 1.00 (0.01)
233 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
236 0.85 (0.03) 0.92 (0.02) 1.00 (0.01)
237 0.84 (0.02) 0.85 (0.03) 0.94 (0.01)
238 0.87 (0.03) 0.90 (0.01) 1.00 (0.01)
239 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
240 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
241 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
246 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
247 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)

OAEI’s conference track
cmt-conference 0.72 (0.02) 0.72 (0.02) 0.84 (0.02)
cmt-confOf 0.66 (0.03) 0.66 (0.02) 0.75 (0.01)
cmt-edas 0.68 (0.02) 0.72 (0.01) 0.88 (0.01)
cmt-ekaw 0.68 (0.02) 0.72 (0.01) 0.79 (0.02)
cmt-iasted 0.82 (0.02) 0.85 (0.02) 0.90 (0.01)
cmt-sigkdd 0.75 (0.02) 0.89 (0.01) 0.93 (0.01)
conference-confOf 0.78 (0.02) 0.83 (0.02) 0.90 (0.01)
conference-edas 0.73 (0.03) 0.73 (0.02) 0.79 (0.02)
conference-ekaw 0.70 (0.02) 0.74 (0.01) 0.82 (0.01)
conference-iasted 0.59 (0.03) 0.68 (0.01) 0.75 (0.01)
conference-sigkdd 0.75 (0.03) 0.75 (0.01) 0.80 (0.01)
confOf-edas 0.68 (0.02) 0.68 (0.01) 0.75 (0.01)
confOf-ekaw 0.82 (0.02) 0.82 (0.02) 0.88 (0.01)
confOf-iasted 0.58 (0.03) 0.60 (0.01) 0.75 (0.01)
confOf-sigkdd 0.80 (0.01) 0.85 (0.01) 0.92 (0.01)
edas-ekaw 0.66 (0.03) 0.62 (0.03) 0.72 (0.02)
edas-iasted 0.60 (0.02) 0.66 (0.02) 0.77 (0.01)
edas-sigkdd 0.75 (0.03) 0.72 (0.03) 0.82 (0.02)
ekaw-iasted 0.72 (0.01) 0.78 (0.02) 0.85 (0.01)
ekaw-sigkdd 0.73 (0.02) 0.76 (0.01) 0.81 (0.02)
iasted-sigkdd 0.76 (0.01) 0.82 (0.01) 0.88 (0.01)

Cybersecurity ontology matching tasks
NAO-NAM 0.78 (0.02) 0.85 (0.02) 0.88 (0.02)
SDOSRA-EOSR 0.82 (0.02) 0.78 (0.02) 0.87 (0.01)
OCSCC-OCC 0.91 (0.02) 0.89 (0.02) 0.93 (0.01)
SOMA-SOMAP 0.85 (0.02) 0.87 (0.01) 0.92 (0.02)
CSP-CO 0.83 (0.01) 0.84 (0.01) 0.87 (0.01)
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f-measure. In particular, f-measure is a uniform mean of
recall and precision. Figures 3, 4, and 5 respectively compare
EA, NSGA-II, and CE-MOEA on CSO matching tasks.
Table 3 compares CE-MOEA with EA and NSGA-II with the
mean f-measure and the corresponding standard deviation
stdDev, and in Table 4, the statistical T-test [51] is executed
on the data presented in Table 3.,e results of EA, NSGA-II,
and CE-MOEA presented in the tables and figures are the
mean values of 30 independent runs.

As shown in Tables 1 and 2, compared with OAEI’s
participants, EA-, NSGA-II-, and CE-MOEA-based

matching techniques comprehensively take into consider-
ation several similarity measures, whose precision values are
generally high. In addition, the iterative refinement on the
alignment is an effective way of finding more correct entity
correspondences; therefore, EA-based matching techniques’
recall values are also high in general.

In Figures 3, 4, and 5, since MOEA is able to better trade
off the alignment’s recall and precision, NSGA-II and CE-
MOEA’s results are better than those of classical EA. With
the introduction of the coevolutionary mechanism, CE-
MOEA is able to further improve the results’ quality by

Table 4: T-test on alignment’s quality.

OAEI’s bibliographic track

Testing case (EA, CE-MOEA) (NSGA-II, CE-MOEA)
T value (p value) T value (p value)

101 −73.5866 (0.0000) 0.0000 (0.5000)
202 −19.7484 (0.0012) −13.5554 (0.0027)
221 −31.8433 (0.0004) −12.2474 (0.0033)
222 −44.0908 (0.0002) −19.3649 (0.0013)
223 −50.3487 (0.0001) −24.4949 (0.0008)
224 −38.7298 (0.0003) −24.4949 (0.0008)
225 −44.0908 (0.0002) −58.0947 (0.0001)
228 0.0000 (0.5000) 0.0000 (0.5000)
232 −46.4758 (0.0002) −38.7298 (0.0003)
233 0.0000 (0.5000) 0.0000 (0.5000)
236 −25.9807 (0.0007) −19.59592 (0.0012)
237 −24.4948 (0.0008) −15.5884 (0.0020)
238 −22.5166 (0.0009) −38.7298 (0.0003)
239 0.0000 (0.5000) 0.0000 (0.5000)
240 0.0000 (0.5000) 0.0000 (0.5000)
241 0.0000 (0.5000) 0.0000 (0.5000)
246 0.0000 (0.5000) 0.0000 (0.5000)
247 0.0000 (0.5000) 0.0000 (0.5000)

OAEI’s conference track
cmt-conference −23.2379 (0.0009) −23.2379 (0.0009)
cmt-confOf −15.5884 (0.0020) −22.0454 (0.0010)
cmt-edas −48.9897 (0.0002) −61.9677 (0.0001)
cmt-ekaw −21.3014 (0.0010) −17.1464 (0.0016)
cmt-iasted −19.5959 (0.0012) −12.2474 (0.0033)
cmt-sigkdd −44.0908 (0.0002) −15.4919 (0.0020)
conference-confOf −29.3938 (0.0005) −17.1464 (0.0016)
conference-edas −9.1146 (0.0059) −11.6189 (0.0036)
conference-ekaw −29.3938 (0.0005) −30.9838 (0.0005)
conference-iasted −27.7128 (0.0006) −27.1108 (0.0006)
conference-sigkdd −8.6602 (0.0065) −19.3649 (0.0013)
confOf-edas −17.1464 (0.0016) −27.1108 (0.0006)
confOf-ekaw −14.6969 (0.0023) −14.6969 (0.0023)
confOf-iasted −29.4448 (0.0005) −58.0947 (0.0001)
confOf-sigkdd −46.4758 (0.0002) −27.1108 (0.0006)
edas-ekaw −9.1146 (0.0059) −15.1910 (0.0021)
edas-iasted −41.6413 (0.0002) −26.94 (0.0006)
edas-sigkdd −10.6337 (0.0043) −15.1910 (0.0021)
ekaw-iasted −50.3487 (0.0001) −17.1464 (0.0016)
ekaw-sigkdd −15.4919 (0.0020) −12.2474 (0.0033)
iasted-sigkdd −46.4758 (0.0002) −23.2379 (0.0009)

Cybersecurity ontology matching tasks
NAO-NAM −19.3649 (0.0013) −5.8094 (0.0141)
SDOSRA-EOSR −12.2474 (0.0033) −22.0454 (0.0010)
OCSCC-OCC −4.8989 (0.0196) −9.7979 (0.0051)
SOMA-SOMAP −13.5554 (0.0027) −12.2474 (0.0033)
CSP-CO −15.4919 (0.0020) −11.6189 (0.0036)
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helping the algorithm jump out of the local optimum. In
particular, the subpopulation for the helper problem can
improve the diversity in general, while the subpopulation for
the original problem ensures the algorithm’s convergence.
,e cooperation between them is able to better trade off the
PF’s diversity and convergence and further improve the
alignment’s quality.

In Table 4, T-test’s degree of freedom of is 2, and the
significant level is 0.05. On all testing cases, the p values are
all smaller than 0.05, and thus, we can draw the conclusion
that CE-MOEA statistically outperforms EA- and NSGA-II-
based matching techniques at the significance level of 5%. To
conclude, CE-MOEA-based ontology matching technique is
able to effectively address various ontology heterogeneity
problems and determine high-quality CSO alignments.

6. Conclusion and Future Work

Due to the distributed and independent nature of cyber-
security systems, it is necessary to match various hetero-
geneous CSOs to manage cybersecurity knowledge on IoE.
To this end, this work proposes a CE-MOEA-based
matching technique to effectively determine CSO alignment.
CE-MOEA uses the multiobjective evolutionary paradigm to
avoid the solutions’ bias improvement and introduces the
coevolutionary mechanism to trade off PF’s diversity and
convergence. ,e experiment uses OAEI’s bibliographic
track and conference track and five real CSO matching tasks
to test CE-MOEA’s performance. Comparisons between
OAEI’s participants and EA- and CE-MOEA-based
matching techniques show that our proposed algorithm is
able to effectively address various heterogeneous ontology
matching problems and determine high-quality cyberse-
curity ontology alignments. ,e experimental results also
show that the evolutionary paradigm is able to find better
alignment than other artificial techniques and the weak
cooperating framework is effective in further improving
MOEA’s performance.

Although CE-MOEA-based aligning technique shows its
superiority in the experiment, it is not able to detect the m:n
correspondence; i.e., multiple source entities are mapped with
multiple target entities, which is a common complex corre-
spondence pattern. In addition, CE-MOEA is also not able to
find other semantic relationships among the entities, such as
the subsumption.,e divide-and-conquer approach has been
proved to be a viable method that can facilitate the effec-
tiveness of matching process [52], and we are also interested
in utilizing the clustering algorithm, such as graph clustering
algorithm [53], to partition two CSOs, which can be of help to
improve the efficiency of matching process [54–56].
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