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PassPoint is a graphical authentication technique that is based on the selection of five points in an image. A detected vulnerability
lies in the possible existence of a pattern in the points that make up the password. +e objective of this work is to detect
nonrandom graphical passwords in the PassPoint scenario. A spatial randomness test based on the average of Delaunay triangles’
perimeter is proposed, given the ineffectiveness of the classic tests in this scenario, which only consists of five points. A state-of-
the-art of various applications of Voronoi polygons and Delaunay triangulations are presented to detect clustered and regular
patterns. +e distributions of the averages of the triangles’ perimeters in the PassPoint scenario for various sizes of images are
disclosed, which were unknown. +e test’s decision criterion was constructed from one of the best distributions to which the data
were adjusted. Type I and type II errors were estimated, and it was concluded that the proposed test could detect clustered and
regular graphical passwords in PassPoint, therefore being more effective in detecting clustering than regularity.

1. Introduction

Graphical authentication schemes are alternatives to pass-
words based on alphanumeric characters. +ese are used in
user authentication or key generation for use in crypto-
graphic algorithms [1]. Graphic passwords can be formed by
the combination of photos, images, or iconography. Given
the characteristics of the images, they produce a much larger
password space and are more resistant to dictionary attacks
since alphanumeric password phrases that are relatively easy
to predict are often used.+ese passwords’ efficiency is based
on the ability of humans to remember patterns in images
instead of memorizing sets of characters of great length and
complexity.

An updated description and critical assessment of the
different graphical authentication schemes’ security and

usability can be found in [2]. PassPoint is a graphical au-
thentication technique that bases its operation on selecting
and remembering patterns of points in images [3]. +e
authentication process involves the user selecting various
points on the image in a particular order. When logging in,
the user is supposed to click near the points selected in the
registration phase within a tolerance region or neighbor-
hood. One of the vulnerabilities of PassPoint lies in the
possible existence of a pattern in the points that make up the
password [2]. +is pattern can be determined either by
selecting the points or by the spatial distribution of them in
the image. Considering the latter, a password is considered
weak if the points are not randomly distributed and can be
obtained by an attacker applying various techniques such as
those described in [4–7]. +e main types of nonrandomness
present between the points, in that case, are clustering,
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regularity, and smoothness. According to the behavior of the
points distributed in the plane (in this case, image), the
spatial point patterns are classified into random (homoge-
neous Poisson point process), regular (uniform or a pattern
in inhibition), or clustered (aggregates), [8–12]. During the
registration phase of the PassPoint, it is necessary to de-
termine whether the points selected by the user follow a
random spatial pattern.

In [13], it is stated that Delaunay triangulation and
Voronoi polygons have been widely used to analyze the
pattern of distribution of points and measure spatial in-
tensity. To measure the distribution of points, we calculate
the nearest neighbor and the point pattern shape. When
calculating a Voronoi diagram to a point distribution to test
the complete spatial randomness of the point distributions,
the characteristics of the Delaunay triangles are extracted
(e.g., interior angles and edge lengths). Spatial intensity, i.e.,
how concentrated the points are in a particular study area, is
measured by calculating the area and elongation of the
Voronoi polygons. +is approach has been used in many
applications, including agriculture, microbiology, and as-
tronomy [14].

In this work, a statistical test is proposed to detect
clustering or regularity between the points of a graphical
password in PassPoint. +is test is based on the Delaunay
triangles generated by that password, specifically on the
average of those triangles’ perimeters. +e effectiveness of
the proposed test is experimentally verified. Type I error
resulting when applying them to random passwords is es-
timated and kept at acceptable levels for practical applica-
tions; on the other hand, type II error resulting when applied
to clustered and regular passwords is estimated, and as
expected, it is observed that it depends on the level of
clustering or regularity. +e article is structured in 4 sec-
tions: Section 1 shows the Introduction; Section 2 is com-
posed of PassPoint, spatial point patterns, classic tests most
used in complete spatial randomness, and the applications of
Voronoi diagrams and Delaunay triangulations in the de-
tection of spatial point patterns. Section 3 shows our con-
tribution: detection of weak graphical passwords in
PassPoint, based on the perimeter of their Delaunay tri-
angles, and finally in Section 4, the conclusions and future
work are presented.

2. Preliminaries

2.1. PassPoint. PassPoint is a graphical authentication
scheme of the cued-recall type presented in [3]. +is tech-
nique requires the user to select as their password during the
registration phase an ordered set of 5 points (pixels) in an
image. In the authentication phase, the same points must be
selected approximately and in the same order that they were
registered. For the authentication process to be effective and
convenient for the user, there must be a tolerance associated
with each point (approximately 0.25 cm). It is possible to use
any image to select the password points; it can be provided
by the user or the system itself. +e authors of this scheme
recommend using images that have hundreds of Hotspots
spread evenly for greater security.+e password is not stored

explicitly, but a hash of the concatenation of the password
points is generated. However, this causes a problem when
applying the password hashing function. It is unlikely that
the user will select the same points selected in the au-
thentication phase-image in the registration phase, which
means that the password hashing function will always be
different. To establish the tolerance around each point, a
discretization mechanism is used, which reduces the pass-
word space and provides relevant information to carry out a
dictionary attack [15]. A discussion about the importance of
the discretization mechanism in graphic password schemes
can be seen in [16–18], while in [16–19], some of the different
methods of discretization known so far are presented.

While the selection of images by the user may increase
the ability to memorize their password, there is a possibility
that, at the same time, security will be compromised with
images with few security features (e.g., few memorable
points and images that are easy to predict with knowledge
about the user) [3]. In several studies such as those presented
in [7, 15, 20, 21], dictionary attacks have been carried out
using digital image processing techniques. +e spatial pat-
terns in the user’s selection of points reduce the effective
space of a password and give an advantage to possible at-
tackers, who can use this knowledge to increase their attacks’
probability of success. In the study presented by [22], it is
suggested that it is possible to obtain patterns in the shape
and order of the selection of the points without knowing the
image used to create the password. Users tend to select their
password points in separate compositions from the back-
ground images, to facilitate the memorability of their
passwords. If the set of points selected by the user as their
graphical password does not follow a random pattern, it
presents a shape of a straight line, curved or by default (Z,W,
C, V), or of every 2 consecutive points out of the 5 that make
up the password; they are at constant distances. +en, said
graphical password is considered weak, as it can be com-
promised using dictionary attacks [2, 5, 23].

2.2. Spatial Point Patterns. +e phenomena that occur in
some regions of space, such as data on human settlements,
animals, the cultivation of crops, or information on the
behavior of a pandemic (such as COVID-19 in 2020),
represent an occurrence through its spatial coordinates
(x, y). +e datasets generated by these coordinates are called
spatial point patterns [8, 10, 11, 24, 25]. From the study of
spatial patterns, inferences can be made about the existence
of interactions between each population’s individuals.
Spatial point patterns are classified as random (homoge-
neous Poisson point process), regular (uniform or an
inhibiting pattern), or clustered (aggregated); see Figure 1.

To decide the behavior of an observed point pattern, a
complete spatial randomness (CSR) test is applied where it is
assumed as a null hypothesis that the pattern comes from the
Poisson distribution; that is, that the pattern of points fol-
lows a random distribution [8, 26, 27]. +e spatial point
patterns present two fundamental characteristics [12, 27].
One of them is related to the intensity of the number of
points per unit area; the second is based on looking for
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relationships between each point with those of its sur-
roundings, mainly through the distance between points.

2.3. Classic Tests Most Used in Complete Spatial
Randomness (CSR)

2.3.1. K-Ripley Function. If a Poisson process randomly
distributes a set of points with intensity λ, the expected
number of points in a circle of radius r is λπr2. +e deviation
from randomness can be quantified using the K-Ripley
function [8, 25, 27], which reflects the type, intensity, and
range of the spatial pattern by analyzing the distances be-
tween the points, defined as follows:

K(r) �
A

n
2 􏽘

n

i�1
􏽘

n

j�1
ki,j(r)ei,j(r), (1)

for all i≠ j, where n is the number of points in the pattern, A

is the area of the region under study, ei,j(r) is the edge
correction method, and ki,j(r) is the following indicator
function:

ki,j(r) �
1, ifri,j ≤ r,

0, ifri,j > r,

⎧⎨

⎩ (2)

where ri,j is the distance between points i and j. +e edge
effects arise because the points that appear outside the limits
of the study area are not taken into account to estimate the
statistic, even though they are at a distance less than r from a
point located within the area. One of the possible expres-
sions of theK-Ripley function, taking into account one of the
edge correction methods, is as follows:

Kbord(r) �
A 􏽐

n
i�1 ξi(r) 􏽐

n
j�1 ki,j(r)

n 􏽐
n
i�1 ξi(r)

, (3)

where ξi denotes the indicator function that is equal to 1 if
the distance from a point pi to the edge A is greater than or
equal to r and 0 otherwise. It is worth clarifying that there are
other ways to correct the edge effect, which lead to alter-
native expressions of the K function. A detailed review of
these methods can be found in [8, 28].

+e transformation 􏽢L(r) �
������
K(r)/π

􏽰
allows linearizing

the function K(r) and stabilizing the variance, and by means

of the L(r) � 􏽢L(r) − r transformation, it is possible to adjust
the Poisson pattern to the value of zero. A clustered pattern
occurs when L(r) is significantly greater than zero, and a
regular pattern occurs when L(r) is significantly less than
zero.

2.3.2. =e G Function, Distance to the Nearest Neighbor.
+is method is based on the distances from each point to its
nearest neighbor [8, 27]. +e expected cumulative distri-
bution function for the nearest neighbor distances d is
defined by the Poisson distribution:

G(d) � 1 − e
− λπd2

. (4)

If over an areaA, n points are randomly distributed, where
λ � n/A. To consider the correction of the edge effect, the
following function is used:

􏽢G(d) �
􏽐

n
i�1 Ii(d)

n
, (5)

where n is the number of points in the pattern and Ii(d) is
the indicator function, which takes the value of one if the
Euclidean distance between point i and its closest neighbor is
less than d, and 0 otherwise; see [8]. A clustered pattern
occurs when 􏽢G(d)>G(d), while a regular pattern occurs
when 􏽢G(d)>G(d).

2.3.3. =e Function F, Distance to the Null Space. +e null
space distance measures the distance d from each point in
an additional m set, called a grid, to the closest of the n

points in the observed pattern. For a pattern under the CSR
hypothesis, its distribution is the same as for the function
G(d), i.e.,

F(d) � G(d) � 1 − e
− λπd2

, (6)

where λ is the intensity of the pattern. For estimating dis-
tances, a set ofm points similar to n of the observed pattern is
usually used. +e distribution of the observed pattern is
estimated by

􏽢F(d) �
􏽐

m
j�1 Ij(d)

m
, (7)
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Figure 1: Random point pattern: (a) regular (b) and clustered (c).
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where m is the number of points on the grid and Ij(d) is the
indicator function that the value of one if the Euclidean
distance between point j on the grid and its closest neighbor
in the pattern is less than d, and 0 otherwise.

+e use of the F(d) function is similar to that of the G(d)

function, using Monte Carlo simulations to estimate its
critical values and graphical diagnostic tools in the same
way. However, the interpretation of the deviations from the
observed distribution is opposite: values more significant
than those of the theoretical distribution indicate regularity
and smaller values indicate clustering. +e F function is
usually more effective at detecting CSR deviations towards
the cluster; see [27].

2.4. Applications of Voronoi Diagrams and Delaunay Trian-
gulation in the Detection of Spatial Point Patterns.
Voronoi diagrams are geometric structures that allow you to
build a partition of the Euclidean plane. Given an initial set
P � p1, p2, . . . , pn􏼈 􏼉 of n points in the plane, a Voronoi
diagram is defined as a partition of the Euclidean plane into
n disjoint regions.

Definition (a planar ordinary Voronoi diagram): Let
P � p1, p2, . . . , pn􏼈 􏼉 ⊂ R2, where 2≤ n<∞ and pi ≠pj, for,
i, j ∈ Jn. We call the region given by

V pi( 􏼁 � q: q − pi ‖2 ≤ ‖q − pi ‖2, forj≠ i, j ∈ Jn􏼈 􏼉. (8)

+e planar ordinary Voronoi polygon associated with pi

(or the Voronoi polygon of pi ), and the set given by

V � V p1( 􏼁, . . . , V pn( 􏼁􏼈 􏼉. (9)

+e planar ordinary Voronoi diagram by P (or the
Voronoi diagram of P ): we call pi of V(pi) the i th Voronoi
polygon, and the set P � p1, p2, . . . , pn􏼈 􏼉 is the generator set
of the Voronoi diagram V (in the literature, a generator
point is sometimes referred to as a site). [29].

For the dual graph of a Voronoi diagram is a Delaunay
triangulation, see Figure 2. A triangulation of the set P of
points on the plane is Delaunay if and only if the cir-
cumscribed circumference of any triangle in the lattice
does not contain a point of P in its interior. +is condition
is known as Delaunay’s condition. +e Voronoi diagrams
and the Delaunay triangulation in the two-dimensional
case present a series of characteristics determined by the
behavior of the point pattern observed in the initial set of
points [9, 29, 30].

Since the mid-1980s, some of these characteristics
have been used in the study of spatial point patterns. For
example, in [31], although the total number of patterns
examined is not large, the influence of a Delaunay tri-
angle’s interior angles is studied to detect clustering at the
points. In general, the authors concluded that the mini-
mum angle seems preferable to the maximum one to
detect clustered or regular patterns. However, there are
indications that the maximum angle seems to detect some
cases of clustering that are not discernible by the mini-
mum angle. In order to analyze whether the

characteristics, interior angle of a Delaunay triangle,
minimum angle, mean angle, and maximum angle of a
Delaunay triangle, length of one side of a Voronoi
polygon, the distance between a site and a vertex of its
Voronoi polygon (radius of a circle circumscribed in a
Delaunay triangle), length of one side of a Delaunay
triangle, and area and perimeter of a Delaunay triangle are
capable of detecting nonrandomness. In [9], they gen-
erated 100 clustered or regular points in a square unit.
Obtaining the characteristic “minimum angle of a
Delaunay triangle” is more effective in detecting regular
patterns than the others in detecting clustered patterns.
An adaptive spatial clustering algorithm based on
Delaunay triangulation is proposed in [32]. +is algo-
rithm uses both the Delaunay triangulation edge’s sta-
tistical characteristics and a new definition of spatial
proximity based on the Delaunay triangulation to detect
spatial clusters.

Discovery of Spatial Patterns with Extended Objects
(DEOSP) [33, 34] is another method that allows for the
discovery of patterns for extended objects (straight lines,
strings of lines, and collections of the same), although it does
not allow operating on the extended objects as areas. DEOSP
is based on structures related to the Delaunay triangulation.
+e work presented in [35] uses the area and perimeter of
the Voronoi polygons to analyze changes in the spatial
patterns of permanent GNSS (Global Navigation Satellite
System) stations ASG-EUPOS (Active Geodetic Network-
European Position Determination System) in Poland
depending on the scales used. Another vital application of
Voronoi polygons is the one presented in [36]. In it, the
analysis of macromolecular complexes is presented from a
method based on 3D Voronoi tessellations. +e method
enables local density estimation, segmentation, and quan-
tification of 3D particle localization microscopy data;
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Figure 2: Representation of a Voronoi diagram (VD) and its
corresponding Delaunay triangulation (DT).
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specifically, the authors use the area of Voronoi polygons to
detect the clustering of particles.

3. Detection of Weak Graphical Passwords in
PassPoint, Based on the Perimeter of Their
Delaunay Triangles

3.1. Ineffectiveness of the Classic CSR Tests in the PassPoint
Scenario. As far as we are aware of, there is no consensus in
the current literature on the minimum value of the number
of points (n) of the pattern from which the classic tests
described in subsection 2.3 are considered effective. In [37],
the authors applied the tests to a pattern of 22 points, the
smallest pattern of the reference; however, the results
achieved are not discussed. Also, in [37], the authors
experimented with a pattern of 36 points, for which they
concluded that the tests were effective. So we propose the
following research question: what will happen in the Pass-
Point scenario and where are the patterns with only 5 points
available?

From the results carried out in [38], it is known that the
K-Ripley function tests and those of the distance to the
nearest neighbor are ineffective in detecting graphic pass-
words formed by patterns clustered in PassPoint; however,
the experiments were performed for a relatively large
number of Monte Carlo simulations. +is article analyzes
three of the classic tests most used in CSR, including the two
tests mentioned above, in detecting nonrandomness in
PassPoint passwords, but with a smaller number of Monte
Carlo simulations. +is difference is given by the existing
controversy between the number of simulations in the
consulted bibliography, since in [37], the authors state that
for a significance level of α � 0.05, it is advisable to perform
at least 999 simulations, while in [8], they state that for α �

0.05 and α � 0.01, 40 and 199Monte Carlo simulations must
be performed, respectively.

To analyze the detection of nonrandomness of these tests
in the PassPoint scenario, two experiments were carried out
on a 1920 × 1080 pixel image, one to measure clustering and
the other regularity.+e experiments carried out were run in
MATLAB version R2018a on an AMD A6-9220e CPU:
1.60GHz with 4G of RAM.

+e experiments were designed as follows: for experi-
ment 1, two databases were generated, DB. 1.1Ag.(IV) and
DB. 1.2Ag.(VIII), of 10, 000 passwords with Poisson aggregate
patterns with an aggregation distance of 686u and 315u,
respectively, [37]. +at is, two databases of passwords were
generated, clustered in an area equivalent to a quarter of the
image and the other to an eighth, containing the DB.
1.2Ag.(VIII) with a higher level of clustering.+e clustered (or
aggregated) patterns were derived from a Poisson aggregate
process: randomly distributed parental points were gener-
ated, and subsequently derived points were randomly dis-
tributed around the parents within a specified aggregation
radius [8, 37]. For experiment 2, the pattern xy with the
highest possible regularity level was generated, which is
determined by the following points: (0; 0), (1920; 0),
(0; 1080), (1920; 1080), and (960; 540); see Figure 3.

Now we discuss the results obtained after running both
experiments. For each of the tests, the critical values were
estimated using 199 Monte Carlo simulations of sets of 5
random points on a rectangle of size 1920 × 1080. In ad-
dition to the K-Ripley function, the confidence intervals
were estimated according to Ripley’s approximation +

[27, 39], where A � 1920 · 1080 and n � 5. +ese Monte
Carlo simulations guarantee critical intervals with a sig-
nificance level of α � 0.01 for each test. See Figure 4, where
the continuous line represents the theoretical value of the
null hypothesis, the dashed lines represent the critical values
of each of the tests in 199 simulations of random patterns. In
the case of the K-Ripley function, the dashed lines represent
the confidence intervals for α � 0.01 of the test according to
Ripley’s approximation. It is observed how the critical values
coincide with the minimum value of each function.

From the estimated critical values, an immediate con-
clusion was obtained: the K-Ripley function tests and the
nearest neighbor are not effective in detecting regular pat-
terns, and the null space function test is not very effective in
detecting clustered patterns. Furthermore, from the ex-
pression of the function L(r), in the K-Ripley function, it is
evident that its minimum possible value is L(r) � −r. +is
minimum value coincides with the critical value estimated
by the Monte Carlo simulations. +erefore, this test cannot
detect a regular pattern since a pattern is considered regular
if it is below the critical values estimated by the test. For 􏽢G, it
holds that 􏽢G(d)≥ 0, for all d, the lower critical range esti-
mated for the test of the distance to the nearest neighbor is
􏽢G(d) � 0 0. +erefore, this test will not be able to detect
regular patterns either. Like the 􏽢G function, the minimum
value that the 􏽢F function can take is 0. +is minimum value
coincides with the lower critical value estimated by Monte
Carlo simulations. +erefore, this test is not capable of
detecting clustered patterns. Of the 10, 000 iterations of the F

function test for the xy pattern, which expresses the greatest
possible regularity between 5 points in a rectangle, it turns

1080

0
0 1920

Image edge
xy pattern

Figure 3: Representation of the xy pattern.
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out that none of them detects said pattern as regular. +ese
10, 000 iterations are because the F function depends on a
grid, which is an additional set of random points; therefore,
for a pattern, the value of the function can change depending
on the grid. +en the 10, 000 iterations were performed for
the xy pattern but varying the grid so that the result did not
depend on it.

+e results obtained are summarized in Table 1, where t
he sign “−” means that the corresponding test is not ap-
plicable in the case in question. +e results show that the
K-Ripley function and the nearest neighbor tests are not
effective in detecting clustered 5-point patterns and are not
capable of detecting regular 5-point patterns. For its part, the
empty space distance test showed an effectiveness of 0% in
detecting regular patterns and is unable to detect clustered
patterns. +erefore, these three analyzed spatial randomness
tests turn out to be ineffective in detecting nonrandom
graphical passwords in the scenario PassPoint.

Recently, in [30], the application of the characteristic
“number of sides of the Voronoi polygons” was evaluated for
the detection of graphical passwords formed by patterns
clustered in PassPoint, but it also proved to be ineffective
using the proposed criteria.

3.2. =e Sample Mean, Sample Variance, and Distribution of
the Averages of the Perimeters of the Delaunay Triangles.
In Section 2.4, we discussed the use of some of the features of
Voronoi diagrams and Delaunay triangulations to detect
spatial point patterns. In the PassPoint scenario, the points
(pixels) of a clustered password are very close between them,
and those of a regular graphical password are far from each
other for a higher level of consistency. Considering this, in
this work, we propose to use the perimeter of the Delaunay
triangles to detect randomness between the password points
instead of some other characteristic. However, it may be the
case that in a password where the points are randomly
distributed, the perimeter of one of its Delaunay triangles is
just as small as that of one in a clustered password or just as
big as one of the triangles of a password with regularly
distributed points. In Figure 5, it is observed how the

maximum perimeter of the Delaunay triangles of the
clustered points coincides with the minimum perimeter of
the Delaunay triangles of the random points, as the maxi-
mum perimeter of the triangles of Delaunay of the random
points coincides with the minimum perimeter of the regular
points. +is suggests using the average of the perimeters of
the Delaunay triangles as decision criteria to detect clus-
tering or regularity between the pixels of a password in
PassPoint and not the minimum or maximum value of the
Delaunay triangles perimeter.

+us, it is then necessary to determine the probability
distribution that best fits the distribution of the average of
the perimeters of the Delaunay triangles of a password; for
this, experiment 3 was designed and carried out in the
following way. 1, 000 random graphic passwords were
generated in each of the three image sizes, 800 × 480,
1366 × 768, and 1920 × 1080 pixels, as the first image is the
most common in mobile phones and the other two in
computers. For each of these passwords, its Delaunay tri-
angulation is constructed and the average of the perimeters
of its Delaunay triangles is calculated, obtaining a total of
three random databases of 1, 000 averages each. +e first
database (DB.3.1) contains the averages of the image of 800 ×

480 and the second one (DB.3.2) those of 1366 × 768,
whereas the third one (DB.3.3) contains the averages of the
last image. To measure the fit of the data to some known
theoretical distribution, the EasyFit 5.6 software was used,
which allows the distributions to be automatically adjusted
to the sample data and the best model selected in a few
seconds [40, 41]. +e EasyFit 5.6 consists of 54 theoretical
distributions, with some of them for various parameter sets,
making a total of 61 possible options to fit for the data.
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Figure 4: Critical values of the K-Ripley tests: (a) the nearest neighbor (b) and empty space (c) for 199 Monte Carlo simulations.

Table 1: Percentage of nonrandom graphical passwords detected
by each test in each experiment.

Test DB. 1.1Ag.(IV) DB. 1.2Ag.(VIII) xy

Null space — — 0%
K-Ripley 5.31% 26.55% —
Nearest neighbor 1.88% 8.90% —
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From experiment 3, we obtained the following results.
Table 2 shows the sample mean and variance corresponding
to the averages of the perimeters of the Delaunay triangles
for each of the random password databases. Tables 3–5 show
the six best models of distributions to which the data were
fitted. Table 6 presents the results of the three goodness-of-fit
tests applied to the Johnson SB distribution and the esti-
mated distribution of the averages of the perimeters of the
Delaunay triangles in each of the random databases cor-
responding to the sizes of studio images. However, when
measuring the adjustment of the 1, 000 averages of the
perimeters of the Delaunay triangles estimated in each of the
random databases to a known theoretical distribution, it was
obtained that in each of the databases, it was possible to
adjust the averages of the perimeters to more than 20

distributions, with some of them accepted by the three
goodness-of-fit tests (Kolmogorov–Smirnov, Ander-
son–Darling, and Chi-square) with the significance levels
α ∈ 0.02, 0.01, 0.05, 0.1, 0.2{ }.
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Figure 5: Delaunay triangulations of clustered points (a), random points (b), and regular points (c).

Table 2: Mean, sample variance, and standard deviation of the
averages of the perimeters of Delaunay triangles (PPD

) in the DBs:
3.1, 3.2, and 3.3, respectively.

PPD
DB.3.1 DB.3.2 DB.3.3

E[PPD
] 872 1,439 2,038

V[PPD
] 39,391 102,250 210,330

σ 199,902 319,766 458,617

Table 3: +e six best theoretical distributions adjusted by the data
from the random database (DB.3.1) with an image size of 800 × 480
pixels using the Kolmogorov–Smirnov (K-S), Anderson–Darling
(A-D), and Chi-Square (χ2), using the significance levels
α ∈ 0.2; 0.1; 0.05; 0.02; 0.01{ }, and its p-values associated with the
Kolmogorov–Smirnov and Chi-Square tests.

Distribution Number of
acceptances K–S A-D χ2

Weibull (3P) 15/15 0.98070 Accepted 0.99858
Kumaraswamy 15/15 0.97874 Accepted 0.99892
Gen. Extreme
value 5/10 0.94770 Rejected N/A

Log-Pearson 3 15/15 0.94350 Accepted 0.98486
Johnson SB 15/15 0.94114 Accepted 0.99858
Weibull 15/15 0.77054 Accepted 0.65173

Table 4: +e six best theoretical distributions adjusted by the data
from the random database (DB.3.2) with an image size of 1366 ×

768 pixels using the Kolmogorov–Smirnov (K–S), Ander-
son–Darling (A-D). and Chi-Square (χ2), using the significance
levels α ∈ 0.2; 0.1; 0.05; 0.02; 0.01{ }, and its p-values associated with
the Kolmogorov–Smirnov and Chi-Square tests.

Distribution Number of
acceptances K–S A-D χ2

Johnson SB 15/15 0.95628 Accepted 0.31172
Gen. Extreme
value 5/10 0.95460 Rejected N / A

Kumaraswamy 15/15 0.88420 Accepted 0.56845
Error 14/15 0.87086 Accepted α≠ 0.2

0.16329
Weibull(3P) 15/15 0.79740 Accepted 0.50346
Log-Pearson 3 14/15 0.77399 Accepted α≠ 0.2

0.15881

Table 5: +e six best theoretical distributions adjusted by the data
from the random database (DB.3.3) with an image size of 1920 ×

1080 pixels using the Kolmogorov–Smirnov (K–S), Ander-
son–Darling (A-D), and Chi-Square (χ2), using the significance
levels α ∈ 0.2; 0.1; 0.05; 0.02; 0.01{ }, and its p-values associated with
the Kolmogorov–Smirnov and Chi-Square tests.

Distribution Number of
acceptances K–S A-D χ2

Error 15/15 0.99459 Accepted 0.69818
Johnson SB 15/15 0.98592 Accepted 0.83378
Gen. Extreme
value 15/15 0.97157 Accepted 0.74561

Log-Pearson 3 15/15 0.96973 Accepted 0.73518
Kumaraswamy 15/15 0.90786 Accepted 0.66530
Weibull (3P) 15/15 0.90681 Accepted 0.55614
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We now discuss the results of experiment 3. Table 2
illustrates that the sample mean and variance differ between
the databases due to the inequality between the image sizes.
+e averages of the perimeters of the Delaunay triangles
belonging to the three sizes of the images under study did
not fit the distributions with the same parameters (Table 7)
or in the same order of the best models fitted by EasyFit, but
the fitted distributions for each image size mostly match.
Among the best distributions that fit the perimeters of the
Delaunay triangles (∀α) for the random databases DB.3.1,
DB.3.2, and DB.3.3 is the Johnson SB, which occupies the
fifth, first, and second place among the best possible models,
respectively (Figure 6). +is distribution allows for the
transformation of the data to a standard normal distribution
using the following formula [42]:

P
N
D � JSB PD( 􏼁 � c + δ × ln

PD − ξ( 􏼁

λ + ξ − PD( 􏼁
􏼢 􏼣, (10)

PN
D ∼ N(0, 1). +is transformation makes it easy to apply

normality tests based on the fit of the data. +en, under the
randomness hypothesis, the average of the perimeters of the
Delaunay triangles of a graphical password in PassPoint
when transforming the data to a standard normal distri-
bution is 0. +erefore, it can be assumed that the passwords
that violate the above proposition do not follow a random
pattern.

3.3.TestBasedon theAverageof thePerimeters of theDelaunay
Triangles. In this subsection, we propose a statistical test to
detect nonrandom passwords in PassPoint. +is test con-
stitutes themain contribution of this article, considering that
the classic tests are ineffective in detecting nonrandom
graphical passwords in the PassPoint scenario. Although,
recently [43], a test (of spatial randomness based on the
mean distance between the points) was proposed with the
same objective as the test proposed in this work, to detect

nonrandom and, therefore, weak graphical passwords in-
troduced by users during the registration phase in a Pass-
Point system, it is considered necessary to carry out in the
next future works a comparison in terms of effectiveness and
errors made between these two tests. +e proposal of this
work consists of a two-tailed hypothesis test based on the
average of the Delaunay triangles’ perimeters transformed to
a standard normal distribution using the Johnson SB
transformation. To apply this test, it is necessary to consider
the size of the image selected by the user since the Johnson
SB parameters are different for the sizes of images analyzed,
as shown in Table 7.

3.3.1. Spatial Randomness Test Based on the Average of the
Perimeter of Delaunay Triangles to Detect Nonrandom
Passwords in PassPoint. We propose the following null
hypothesis:

H0: E P
N
D􏽨 􏽩 � E JSB PD( 􏼁􏼂 􏼃 � 0, (11)

which states that the graphical password selected by the user
is random if the average of the perimeters of the Delaunay
triangles transformed by Johnson SB to a standard normal is
equal to 0, with an alternative hypothesis given by H1:
E(PN

D) � E[JSB(PD)]≠ 0. In order to test the hypothesis, the
test statistic, based on the average perimeters of Delaunay
triangles of the points of a user-selected password trans-
formed by Johnson SB to a standard normal, is used. It is
given by the following:

Z � JSB PPD
􏼐 􏼑 � c + δ × ln

PPD
− ξ􏼐 􏼑

λ + ξ − PPD
􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦. (12)

From Table 7, selecting the values of the transformation
parameters depends on the image’s size. +e user or system
can set the significance level α, whereas the critical region is
CR. � z: Z< − zα/2 orZ> zα/2􏼈 􏼉. Finally, with respect to the
decision criteria, it is decided that the graphical password
selected by the user does not follow a random pattern if,
when transforming the average of the perimeters of its
Delaunay triangles through the Johnson SB transformation,
the value obtained belongs to the critical region.

3.4. Validation of the Effectiveness of the Proposed Test. To
evaluate the effectiveness of the proposed test by means of
type I and type II errors, Experiments 4 and 5 were carried
out, respectively.

To estimate the probabilities of type I error from the
proposed decision criterion, experiment 4 was designed.
+ree new random databases were generated, DB.4.1,
DB.4.2, and DB.4.3, with 10, 000 random graphical pass-
words each in each of the three image sizes, 800 × 480,
1366 × 768, and 1920 × 1080 pixels, respectively.

+e results of experiment 4 are shown in Table 8. Note
that the probability of obtaining the type I error corresponds
approximately to the established level of significance (alpha
theoretical) for all cases, which shows that the probabilities

Table 6: Results of the three goodness-of-fit tests with the sig-
nificance levels α ∈ 0.02, 0.01, 0.05, 0.1, 0.2{ }, applied to the John-
son SB distribution estimated by the data for each of the random
databases DBs: 3.1, 3.2, and 3.3.

Goodness-of-fit test DB.3.1 DB.3.2 DB.3.3
Kolmogorov–Smirnov 0.94114 0.95628 0.98592
Chi-square 0.99858 0.31172 0.83378
Anderson–Darling Accepted Accepted Accepted
Number of acceptances 15/15 15/15 15/15

Table 7: Parameters of the Johnson SB distribution (c, δ, λ, ξ) of
the averages of the perimeters of the Delaunay triangles in the DBs:
3.1, 3.2, and 3.3, respectively, PPD

∼ JSB(c, δ, λ, ξ).

DB. Image size c δ λ ξ
DB.3.1 800 × 480 −0.44981 2.7884 2 295.3 −365.06
DB.3.2 1366 × 768 −0.25323 1.9873 2 700.2 8.2037
DB.3.3 1920 × 1080 −0.21458 2.0283 3 940.5 −30.961
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of type I errors do not seem to depend on the image size and
that the proposed decision criterion is valid.

Now, for experiment 5, 50, 000 nonrandom graphical
passwords are generated in total, 30, 000 clustered (10, 000 in
an area equivalent to a quarter of the image, 10, 000 in an area
equal to one-sixth of the image, and the other 10, 000 in an area
equivalent to the eighth of the image), and regular 20, 000 (with
a lower and higher level of regularity), for each of the study
images. +is means that, for the 800 × 480 image, the aggre-
gation distances were 175u, 145u, and 125u radius; for the
1366 × 768, they were 290u, 240u, and 210u of radius; for the

image of 1920 × 1080, the aggregation distances were 410u,
335u, and 290u of radius, respectively; the regular databases
were generated by inhibition distances of 140u and 220u, 210u

and 350u, and 300u and 505u of radius, respectively. +e
regular patterns were derived from a simple inhibition process:
random locations of points were generated, verifying that at
each new point, the distance to its closest neighbor was equal to
or greater than a specified inhibition distance [8, 37]. In each of
these databases, the type II error was estimated, and the
number of passwords detected was calculated for the different
levels of clustering and regularity.
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Figure 6: Histograms of the averages of the perimeters of the Delaunay triangles associated with the random graphical passwords in DB.3.1
(a), DB.3.2 (b), and DB.3.3 (c), respectively, and their comparison with the Johnson SB.

Table 8: Estimation of type I error (estimated alpha, 􏽢α), that is, of the probability that in DB.4.1, DB.4.2, and DB.4.3, the average of the
perimeters of the triangles of a random graphical password belongs to the critical region. Comparison with the preset theoretical alpha (α).

α (+eoretical) CR. Of H0 􏽢α1 􏽢α2 􏽢α3 􏽐
3
i�1 􏽢αi/3DB.4.1 DB.4.2 DB.4.3

0.2 Z< − 1.282oZ> 1.282 0.1803 0.1962 0.1885 0.1883
0.1 Z< − 1.645oZ> 1.645 0.0853 0.1023 0.0918 0.0931
0.05 Z< − 1.960 o Z> 1.960 0.0403 0.0545 0.0499 0.0482
0.02 Z< − 2.326oZ> 2.326 0.0166 0.0248 0.0213 0.0209
0.01 Z< − 2.575oZ> 2.575 0.0081 0.0157 0.0116 0.0118
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+e results of experiment 5 are as follows. Figures 7 and 8
show the number of nonrandom graphical passwords de-
tected in each of the nonrandom databases for the analyzed
image sizes, and Table 9 represents the probabilities of type II
errors estimated in nonrandom databases for an image size
of 1920 × 1080.

+ese results clearly show that by increasing the level of
clustering or the regularity level, the test becomes more
effective, as was to be expected. +e decision criterion is
usually quite effective in detecting clustered graphical
passwords, especially for the significance levels α � 0.1 and
α � 0.2 for which it detects 87% and 97% of the passwords,
respectively (see Figure 7 and Table 9), in an area equivalent
to one-fourth of the image; on the other hand, in the regular
graphical passwords with a lower level of regularity, for
α � 0.2, it only detects approximately 50 of the passwords
(see Figure 8 and Table 9). +e criterion reaffirms Chiu’s
approach in [9], since the average of the Delaunay triangles’
perimeters is more effective in detecting clustering than
regularity. Figures 7 and 8 show that the probabilities of type

II errors do not seem to depend on the image size since their
estimated values are similar for the different sizes of images;
therefore, only the type II error was shown (Table 9) for each
of the nonrandomized study databases of one of the image
sizes.

+is test was designed exclusively to detect graphical
passwords with clustered or regular patterns in Pass-
Point. +erefore, other types of patterns identified in the
bibliography [22], such as soft ones or with different
predetermined shapes (see Figure 9), will only be detected
by the test proposed if these also present a certain level of
clustering or regularity (as shown in Figure 10). +ere-
fore, if the patterns are not clustered, it cannot be said
that the test can detect these patterns since these patterns
have to fulfill the property that when forming their re-
spective Delaunay triangles, one of the interior angles of
the triangle has to be obtuse so that the triangle is as
devoid of peaks as possible and a relatively smooth curve
is formed. Visually, it could be interpreted as patterns in
the form of a straight line (or almost straight, given the
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Figure 7: Number of clustered graphical passwords detected (No. of CGPD) in each of the image sizes for clustered pattern databases (in an
area equivalent to one-fourth (a), one-sixth (b), and one-eighth (c) of the image), with significance level α.
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Figure 8: Number of regular graphical passwords detected (No. of RGPD) in each of the image sizes for databases with regular patterns
(with lower (a) and higher (b) levels of regularity), with significance level α.
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low probability that the user will select the points of his
graphical password in such a way that they form exactly a
straight line). +is discussion suggests that a test to detect
weak passwords can be constructed from the Delaunay
triangles’ interior angles, which is left proposed for future
work, as well as its comparison with the test proposed in
[44].

3.5. Comparison in PassPoint of the Proposed Test and the
Tests Most Used in CSR. Table 10 shows the comparison
between the proposed test, the K-Ripley function, the test of
the distance to the nearest neighbor, and the empty space
function in terms of the effectiveness in the detection of
clustered and regular graphical passwords onstage Pass-
Point, for a significance level of α � 0.01.
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Figure 9: Patterns with different predetermined shapes.
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Figure 10: Pattern with default shape w, which also follows a clustering pattern (a), the pattern on with default shape (soft) but is detected as
random (b), and pattern on with default shape Z, which also follows a regularity pattern (c).

Table 9: Probability estimated (􏽢β) in DB. 5.1.1Ag.(IV), DB. 5.1.2Ag.(VI), DB. 5.1.3Ag.(VIII), DB. 5.2.1Reg (less regular), and DB. 5.2.2+Reg
(more

regular) to accept a random graphical password when it is actually a clustered or regular graphical password.

Significance Error of (􏽢β) (􏽢β) (􏽢β) (􏽢β) (􏽢β)

Level Tipo II DB. 5.1.1Ag.(IV) DB. 5.1.2Ag.(VI) DB. 5.1.3Ag.(VIII) DB. 5.2.1Reg. DB. 5.2.2+Reg

0.2 −1.282<Z< 1.282 0.0262 0.0002 0 0.4856 0.0047
0.1 −1.645<Z< 1.645 0.1293 0.0034 0 0.5933 0.0500
0.05 −1.960<Z< 1.960 0.2982 0.0219 0 0.6729 0.1436
0.02 −2.326<Z< 2.326 0.5368 0.1201 0.0001 0.7537 0.3096
0.01 −2.575<Z< 2.575 0.6814 0.2498 0.0005 0.8021 0.4391

Table 10: Number and proportion of nonrandom graphical passwords detected in the databases DB. 1.1Ag.(IV), DB. 1.2Ag.(VIII), and the
regularity pattern xy, by means of the empty space function, the nearest neighbor distance test, the K-Ripley function, and the proposed test.

Test DB. 1.1Ag.(IV) DB. 1.2Ag.(VIII) xy

Empty space − − 0%
Nearest neighbor 188/10, 000 � 0.0188 890/10, 000 � 0.0890 −

K-Ripley 531/10, 000 � 0.0513 2655/10, 000 � 0.2655 −

Proposed test 3, 212/10, 000 � 0.3212 10, 000/10, 000 � 1.0000 Detected
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+e image size of 1920 × 1080 pixels was used to make this
comparison. +e results for the other sizes of images studied in
this work have a similar behavior. For an image of this size, the
average of the perimeters of theDelaunay triangles of the pattern
xy is 3, 702.9u, whereby transforming this average from a
Johnson SB distribution to a standard normal using the statistic
Z (12) to getZ � 5.6558> 2.575 � z0.005.+en, bymeans of the
proposed test, thexy pattern is rejectedwith a 99 confidence, the
expected occurrence given its ability to detect regular graphical
passwords.+is convincingly demonstrates the superiority of the
proposed test over the classical tests of spatial randomness to
detect nonrandom passwords in PassPoint.

3.6. Application of the Proposed Test in PassPoint. In
graphical authentication, in the PassPoint scenario, the
proposed spatial randomness test allows the user to verify
the strength of their password during the registration phase.
+is is possible due to its ability to detect spatial patterns of
clustering or regularity between the points that make up the
password. +e user must define the level of significance with
which they want to verify their password, although it is
recommended to use α � 0.2 for greater effectiveness.
During the PassPoint registration phase, the test can be
included by following these steps:

Step 1. +e user selects the 5 points (pixels) of his password
in an image.

Step 2. Calculate the average of the perimeters of the
Delaunay triangles in the password.

Step 3. Calculate the test statistic Z Equation (11) by per-
forming the Johnson SB transformation to the average of the
perimeters calculated in Step 2.

Step 4. Determine the critical region taking into account the
specified significance level.

Step 5. Decision criteria: if the test statistic calculated in Step
3 does not belong to the critical region, the registration is
successfully completed, but if it belongs to the critical region,
the user is notified that the password is weak and returns to
Step 1.

+e proposed test must apply to other systems of the
cued-recall type that uses 5 points, or a number close to 5, as
its graphical password in an image. +e experiments that
prove it are left to be published in future research.

4. Conclusions and Future Work

In this work, it was shown that three of the most used
classical tests in complete spatial randomness are inefficient
in detecting nonrandom passwords in the PassPoint sce-
nario, so the average of the perimeters of the Delaunay
triangles was investigated to extract dependency infor-
mation between password points. Its distribution was es-
timated in each of the random databases, which was
adjusted to more than 20 known distributions for each of

the study image sizes, the Johnson SB distribution for each
image being among the five best fits. Different parameters
of the Johnson SB distribution were obtained from the
averages of the perimeters of the Delaunay triangles for the
three sizes of images analyzed. +erefore, it was assumed
with an established significance level that graphical pass-
words that violate this property are not random. +e ap-
plication of this criterion is facilitated because after
applying the Johnson SB transformation with the param-
eters of the Johnson SB distribution established for each
image size, the transformed average must follow a standard
normal distribution. Based on the average of the Delaunay
triangles perimeters transformed to a standard normal
distribution by the Johnson SB transformation, a test was
proposed to detect weak graphical passwords formed by
clustered or regular points. Type I and type II errors were
estimated, and the number of graphical passwords detected
by this test was calculated for various levels of clustering
and regularity. It was concluded that regardless of the
image size, their estimates of type I and type II errors
roughly coincide for an established level of significance and
thus, the number of passwords detected. It is concluded
that the proposed criterion based on the average of the
perimeters of the Delaunay triangles is efficient for
detecting weak graphical passwords in PassPoint, formed
by five clustered points or by five regular points, although it
is more precise in detecting clustering than regularity.
Despite the effectiveness of the proposed test being tested
for various levels of clustering or regularity, with different
type II errors, the minimum level of clustering or regularity
for which the test’s effectiveness remains acceptable in
application practices is still unknown. +is aspect will be
investigated in future work. Another open problem that
will be discussed soon is the reduction of type II errors. +e
proposed 2-tailed test assesses deviations from random-
ness, and its effectiveness was evaluated in the detection of
two types of patterns, clustered or regular. If hypotheses of
the type H1: clustered or H1: regular are considered sep-
arately as alternative hypotheses, a one-tailed test will be
obtained in each case, and a reduction of the type II error
can be expected. +is approach has the limitation of
evaluating the existence of a specific type of nonrandom
pattern, and a different test should be applied for each type
of pattern. Its advantage is that it can be more effective in
determining the type of pattern once it is decided to reject
randomness. In future works, experiments will be carried
out to evaluate the proposed test to detect passwords
formed by soft patterns or with different predetermined
forms. Another aspect to evaluate is the comparison in
terms of effectiveness and errors made of the proposed test
and the spatial randomness test based on the mean distance
between the points. In addition, combinations of the dif-
ferent tests will be analyzed to increase the effectiveness in
detecting nonrandom passwords without significantly
compromising the implementation time. It is also proposed
to evaluate the effectiveness of other characteristics of
Delaunay triangulation to detect patterns in PassPoint,
such as the minimum angle of a Delaunay triangle to detect
regularity
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Pérez, “Analysis of the number of sides of voronoi polygons in
passpoint,” in Proceedings of the Computer Science and Health
Engineering in Health Services: 4th EAI International Con-
ference, COMPSE 2020, vol. 4, pp. 184–200, Springer Inter-
national Publishing, New York, NY, USA, November 2021.

Security and Communication Networks 13

https://eprint.iacr.org/2003/168
https://eprint.iacr.org/2003/168


[31] B. N. Boots, “Using angular properties of delaunay triangles to
evaluate point patterns,” Geographical Analysis, vol. 18, no. 3,
pp. 252–259, 2010.

[32] M. Deng, Q. Liu, T. Shi, and Y. Shi, “An adaptive spatial
clustering algorithm based on delaunay triangulation,”
Computers, Environment and Urban Systems, vol. 35, no. 4,
pp. 320–332, 2011.

[33] R. Bembenik, A. Protaziuk, and G. Protaziuk, “Discovering
collocation rules and spatial association rules in spatial data
with extended objects using Delaunay diagrams,” in Rough
Sets and Intelligent Systems Paradigms, vol. 8537 LNAI,
pp. 293–300, Springer-Verlag, Berlin, Germany, 2014.

[34] R. Bembenik, W. Protaziuk, and G. Protaziuk, “Methods for
mining co-location patterns with extended spatial objects,”
International Journal of Applied Mathematics and Computer
Science, vol. 27, no. 4, pp. 681–695, 2017.

[35] B. Calka, E. Bielecka, and M. Figurski Open Geosciences,
Spatial Pattern of ASG-EUPOS Sites, Degruyter.com, Berlin,
Germany, 2017.

[36] L. Andronov, J. Michalon, and K. Ouararhni, “3D Clustering
Analysis of Super-resolution Microscopy Data by 3D Voronoi
Tessellations,” Bioinformatics, vol. 34, 2017.

[37] V. Camarero and J. J. Camarero, “Spatial analysis techniques
applied in forest ecology: point pattern analyses,” Inves-
tigación Agraria: Sistemas y Recursos Forestales, vol. 14, no. 1,
p. 79, 2005.
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gráficas con patrón de suavidad en la técnica de autenticación
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