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With the rapid development and application of artificial intelligence technology, medical data play an increasingly important role
in the medical field. However, there are privacy protection and data ownership issues in the process of data sharing, which brings
difficulties to machine learning and data mining. On the one hand, for fear that they may risk being held accountable by users or
even breaking the law due to these issues, healthcare providers are reluctant to share medical data. On the other hand, users are
also reluctant to share medical data due to the possibility of privacy disclosure in the data sharing process. To improve the security
and privacy of shared medical data, we propose a user-centered medical data sharing scheme for privacy-preserving machine
learning. Our solution combines blockchain and a trusted execution environment to ensure that adversaries cannot steal the
ownership and control of user data during sharing. A blockchain-based noninteractive key sharing scheme is proposed that allows
only the users and the TEE to decrypt the shared data. At the same time, we design an auditing mechanism to facilitate users to
audit the sharing process. &e security analysis shows that the scheme ensures the privacy and security of user data during storage
and sharing. We have completed simulation experiments to demonstrate the effectiveness and efficiency of our scheme.

1. Introduction

In the era of the digital economy, data have become a new
factor of production and an important basic strategic re-
source. Data support the future development and drive the
progress in business or scientific fields. In particular, with
the development of IoT technology in health care, the
healthcare ecosystem generates many medical data, such as
electronic medical records, monitoring data, imaging data,
and smart wearable device data. &ese data contain a huge
amount of information [1], which can assist physicians in
clinical decision-making and play an important role in drug
development, intelligent diagnosis, medical image recog-
nition, and precision medicine [2]. &erefore, how to handle
and utilize the growing amount of healthcare data has be-
come an unavoidable problem.

With the rapid development and application of artificial
intelligence (AI) technology, scholars have established
several medical artificial intelligence models for intelligent

analysis and decision-making using of medical data, espe-
cially for specialized medical record data. &ey have
achieved fruitful research results [1]. &e AI-based medical
analysis requires medical data from multiple medical in-
stitutions, pharmaceutical companies, or individuals for
extensive sample annotation and training [3].

For hospitals, due to the characteristics of medical data,
such as privacy and sensitivity, there may be data security
and privacy leakage risks in the sharing process. Once the
patient’s private data are leaked, the hospital will face
medical disputes and even legal liability. On the other hand,
the issue of ownership and access control of medical data are
also controversial. If the hospital shares or uses the patient’s
medical data without authorization, it may be held ac-
countable by the patient. &erefore, hospitals are always
reluctant to share these data.

For patients, sharing data also exposes them to the risk of
privacy breaches. Moreover, most patients’ medical data are
recorded in hospitals or healthcare facilities. Even if these
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data belong to the patients [4], it is difficult for patients to
access their medical data. In addition, because of the re-
producible nature of data, patients risk losing ownership of
their data once they share them. So, there is also a reluctance
to share their medical data with patients.

With the development of blockchain technology, its broad
application prospects and technical features have attracted the
attention of scholars related to various industries. Its distrib-
uted storage, peer-to-peer transmission, consensusmechanism,
and confidentiality algorithm provide numerous novel solu-
tions for data storage and sharing. Some researchers have used
blockchain to implement on-chain data storage and smart
contract-based access control to data [5]. Access rights are
controlled by techniques such as identity-based [6] and at-
tribute-based access controls [7] to ensure the privacy and
security of shared data. However, under existing strategies, the
efficiency in performing data sharing is lower due to the
blockchain’s storage space and computational performance.
Moreover, once data are acquired by data demanders, they can
access or use the data without any control. &erefore, this
approach cannot prevent individuals or organizations from
sharing data illegally, and it is even more difficult to ensure
illegal analysis and misuse of data.

Some schemes combine blockchain with proxy re-en-
cryption [8] to ensure the security and privacy of medical
data during the sharing process. However, proxy re-en-
cryption requires many computational resources, and the
system is relatively inefficient. Moreover, these schemes do
not consider the issue of control and ownership of data [9].

To address the above issues, we propose a user-centric
medical data sharing scheme oriented to privacy-preserving
machine learning to achieve efficient medical data sharing
that protects data privacy.&emodel framework is shown in
Figure 1. To ensure control and ownership of user data
during storage and sharing, we design a new sharing model
by combining blockchain with a trusted execution envi-
ronment (TEE), although the combination of TEE and
blockchain will encounter difficulties in data exchange and
trust. But we propose a way of combining on-chain and off-
chain to solve the problem of data exchange. In addition, we
solve the trust problem between the two through signature

authentication. We also design a new key sharing scheme for
authorization management. In summary, this paper con-
tributes the following:

(i) We propose a blockchain-based system for data
sharing and privacy protection. A TEE obtains and
deploys machine learning models from the block-
chain, where data are decrypted for model training.
&en, the training results are verified on the chain
and shared with the data demander.

(ii) We have designed a new key sharing scheme to
share and manage keys through smart contracts,
which allows users to authorize their data off-chain.

(iii) We build a user audit mechanism.&e record of the
sharing process of users’ medical data is stored on
the blockchain, in which users can query at any time
for auditing the sharing process.

(iv) We implement a prototype of our model and val-
idate its effectiveness. &e experiment shows that
our scheme can protect the privacy and security of
user medical data and ownership without incurring
significant additional time overhead compared to
existing solutions.

&e remaining part of the paper is organized as follows.
We begin by introducing some related works in Section 2.
Section 3 is concerned with some preliminaries used in this
paper. In Section 4, we describe the systemmodel and design
goals. In Section 5, the proposed system operational details
are presented. In Section 6, we did a security and functional
analysis. Program design and evaluation are presented in
Section 7. Finally, this paper is concluded in Section 8.

2. Related Work

In this section, we review some research solutions for secure
data sharing. To solve the problems of inefficiency and poor
scalability of traditional medical data sharing systems, some
schemes [10–12] are proposed using blockchain combined
with cloud storage to solve the data security problem of data
sharing. &e data are stored encrypted in the cloud, and
then, the storage index and data hash are uploaded to the
blockchain for secure data storage and sharing. However,
this data sharing method has no access control mechanism,
and data security is difficult to guarantee. Meanwhile, when
the data are shared, the data owner loses control and
ownership of the data, which also poses a threat to the
privacy and security of the data owner.

To protect the privacy and security of user data, some
solutions propose controlled access [13] to manage
healthcare data sharing. &e literature [14] uses attribute-
based sharing techniques, but when the access policy is
modified, attribute revocation and encryption of the data are
required again, which increases the computational overhead.
Moreover, the tamper-proof nature of blockchain also
complicates the modification of access control policies. Gu
et al. proposed an efficient and simple attribute-based
sharing scheme [15] that reduces computational costs and
enables privacy protection. However, this scheme consumes
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Figure 1: Medical data sharing framework.
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many computing resources when modifying the access
policy. Wang and Song [16] proposed an electronic health
record system built using attribute-based controlled access
and blockchain technology. However, the whole system is
too large, expensive to run, and inefficient to execute. Guo
et al. [17] proposed an attribute-based signature scheme
combined with blockchain technology that can protect user
data privacy. However, the computational performance of
the blockchain leads to an inefficient system. Moreover,
when a malicious user obtains data through access control,
there is a threat to user data privacy.

To ensure secure data sharing, several research proposals
have proposed the use of cryptography [18] for data privacy
security protection. Renpeng Zou et al. proposed SPChain
[19] to enable medical data sharing for users in a privacy-
preserving manner by using a proxy re-encryption scheme.
However, this solution is difficult to implement, consumes
too many resources, and has slow processing speed and poor
portability. Chen et al. [20] proposed an anonymous medical
data sharing scheme based on a cloud server and proxy re-
encryption algorithm to improve the security of private
medical data sharing. However, the original data in this
scheme will still be accessed, and data privacy may be
compromised.

Some scholars have used cryptography-based schemes to
address these issues to protect the privacy and security of
medical data during data analysis and after requesters access
the data. Kosba et al. proposed a blockchain-based platform
for contract development [21]. &e platform uses a zero-
knowledge proof-based cryptographic protocol to handle
private data, rather than storing private transaction data
directly on the blockchain, effectively guaranteeing private
data security. However, this scheme requires many com-
puting resources and is not scalable. &e literature [22]
proposes a blockchain privacy protection scheme based on
homomorphic encryption, but it requires many computa-
tional resources, and its practicality and applicability are
greatly limited.

To ensure that data in shared data do not leave the
authorization system and thus do not disclose sensitive
information, the literature in [23] proposes a combined
blockchain and federation learning scheme for sharing
privacy-preserving IoT data among distributed multiple
parties. Another framework for sharing vehicle data based
on blockchain and federated learning for edge computing is
proposed in the literature [24] for the internet of vehicles
(IoV). However, this scheme suffers from data poisoning
that affects the global model and backdoor attacks. Zhou
et al. proposed a health insurance storage system [25], which
utilizes secret sharing techniques and secure multiparty
computing that allows for the sharing of patient data be-
tween hospitals and insurance companies. However, this
scheme does not guarantee that all servers are fully trusted,
and data requesters have to receive responses from multiple
nodes before accessing the data. Shamir’s secret sharing and
secure multiparty computation (MPC) were applied in
Shrier et al. [26] to achieve data sharing while satisfying user
privacy. Yue et al. [27] proposed a medical data gateway
(HDG) to analyze medical data using secure multiparty

computing while ensuring user control privileges. &e lit-
erature [28, 29] combines multiparty secure computation
and differential privacy to guarantee the accuracy of the
output results without losing data privacy at the user’s end.
However, in complex computational tasks, the results can
significantly differ from the noise-free results, making the
results unusable.

3. Preliminaries

3.1. Trusted Execution Environment. &e trusted execution
environment (TEE) is a secure zone in the computing
platform, using a combination of trusted computing and
virtualization isolation techniques. &e TEE provides a
trusted execution environment for “security-sensitive ap-
plications” while protecting the confidentiality and integrity
of associated data. ARM’s TrustZone technology implements
hardware isolation mechanisms, mainly for embedded
mobile terminal processors, to create separation between the
secure and nonsecure worlds. In addition to TrustZone,
based on the ARM architecture, Intel has also released a
trusted execution environment based on its processor ar-
chitecture: Intel SGX. SGX is a set of instructions that en-
hance the security of application code and data, providing
them with more robust protection against disclosure or
modification. Calling a program in the trusted zone requires
defining the eCall interface and declaring the structure and
size of the data to be passed. Intel SGX provides good in-
tegrity and confidentiality protection for its applications due
to its hardware-level implementation. Since its release, it has
been sought after by academia and industry and is used in
scenarios such as outsourced cloud computing and sensitive
data aggregation. Microsoft has proposed a database ar-
chitecture EnclaveDB [30], based on SGX that runs within a
secure zone. &e data within the trusted database are
implemented so that even when hackers compromise the
server operating system; the data are still not accessible to the
hackers. In addition to database applications, Kunkel et al.
[31] ported machine learning [32] to the SGX secure zone,
allowing the machine learning training and prediction
process to take place within the secure zone, thereby pro-
tecting the privacy of the raw data. &e SGX processing is
shown in Figure 2.

3.2. Smart Contracts. Ethereum is a common public
blockchain open-source platform whose main and most
characteristic feature is integrating smart contract function.
Ethereum provides a decentralized Ethereum virtual
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Figure 2: SGX schematic.
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machine to users who join the Ether Place through its
cryptocurrency, Ether (ETH), which provides peer-to-peer
smart contract computing to all users. Ethereum is a typical
representative of Blockchain 2.0, which increases the scal-
ability and flexibility of the protocol based on Blockchain
1.0. By providing users with various modules, users can
flexibly build smart contracts that suit their needs and de-
ploy them into the Ethereum network by consuming Ether.
Since the Ethereum virtual machine is Turing-complete, the
business provided by Ethereum smart contracts is almost
endless. In theory, any computer business can be deployed
into Ethereum in the form of smart contracts to realize
decentralized business operation and ensure the proper
operation of the business as much as possible. Each com-
mand executed by the smart contract requires a certain
amount of consumption, which uses gas as the unit. Also,
different commands require different gases. Each transaction
must first set a value called gasLimit, the maximum con-
sumption value and miners have the right to choose which
transaction to pack first. Generally, the larger the value of
gasLimit, the more attractive miners are to pack. Ethereum is
a highly integrated blockchain system in practical use, and
users/developers mainly use smart contracts to publish some
transactions and functional modules in Ethereum.

4. System Model

4.1. High-Level Overview. &e flow of users sharing personal
medical data in this solution is shown in Figure 3. &e user
encrypts and uploads the data to the cloud server for storage.
&en, the user uploads the data cryptographic hash and data
storage index to the blockchain. &e data demander uploads
the model and data request to the blockchain and then
deploys the model into a TEE via a smart contract.&e smart

contract sends the data request to the user, who performs the
key authorization.

&e TEE downloads the data cipher hash and storage
index on the blockchain and uses the storage index to
download the data cipher from the cloud server. &en, TEE
gets the key authorization from the smart contract and
decrypts the data cipher to get the original data.&emodel is
then trained using the user’s medical data. Finally, the model
training results are encrypted using the public key of the data
demander and uploaded to the blockchain. &e data de-
mander then retrieves the training result ciphertext from the
blockchain, makes its private key to decrypt it, and obtains
the model training result.

4.2. System Architecture. &e architecture of the proposed
system is shown in Figure 3. It consists of six entities: user,
medical research institute, TEE, blockchain, smart contract,
and storage server. More details of the system are shown
below.

User. &e user stores medical data encrypted in the
storage container and stores information such as the
returned storage index and ciphertext hash in the block-
chain. At the same time, users also authorize access requests
to medical research institutions and encrypt the encryption
key using TEE’s public key, which is then stored on the
blockchain. After the shared data are finished, the user can
also call the chain code to query the data generated during
the sharing process, thus playing a supervisory role.

Data Demander. Medical research institutions make the
required models and submit them to the model review smart
contract for review, then upload the machine learning
models to the blockchain, and finally get the trained models
from the blockchain.
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TEE. A trusted, isolated, and independent execution
environment exists independently of an untrusted operating
system, providing a secure and confidential space for private
data and sensitive computations in an untrusted environ-
ment, whose security is typically guaranteed through
hardware-related mechanisms. In this scheme, we perform
operations such as decrypting the user’s data cipher, veri-
fying data integrity, training model, and uploading training
model parameters to the blockchain.

Storage Device. It is used in this solution to store user-
encrypted medical data.

Smart Contracts. &ey are used to deploy machine
learning algorithms, invoke medical data for sharing, and
data transfer. &ey rely on smart contracts to achieve data
scheduling and processing of data generated by the process
of sharing data to achieve a regulatory mechanism.

Blockchain. &e Ethernet public chain is used here. In
this scheme, the blockchain is used to store data hashes,
model, data integrity verification results, and model learning
results.

4.3.4reatModel. To better describe the working process of
the system model, we rely on the following assumptions:

(1) Smart contract records are reliable and readily
available. &is is because it is difficult for an attacker
to tamper with the records posted on the blockchain,
which is essentially a distributed ledger that runs all
the time.

(2) &is solution uses an off-chain storage system,
mainly responsible for storing user medical data
ciphertext. When the data are stored, a storage index
is generated and used to store it in the blockchain.

(3) In this scheme, the computing process in the TEE
cannot be accessed by the outside world in any way.

4.4. Design Goals. In this solution, we aim to achieve secure
sharing of user medical data, for which we propose the
following design objectives:

(1) Secure Storage and Sharing. Users’ medical data
should be securely stored, and no entity should be
able to tamper with this information. In addition, it is
guaranteed that no entity may view and tamper with
the user’s medical information during the sharing
process.

(2) Shared Data Can Be Supervised. Users want to su-
pervise the operations that their personal medical
data undergo during the sharing process to prevent
illegal use and analysis of personal medical data.

(3) Efficiency. A large amount of user medical data need
to be stored and shared on time, so it should have
high storage and sharing efficiency.

(4) Data Dedicated Exclusive Use. &e user’s medical
data will only be used and analyzed for legitimate
dedicated use, and any illegal manipulation of the
user’s data is not feasible.

(5) User’s Data Ownership. &is is done first to prevent
malicious accounts from changing the user’s account
and tampering with the user’s data ownership.
Second, it ensures that after data sharing, the
ownership of the data remains with the user.

(6) Security of Computing Environment. It ensures the
privacy and security of users’ medical data pro-
cessing and does not disclose any private informa-
tion when computing and analyzing data.

(7) Ability to Resist Other Attacks. To enhance security
further, the protocol should provide resilience to
other common attacks, such as replay attacks.

5. Our Proposed Protocol

&e controlled medical data sharing for machine learning
proposed in this solution can be specifically divided into the
following phases: system initialization, medical data storage,
machine learning model deployment, training model, and
data demander to obtain training results. In Table 1, we
illustrate some of the notations in the scheme.

5.1. SystemInitialization. Before the system starts to execute,
we complete the initialization work. &e specific steps are as
follows:

(1) Basic Initialization. A cyclic additive group G with
generating element g and prime order Q is chosen on
an elliptic curve E(Fp) over a finite field Fp and a
one-way hash function H1: 0, 1{ }∗ − >Zq. &en, the
symmetric key encryption function Encrypt and de-
cryption function Decrypt, Encrypt ECC asymmetric
key encryption algorithm and decryption algorithm
Decrypt ECC, and RSA signature function Sig RSA

and verification function Verify RSA are selected.
(2) Blockchain Initialization. We create the file gene-

sis.json containing the configuration parameters to
build the Ethereum blockchain. Each node generates
a public-private key pair PK, SK{ }. One set of pre-
designated nodes is responsible for mining. &e rest
of the network collectively trusts these nodes to
validate transactions and create new blocks. In our
case, the trusted institutions consisted of medical
research institutions, insurance companies, and
regulatory agencies. Trusted institutions perform
various functions, including adding data to decen-
tralized file systems, uploading corresponding
transactions to the blockchain, and validating vari-
ous transactions received from external users, such
as permission requests and permission grants.

(3) Smart Contract Deployment. In this scheme, there
are four types of contract components: registration
contract, data contract, authorization contract,
model contract, and audit contract:

(a) Registration Contract. All nodes are registered
anonymously on the registration contract to
prevent users from providing false data or data

Security and Communication Networks 5



demanders from providing illegal models. &e
registration information includes the public key
and the role of the node.

(b) Data Contract. &e data contract stores a list of
data records that indicate the mapping relation-
ship between the data and the user. Each data in
the list consist of the user’s public key, the data
cipher hash, the off-chain original data storage
index, and the user’s signature. &e ability to add,
modify, and delete data is also provided in this
contract. In addition, the TEE and users can re-
trieve and download data through this contract.

(c) Authorized Contract. &e authorization contract
assists the user in encrypting the data encryption
key and authorizing the key to the data demander.

(d) Model Contract. &e model contract stores a list
of models and a list of model training results.
Data demanders can upload models and
download model training results through this
contract. TEE can also store model training
results through model contracts.

(e) Audit Contract. &e audit list is set up, and the
list data include information about the data
owner, the data demander, the data integrity
verification results, and the models trained on
the data. Users can audit the process of sharing
personal medical data through an audit contract.

5.2. Medical Data Storage. Due to the limitation of SGX
memory, the user’s medical data need to be preprocessed
before uploading. We sort and label data by system re-
quirements prior to data storage before storing it. In order to
store the user medical data information, the structure
PKi,UDT,DAi,USi,HDSi, DTi, CMi􏼈 􏼉 of the data storage
transaction TDi is designed. In this, TDi is a public
transaction and any node can access the data in TDi. TDi

contains the user’s public key PKi, timestamp DTi, hash of
data ciphertext H DSi, user signature USi, data storage index
DAi, medical data typology U DT, and encryption key ci-
phertext CMi. &e following description illustrates the
process of storing user medical data.

5.2.1. Data Preprocessing

(a) &e user cuts and divides the data according to the
system requirements, and then labels the divided
data.

5.2.2. Data Upload

(a) Encrypt the Raw Data. User i calls Encrypt function
to generate a new symmetric key KEYi using private
key SKi and random number ni. &en, we encrypt
the medical data UDATAi with key KEYi to generate
ciphertext DSi.

DSi � Encrypt KEYi, UDATAi( 􏼁. (1)

(b) Store ciphertext to Cloud Server. User i stores medical
data ciphertext to the cloud server and then gets the
storage index DAi.

5.2.3. Data on the Chain

(a) Generate Hash Index. User i uses hash function to
generate hash value H DSi for data ciphertext DSi.

HDSi � H1 DSi( 􏼁. (2)

(b) User Signature. User i uses the signature function
Sig RSA to sign the data ciphertext hash to get the
signature USi.

USi � SigRSA SKi, H DSi( 􏼁. (3)

(c) Encrypting the Symmetric Key. User i invokes the
authorized contract to obtain the public key PKT of
the TEE, the public key PKCof the contract. &en,
the user generates random numbers rU and rC,
encrypts the symmetric key, and generates the ci-
phertext CMi.

CMi � KEYi + rCPKC + rUPKT. (4)

(d) Publish Stored Data Transactions. User i invokes the
data contract to store TDi into the blockchain.

TDi � PKi, UDT , DAi, USi, HDSi, DTi, CMi􏼈 􏼉. (5)

(e) User Authorization. &e user invokes the authori-
zation contract to upload the rUg and rCPKC.

Algorithm 1 shows the process of storing medical data
from user i to the cloud server and blockchain.

5.3. Machine Learning Model Deployment

5.3.1. Model Storage. In order to store the machine learning
model on the blockchain, the data structure
MIDj, PKj, MTj,modelj, Hmodelj, SMj, RMj􏽮 􏽯 of the
model storage transaction IMj is designed. It contains the
data demander node identifier MIDj, public key PKj,
timestamp MTj, model modelj, hash of model Hmodelj,
signature SMj of the medical institution, and data demand
RMj. &e storage process of the user medical data is de-
scribed as follows:

Table 1: Table notations.

Notation Description
SK Private key
PK Public key
KE Symmetric key
UDATAi Raw data of user
Modelj Model of demander
UDT Data type

6 Security and Communication Networks



(1) We upload models to the blockchain.

(a) Generating Models. &e data demander j pro-
duces and generates machine learning models
and data requirements.

(b) Obtaining the Model Hash. &e data demander j

uses the hash function to calculate the hash value
of the model.

Hmodelj � H1 modelj􏼐 􏼑. (6)

(c) Data Demander Signature. Data demander j uses
the signature function Sig RSA to sign the data
ciphertext hash to get the signature SMj.

SMj � Sig RSA SKj, Hmodelj􏼐 􏼑. (7)

(d) Posting Stored Data Transactions. Data de-
mander j invokes a data contract to store IMj

into the blockchain.

IMj � MIDj,PKj,MTj,modelj,Hmodelj,SMj,RMj􏽮 􏽯.

(8)

Algorithm 2 shows the process of storing the machine
learning model and data requirements to the blockchain by
the data demander j.

5.3.2. Model Deployment. &e TEE retrieves the blockchain
to get the model after it is stored on the blockchain. To
ensure the authenticity of the model, the model needs to be
validated. For this purpose, the data structure
STj,HRTj, VTj􏽮 􏽯 for model validation is designed, where

STj is the signature of TEE, HRTj is the model integrity
verification result, and VTj is the signature verification
result. &e process of model deployment is illustrated as
described in the following:

(1) Model deployment

(a) Download the Model. After the model is stored to
the blockchain, TEE retrieves the blockchain
through the model contract and gets IMj.

(b) Verify Integrity. TEE first retrieves the model
hash Hmodelj from IMj, takes the model hash,
and gets the hash Hmodelj′. TEE compares
whether Hmodelj and Hmodelj′ are equal and
gets the result HRTj. &en, it verifies the sig-
nature and gets the verification result VTj.

Hmodelj′ � H1 modelj􏼐 􏼑,

HRTj � if Hmodelj �� Hmodelj′􏼐 􏼑,

VTj � Verify RSA PKj, SMj􏼐 􏼑.

(9)

(c) Upload Integrity Result. TEE uses the private key
SKT to sign {HRTj, VTj} to get the signature STj.
&en, it invokes the authorization contract to
upload the integrity verification result and store
STj,HRTj, VTj􏽮 􏽯 into the blockchain.

STj � Sig RSA SKT, HRTj, VTj􏽮 􏽯􏼐 􏼑. (10)

(d) Deploy Model. &e TEE deploys the model after
verifying its integrity.

Algorithm 3 shows the process of model deployment to
TEE.

5.4. Model Training

5.4.1. Data Verification. After the successful deployment of
the model, TEE uses the authorization contract to retrieve
the blockchain and obtain the user data
PKi,UDT, DAi, USi,HDSi, DTi, CMi􏼈 􏼉 that match the data
requirements. &en, we download the data ciphertext DSi
from the cloud server according to the label type of the data
required by the model. To ensure the authenticity and

Input: Raw Data UDATAi; Public Key PKi; Data Type UDT; Random Number ni; Private Key SKi;
Output: Storage Index DAi; Blockchain Transaction TDi;
Stage 1: Upload data to the cloud server:

(1) Generate symmetric key KEYi by PKi

(2) Encrypted raw data DSi � Encrypt(KEYi, UDATAi)

(3) Send DSi to the cloud server and get DAi

Stage 2: Upload TDi to Blockchain
(4) Generate timestamp DTi

(5) Generate ciphertext hash HDSi � H1(DSi)

(6) User Signature USi � Sig RSA(SKi,HDSi)

(7) Call the authorization contract to get rC, PKC, PKT􏼈 􏼉

(8) Generate random number rU

(9) Encryption symmetric key KEYi: CMi � KEYi + rCPKC + rUPKT

(10) TDi � PKi,UDT, DAi, USi,HDSi, DTi, CMi􏼈 􏼉

(11) Call the data contract to upload data TDi to the blockchain
(12) Call the Authorized contract to upload data TDi, rUg and rCPKC

(13) return (DAi, TDi);

ALGORITHM 1: Medical data storage.
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integrity of the data, the data need to be verified. For this
purpose, the data structure STi,HRTi, VTi􏼈 􏼉 for data vali-
dation is designed, where STi is the signature of TEE, HRTi

is the model integrity verification result, and VTi is the
signature verification result. As described below, the process
of model deployment is illustrated:

(a) DownloadTDi. TEE invokes the data contract to
retrieve the blockchain and download the TDi that
matches the data requirements.

(b) Download Data CipherDSi. We retrieve the cloud
server to download the corresponding data cipherDSi

according to the data type required by the model.
(c) TEE first retrieves the data cipher hash HDSi from

TDi and then hashes the model to get the hash
HDSi
′.TEE compares whether HDSi

′ is equal to HDSi

and gets the result HRTi. &en, it verifies the sig-
nature and gets the verification result VTi.

HDSi
′ � H1 DSi( 􏼁,

HRTi � if HDSi �� HDSi
′( 􏼁,

VTi � Verify RSA PKi, USi( 􏼁.

(11)

(d) Upload Integrity Result. TEE uses private key SKT to
sign HRTi, VTi􏼈 􏼉 to get signature STi, and then invoke
authorization contract to upload integrity verification
result and store STi,HRTi, VTi􏼈 􏼉 into blockchain.

STi � Sig RSA SKT, HRTi, VTi􏼈 􏼉( 􏼁. (12)

Algorithm 4 shows the process of data downloading.

5.4.2. Data Acquisition and Model Training. After obtaining
the user data cipher and verifying the data integrity, TEE in-
vokes the authorization contract to request a key. TEE uploads
the data integrity verification result and model integrity veri-
fication result to the authorization contract. &e authorization
contract will receive the rUg and rCPKC and send to TEE. TEE
receives the rUg and rCPKC to calculate the decryption key.
&e process is illustrated as described in the following:

(1) Key authorization

(a) Contract Authorization. &e authorization con-
tract sends rCPKC to TEE along with rUg.

(2) Key acquisition

(a) Retrieve Key. TEE retrieves the key cipher CMi

from TDi.
(b) Decrypt Key. TEE uses rCPKC and rUg to decrypt

the encryption key.

KEYi � CMi − rCPKC − rUPKT

� CMi − rCPKC − rUSKTg

� CMi − rCPKC − rUgSKT.

(13)

(3) Data decryption

(a) Decrypt the Data Cipher. TEE calls the decrypt
function Decrypt, decrypts the data cipher DSi
using KEYi, and gets the data UDATAi.

UDATAi � Decrypt KEYi, DSi( 􏼁. (14)

(4) Model training

Input: Private Key SKT;
Output: Verify the result of the hash value HRTj; &e result of verifying the signature VTj; Signature STj;

(1) Call the model contract to download model MIDj, PKj, MTj,modelj, Hmodelj, SMj, RMj􏽮 􏽯

(2) Generate model hash Hmodelj′ � H1(modelj)
(3) HRTj � if(Hmodelj �� Hmodelj′)
(4) Verify signature VTj � Verify RSA(PKj, SMj)

(5) Sign off on the validation results STj � Sig RSA(SKT, HRTj, VTj􏽮 􏽯)

(6) Deploy model
(7) Call the model contract to upload STj,HRTj, VTj􏽮 􏽯 to the blockchain
(8) return STj,HRTj, VTj􏽮 􏽯

ALGORITHM 3: Model deployment.

Input: model: Data demander node identification MIDj; Public Key PKj; Private Key SKj;
Output: Blockchain Transaction IMj;

(1) Generate models and data requirements
(2) Generate timestamp MTj

(3) Generate model hash Hmodelj � H1(modelj)
(4) Signature SMj � Sig RSA(SKj, Hmodelj)
(5) IMj � MIDj, PKj, MTj,modelj, Hmodelj, SMj, RMj􏽮 􏽯

(6) Call the model contract to upload data IMj to the blockchain

ALGORITHM 2: Model storage.
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(a) TEE uses data from multiple users to train the
model on the demander of the data and obtains
the training result MRTj after the model is
trained.

Algorithm 5 shows the process of decrypting the data
and training the model.

5.5. Training Result Acquisition. After the model training is
completed, the training results need to be encrypted and
stored in the blockchain in order to protect the privacy and
security of the model training results. &e data demander
gets the model ciphertext from the chain and then decrypts it
to get the model training results. &e process is illustrated as
described in the following.

5.5.1. Training Result Storage

(a) Encrypt Training Results. TEE uses the public key of
the data demander to encrypt the training results and
get the ciphertext.

CMRTj � Encrypt ECC PKj,MRTj􏼐 􏼑. (15)

(b) Hash. TEE takes a hash of the training result
ciphertext.

HCMRTj � H1 CMRTj􏼐 􏼑. (16)

(c) Generate Signature. To ensure the authenticity of the
training results, TEE signs the cryptographic hash of
the training results.

SMRTj � Sig RSA SKT,HCMRTj􏼐 􏼑. (17)

(d) Upload to Blockchain. TEE invokes the model
contract to upload
CMRTj,HCMRTj, SMRTj􏽮 􏽯to the blockchain.

Algorithm 6 demonstrates this process.

5.5.2. User Audit Information Storage. To ensure that users
audit the sharing process of personal medical data at any
time and avoid the unauthorized use of data, we design the
user audit structure MIDj, RMj,HRTj,HRTi, PKT,􏽮

PKj,modelj}to store the audit information and then invoke

Input: Private Key SKT;
Output: Verify the result of the hash value HRTi; &e result of verifying the signature VTi; Signature STi;

(1) Call the data contract to download data PKi, U DT , DAi, USi, H DSi, DTi, CMi􏼈 􏼉

(2) Download data ciphertext from cloud storage server DSi

(3) Generate model hash HDSi′ � H1(DSi)

(4) HRTi � if(HDSi �� HDSi′)
(5) Verify signature VTi � Verify RSA(PKi, USi)

(6) Sign off on the validation results STi � Sig RSA(SKT, HRTi, VTi􏼈 􏼉)

(7) Call the data contract to upload STi,HRTi, VTi􏼈 􏼉 to the blockchain
(8) return STi,HRTi, VTi􏼈 􏼉

ALGORITHM 4: Data verification.

Input: Private Key SKT; Ciphertext of the key CMi; Ciphertext of the data DSi;
Output: Encrypted keys KEYi; raw data UDATAi; Training results of the model MRTj;

(1) Call the Authorization contract to download rCPKC, rUg􏼈 􏼉

(2) Decrypted keys: KEYi � CMi − rCPKC − rUPKT

� CMi − rCPKC − rUSKTg

� CMi − rCPKC − rUgSKT

(3) Decrypt data: UDATAi � Decrypt(KEYi, DSi)

(4) Training model with data
(5) return KEYi, UDATAi,MRTj􏽮 􏽯

ALGORITHM 5: Data acquisition and model training.

Pkj

IDj

RMj

HRTj

HRTi

PKT

Modelj

Figure 4: Structure of audit information.
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the audit contract to store it into the blockchain for user
audit. Here, MIDj is the ID of the data demander, RMj is the
data demand, HRTi is the model integrity verification result,
HRTi is the data verification result, PKT is the public key of
TEE, PKj is the public key of the data demander, andmodelj
is the model of the data demander. &e audit information
structure is shown in Figure 4.

5.5.3. Training Rezsult Acquisition

(a) Download the Training Result Ciphertext. &e data
demander invokes the model contract to obtain
CMRTj,􏽮 HCMRT j, SMRTj}.

(b) Verify Ciphertext. We calculate the hash of the
training result ciphertext, compare it with the hash
downloaded from the chain, and then verify the
signature. If the verification passes, the decryption
process is carried out, and if the verification does not
pass, the feedback is sent to the blockchain.

HCMRTj’ � H1 CMRTj􏼐 􏼑,

Result � If HCMRTj �� HCMRTj’􏼐 􏼑,

· Verify RSA PKT, SMRTj􏼐 􏼑.

(18)

(c) Decrypt Ciphertext. &e data demander decrypts the
data using the private key after successful
verification.

MRTj � Decrypt ECC SKj,CMRTj􏼐 􏼑. (19)

Algorithm 7 demonstrates this process.

5.6. Interaction Process Description. &e interaction process
of the solution consists of ten steps as follows. First, steps 1–4
describe the process of deploying the machine learning
model. &e logical flowchart is shown in Figure 5. &en,
steps 5–8 describe the process of user data storage, sharing,
and key authorization. &e logic flowchart is shown in
Figure 6. &e final steps 9-10 describe the process of using
user data to train the machine learning model and the
process of transmitting the model learning results to the data
demander. &e logical flowchart is shown in Figure 7:

Step 1: the data demander uploads the machine
learningmodel and data demand to the block company.
Step 2: the data demander invokes the contract to
transfer the machine learning model to the TEE.
Step 3: the TEE verifies the integrity of the machine
learning model.
Step 4: the TEE deploymodel.
Step 5: the user encrypts the medical data and stores it
in the cloud server. &en, the information such as data
cryptographic hash, ciphertext of the key, and storage
index are uploaded to the blockchain. &en, the user
invokes the authorization contract to upload the key.

Input: Public Key PKj; Training result of the model MRTj; Private Key SKT;
Output: Ciphertext of training result CMRTj; Hash HCMRTj; Signature SMRTj;

(1) Encrypt training result CMRTj � Encrypt ECC(PKj,MRTj)

(2) Generate hash value HCMRTj � H1(CMRTj)

(3) Generate signature SMRTj � Sig RSA(SKT,HCMRTj)

(4) Call the model contract to upload CMRTj,HCMRTj, SMRTj􏽮 􏽯 to the blockchain
(5) return CMRTj,HCMRTj, SMRTj􏽮 􏽯

ALGORITHM 6: Training result storage.

Input: Hash HCMRTj; Signature SMRTj; ciphertext CMRTj; Private Key SKj;
Output: Training result of the model MRTj;

(1) Call the Authorization contract to download CMRTj,HCMRTj, SMRTj􏽮 􏽯

(2) Generate hash value HCMRTj’ � H1(CMRTj)

(3) Result � If(HCMRTj �� HCMRTj’)
(4) Verify RSA(PKT, SMRTj)

(5) Decrypt result ciphertext MRTj � Decrypt ECC(SKj,CMRTj)

(6) return MRTj

ALGORITHM 7: Decrypt result ciphertext.

Model
Download model

Verify model

Deployment model

Upload verify result

Data demender Blockchain TEE

Figure 5: &e logical flow of machine learning model deployment.
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Step 6: the TEE downloads the user medical data and
verifies the integrity of the data.
Step 7: the TEE calls the authorization contract to
obtain the key.
Step 8: the TEE decrypts the key ciphertext and then
encrypts the data ciphertext to obtain the user data.
Step 9: the TEE uses the user’s data to train the model
and then encrypts the training results.
Step 10: the TEE calls the contract to upload the
encrypted training results to the blockchain.
Step 11: the data demander downloads the training
result ciphertext, decrypts it, and obtains the training
result.

6. Security and Functional Analysis

In this section, security analysis and functional analysis of
the proposed scheme are performed in order to verify that
the previously mentioned design objectives are met.

6.1. Security Analysis

6.1.1. Secure Storage and Sharing. In most cases, the storage
server is trusted, but sometimes the storage server gets
curious about the data and looks at the user’s personal data.
&erefore, in this scheme, the user data are stored in the
storage server in an encrypted state, and the user data cannot
be viewed without the key. At the same time, the hash value
of data ciphertext is stored in the blockchain to verify the
integrity of data, and this mechanism effectively ensures data
storage security. During the sharing process, user data are in

an encrypted state. Only TEE can use the private key de-
cryption to obtain the encryption key. TEE ensures that the
internal computation is hidden, and the internal data cannot
be accessed from outside. &erefore, this solution can also
ensure the security of data sharing.

6.1.2. Shared Data Can Be Regulated. In this solution, first,
users can view their personal medical data at any time.
Second, information such as the results of data integrity
verification, the identity of the medical research institution,
and the models to be trained generated during the sharing
process are uploaded to the blockchain. All these infor-
mation can be viewed by users at any time as a way to
regulate personal data and thus prevent the illegal use of
personal medical data.

6.1.3. Efficiency. First, in this scenario, we use DES sym-
metric key to encrypt the user’s medical data and upload the
data ciphertext to the storage device. &e hash of the data
ciphertext is then uploaded to the blockchain for storage.
&is reduces the storage burden of the blockchain and
improves the storage efficiency of the system. Second, to
achieve efficient machine learning model training on the
blockchain, we introduce a combination of on-chain and off-
chain approaches. On-chain contracts perform low-com-
plexity operations such as data provisioning and integrity
verification, while off-chain TEE performs high-complexity
calculations such as data encryption and decryption hash
calculation, signing, signature verification, and model
training. In this way, the computational burden of the
blockchain is significantly reduced, and the efficiency of the
whole system is improved.

6.1.4. Dedicated to Medical Data. In this solution, medical
data are only used to train machine learning models of
medical research institutions. No entity can access the user’s
medical data and let alone perform other operations on the
user’s medical data, to ensure the exclusive use and non-
misuse of the user’s medical data.

6.1.5. User Data Ownership. First, the user’s medical data are
not really shared but used for training models, and the
medical research organization does not really have access to

Upload encrypted data

Hash of medical data
Upload ciphertext of key Transmission hash of 

medical data

Download encrypted data
Authorization application

Download ciphertext of key

Decrypt data

Decrypt
encryption key 

User Cloud server provider Blockchiain TEE

Figure 6: &e logical flow of user medical data sharing and key transfer.

Public key of data demender

Verify

Encryption 
parameters

Upload parameter ciphertext Download parameter
ciphertext

Upload verification results

TEE Blockchain Data demender

Figure 7: &e logical flow of model training and return of the
training results.
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the user’s data. Second, the user’s data are trained in the TEE,
and no entity can be aware of the computational process
inside, and much less access the data in the TEE. In this way,
the ownership of user data can be protected.

6.1.6. Computing Environment Security. &is scheme uses
Intel SGX for data decryption and model training. SGX aims
to safeguard the confidentiality and integrity of users’ critical
code and data from malware by making hardware security
mandatory and not to rely on firmware and software’s se-
curity status. SGX’s trusted computing base (TCB) contains
only hardware, avoiding the pitfalls of software-based TCBs
that have their own software security vulnerabilities and
threats. In addition, SGX guarantees a TEE at runtime so
that malicious code cannot access and tamper with the
protected content of other programs at runtime, further
enhancing the system’s security. SGX’s robust, trusted,
flexible security features and hardware scalable performance
guarantees provide a secure computing environment for this
solution.

6.1.7. Resilience against Other Attacks

(1) Replay Attack. &e scheme is effective against replay
attacks because all transactions in the system contain
timestamps and digital signatures. Moreover, since all
transactions in the blockchain are transparent, any user can
extract the time when the transaction was generated. &is
way, if a malicious user tries to duplicate a transaction re-
quest using a transaction written on the blockchain, then
during the validation phase of the transaction, the relevant
validation node will detect the time discrepancy and discard
the transaction.

(2) Impersonation Attack. In this scenario, TEE provides
proof for the issued data, for example, the integrity verifi-
cation result of the data, the integrity verification result of
the model, the public key of the TEE, and the completed
model of the training. &is is to prevent the illegal elements
from impersonating TEE to cheat the user’s data encryption
key. On the other hand, the user’s data will also contain the
user’s signature to ensure the authenticity of the user’s data.
&is prevents illegals from using malicious data to influence
the model’s training.

(3) Tampering Attacks. In the process of medical data
sharing, there may be cases where users tamper with
blockchain information or transaction information, such

as changing the owner of published medical data to their
own account, thus tampering with the ownership of
medical data. &e solution is based on Ethernet de-
ployment, and the authenticated nodes generate the
blocks. Here, the authenticated nodes need to complete a
mandatory authentication process to get the right to
generate new blocks. &erefore, blocks are packed by
trusted certified nodes, and malicious nodes cannot learn
the private keys of trusted certified nodes, so they cannot
forge the identity of certified nodes to pack blocks and
thus cannot modify block information to forge signa-
tures. Since it is difficult for malicious nodes to tamper
with the data on the blockchain, and we store the
cryptographic hash of medical data and share records on
the chain, this ensures the accuracy and authenticity of
the records.

6.2. Function Analysis. In Table 2, we compare our scheme
with existing schemes. As can be seen from the table, all these
schemes are based on blockchain for data sharing. Among
them, Zou et al. [19], Miao et al. [33], and Chen et al. [20]
designed privacy protection for the medical data sharing
process. However, our solution meets the practical needs of
dedicated data dedication, secure data handling, data reg-
ulation, and data ownership.

7. Program Design and Evaluation

In this section, we analyze the effectiveness of the pro-
posed scheme through experiments. We have conducted a
simulation experiment, which is divided into four parts.
First of all, we build the Ethernet blockchain on the
Ubuntu 20.0 virtual machine and write an intelligent
contract using solidity. &en, we build Intel SGX in Intel
(R) Core (TM) i7-9750H CPU @ 2.60 GHz, 16gb RAM,
Microsoft Windows 10 operating system, implement
trusted execution environment (TEE), and redesign en-
cryption and decryption algorithm, hash algorithm, and
signature algorithm in SGX. We realize the functions of
data decryption, machine learning, hash generation,
signature, and learning result encryption in the security
zone. In order to compare the impact of SGX on the
efficiency of the whole shared system, we also implement
the above functions in a non-SGX environment and
compare the computing time overhead in the two envi-
ronments. Finally, by adjusting different difficulties, we
test the appropriate block time and test the throughput of
the system.

Table 2: &e comparison of functionality and security with current solutions.

Security properties Zou et al. [19] Miao et al. [33] Chen et al. [20] &is article
Safe storage and sharing √ √ √ √
Blockchain based √ √ √ √
User auditing × √ × √
Environment security × × × √
Protecting user ownership × × × √
Minimized data usage × × × √
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7.1. Ethereum Blockchain Building. &e blockchain built in
this system is based on the Geth client, version 1.9.25-stable-
e7872729, which is based on Ether and uses POW as the
consensus algorithm. &ere are 4 mining nodes built in the
federated chain network, and the 4 nodes take turns to start
mining. We modify the difficulty value in the genesis file to
test the block generation time overhead at different difficulty
levels. As shown in Figure 8, the vertical coordinate rep-
resents the difficulty and the horizontal coordinate repre-
sents the number of blocks generated per minute, and we set
the scheme out of blocks to 60 blocks per minute.

7.2. Building a Trusted Execution Environment. Based on the
excellent performance of Intel SGX, we use SGX as the
trusted execution environment. &e design of the Enclave of
the security zone needs to consider both function and
implementation. &e analysis of the scheme shows that
Enclave needs to have the following functions: (1) generating
asymmetric key pairs inside Enclave; (2) exporting public
keys outside Enclave; (3) decrypting key ciphertexts and
data; (4) training models using data; (5) encrypting training
results; and (6) signing, verifying signatures, and computing
hash values.

Since SGX’s internal functions are not convenient, we
rebuilt the algorithm in Enclave for the above functions. We
rebuilt ECC asymmetric encryption and symmetric en-
cryption and decryption for higher security and smaller key
size. We use the RSA signature for signature and verification
signature. For the use of the hash function, we choose the
SHA-256 algorithm.

7.3. SGX Performance Evaluation. To test the impact on the
overall sharing system efficiency after using SGX, we
designed SGX-based data sharing and non-SGX data sharing
for comparison. &is is shown in Figure 9. We use 3 kB data
to compare the ECC key pair generation time comparison,
data hash generation time comparison, signature time
comparison, and the total time comparison of the whole
sharing system between the SGX environment and the non-
SGX environment. Figure 9(a) shows the key pair generation
time comparison, which takes a little more time in the SGX
environment than in the normal environment. However,
this time overhead is not significant, and on average, the
SGX environment takes 757.307 us more time overhead. We
also tested the time overhead of generating data hashes,
signing, and verifying signatures in both environments. &e
additional time overhead for generating hashes, signatures,
and verifying signatures in the SGX environment is

16.566 us, 12.464 us, and 6.916 us, respectively. &ere is a
small additional time overhead for the above calculations
when using SGX, but it is still a microsecond overhead. It
does not have a significant impact on the overall system.
Figure 9(d) shows the time overhead of the whole system in
the SGX environment compared to the non-SGX environ-
ment. Overall, the SGX environment still sacrifices some
efficiency, but in terms of average time, the SGX environ-
ment has an additional 19.9443ms overhead.

To further test the impact of SGX on the system, we
performed test simulations using 1 to 6 kB of data, as shown
in Table 3. Since the excess time loss of SGX is due to the data
going in and out of Enclave, the time increase with SGX is
lower than the time increase without SGX as the data size
increases, as shown in Figure 10.

7.4. Blockchain 4roughput. In this section, we separately
calculate the throughput of various transactions. Since we
are using the Ethernet blockchain, the block gasLimit of
Ethernet determines the number of transactions that can be
packed in a block.&e current block gasLimit of the Ethernet
blockchain we built is 12,000,000 gas. After testing, we get
the gasLimit for user-submitted personal medical data
transactions to be 62,060 gas. Since we set the block-out
speed to 60 minutes, the data processing per second (TPS)
for personal user data is 193. Similarly, testing the gasLimit
for data demander-submitted transactions is to be 82,355
and the TPS for deployment model transactions is to be 145.
&e gasLimit of integrity verification transaction is 38444

Table 3: System time overhead for different file sizes.

Data size (kB) 1 2 3 4 5 6
Minimum of NOSGX (us) 58216 170421 276373 460588 544606 705014
Average of NOSGX (us) 67868 179441 307853 524873 600304 725899
Maximum of NOSGX (us) 78341 194061 357842 625825 672885 795646
Minimum of SGX (us) 230948 416418 474531 858997 1028615 1238720
Average of SGX (us) 278031 441992 507291 887812 1181386 1366159
Maximum of SGX (us) 315733 478269 548383 932949 1235315 1456512
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Figure 10: Time comparison for different data sizes.
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gas, and the TPS is 312. &e gasLimit of SGX uploading
machine learning model training result ciphertext and its
hash value transaction is 79,928 gas, and the TPS is 150.

8. Conclusions

&is paper proposes a user-centric medical data sharing
scheme for privacy-preserving machine learning, which
implements data encryption storage, blockchain-based data
resource distribution, data authorization, and machine
learning model training. We also design an auditing
mechanism to assist users in auditing the data sharing
process. Compared with existing schemes, our proposed
scheme ensures the privacy and security of users’ data and
safeguards the ownership of users’ data and achieves the
dedicated use and nonmisuse of data. Finally, the func-
tionality of this solution is implemented through simulation
experiments, and the experimental results prove the feasi-
bility and effectiveness of the solution. Analyzing the impact
of the TEE on the overall system performance demonstrates
that the privacy and security of data and the user’s data
ownership are guaranteed without significant performance
degradation. In future work, we intend to reduce the
communication overhead of users and increase the
throughput of the system.
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