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In order to meet the edge services placement demand for multiobjective optimization of Power Internet of Things, an edge services
placement strategy based on an improved strength Pareto evolutionary algorithm (SPEA2) is proposed in this paper. Firstly, we
model the delay, resource utilization, and energy consumption. Then, a multiobjective optimization is proposed. Finally, an
enhanced genetic algorithm is used to derive the decision candidate set. Moreover, the optimal solution in the candidate set is
selected to be utilized in the iteration of the multicriteria decision and the superior-inferior solution distance method. Numerical
results and analysis show that the proposed strategy is more effective in reducing system delay, improving resource utilization, and
saving energy consumption than the other two benchmark algorithms.

1. Introduction

With the rapid development of the Power Internet of Things
(IoT), the IoT nodes of the power supply terminal, including
smart devices and emerging applications, show explosive
growth, which leads to massive heterogeneity and complex
processing of the data [1, 2]. In the power industry, cloud
computing architecture is usually used to upload terminal
data to the cloud platform for centralized processing.
However, the traditional cloud computing center is far away
from the power grid equipment, and uploading data to the
cloud platform can lead to large time delays [3]. In addition,
centralizing data in the cloud platform can cause a burden
on network communication and computing resources,
resulting in transmission interruption or link congestion.
Therefore, it is difficult for the cloud computing architecture
to meet the service requirements of terminal equipment in
the Power Internet of Things [4, 5].

Edge computing improves the service capability of the
network by deploying the edge servers at radio access
network side to provide power grid equipment with pow-
erful computing and storage capabilities. Nowadays, edge
computing has been widely used in many fields, such as
mobile big data analytics and Power Internet of Things

[6-8]. In addition, for the current power grid equipment, the
deployment of edge computing could relieve the challenge
caused by the lack of power and computing capacity.
However, the proper edge service placement strategy needs
to be designed to optimize other parameters such as energy
consumption and resource utilization while simultaneously
providing high-performance services to power grid
equipment.

A ot of researches have been done on the service
placement of edge computing and some constructive so-
lutions have been proposed. In [9], to address the problem of
edge computing service placement under resource con-
strained conditions, the authors have regarded that the
ubiquitous MEC could implement service migration in
mobile networks with highly dynamic characteristics by
supporting multiserver collaboration. To maximize the
system utility of the system, the optimization problem has
been formulated by joint considering the constraints of
server storage capacity and service delay. Firstly, the long-
term optimization problem has been decomposed into a
series of immediate optimization by the Lyapunov method.
Then, a stochastic algorithm based on sample average ap-
proximation is proposed to approximate future expected
system utility values. Next, the distributed Markov
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approximation algorithm is used to determine the service
placement policy. For addressing cost and energy con-
sumption in edge computing power scenarios, in [10], the
authors have considered that the energy consumption of
servers is an important part of service cost in edge com-
puting systems. Thus, the energy-aware edge computing
application service placement problem has been designed;
then the problem has been modeled as a multistage sto-
chastic programming problem. The objective is to maximize
the Quality of Service (QoS), under the energy budget
constraints of the edge computing server. Finally, a novel
sampling average approximation algorithm has been
designed to solve the problem.

To address the problem of multiobjective optimization
requirements for the placement of edge computing service,
in [11], the authors have considered that one of the main
challenges of edge computing is to consider service load
variations and determine multiobjective performance op-
timization to make service placement decisions. The optimal
service placement problem has been solved by further
considering how to allocate the service loads placed at
different locations. And a dynamic predictive service
combined with load allocation strategy has been proposed by
estimating the performance-cost tradeoff for service mi-
gration. The strategy has utilized the small amount of
predictive processing to reduce the impact of load fluctu-
ations. In [12], the authors have defined a network entity
with a flexible allocation of communication, computing, and
storage capabilities so that the resource constrained devices
could use the communication and computation resources
required for the service. In addition, the spectrum-aware
service placement in edge computing has been investigated.
The authors have formulated the service placement as a
stochastic optimization problem. Then, the authors have
jointed the optimized service placement, traffic routing, and
spectrum allocation. Based on those, an enhanced coarse-
grained service placement algorithm has been proposed.

Edge computing service architectures have recently
attracted a lot of attention. In [13], the authors consider the
multidimension of task requirements in mobile crowd
sensing and propose a task-oriented user selection incentive
mechanism to achieve higher task completion rate and
maximize resource utilization. In order to solve the problem
of insufficient accuracy of the medium-edge service model in
the Industrial Internet of Things, a new smart contract was
constructed in [14] to encourage multiple marginal service
users to participate, thereby improving the model accuracy.
In addition, a scale weighted aggregation strategy was
proposed to verify the model parameters to improve the
accuracy of the model. In [15], the Graph theory was in-
troduced into the edge caching network architecture to
reduce the processing complexity. Considering the physical
attributes and social attributes, a cache solution based on
physical-social weighted direction is proposed to minimize
the average download latency of all edge users within a
macrocell.

The improved genetic algorithm used in this paper has
been partially explored by some scholars in the field of
service placement using genetic algorithms. In [16], the
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authors have proposed an algorithm that combined the
genetic algorithm with Monte Carlo simulations. The al-
gorithm can greatly improve the efficiency of exhaustive
search service placement strategy. First, an optimization
model has been developed for the genetic algorithm; the
main body of the model has been the QoS objective function,
cost objective function, and the resource utilization objective
function. Then, the FogTorch Monte Carlo framework has
been utilized to address the problem. The proposed algo-
rithm could minimize the resource consumption and service
placement cost in the fog while guaranteeing QoS. By de-
fining a representation of an application placement in a
biased-random-key chromosome and using a fault-tolerance
distributed pool model, the GRECO algorithm was proposed
in [17] to solve the application placement problem in
constrained hybrid cloud environment. In this paper, the
multiobjective problem is also optimized using a genetic
algorithm but different from [16, 17]. We utilize multi-
criteria decision and superior-inferior solution distance
method to combine three fitness functions into a single
meritocratic function to assist the search.

In this paper, we focus on multiobjective optimization
requirements in power scenarios. To address the above is-
sues, we develop an improved genetic algorithm based edge
service placement (IGA-ESP) strategy, which optimizes the
delay, energy consumption, and resource utilization pa-
rameters. The main contributions of this paper are sum-
marized as follows: (1) We study the edge service placement
problem in the Power Internet of Things and establish a
multiobjective optimization problem under the constraint of
the edge cloud capacity and a single service request per time
slot. The objectives of this problem include minimizing
service delay and energy consumption while maximizing
resource utilization. (2) We propose the IGA-ESP strategy to
solve this multiobjective optimization problem. Firstly, the
decision candidate set is obtained by using the improved
genetic algorithm. Then, the optimal solution in the can-
didate set is filtered using the multicriteria decision and the
superior-inferior solution distance method. (3) Simulation
results show that the proposed strategy can effectively reduce
system delay, improve resource utilization, and save energy
consumption. Furthermore, compared with TS algorithm
and Greedy algorithm, IGA-ESP strategy can reduce the
average end-to-end delay of power grid equipment by 7.8%
and 16.7%, respectively.

2. System Model

In Power Internet of Things, edge computing networks can
provide powerful infrastructure resource and value-added
service capabilities for power grid terminal applications with
insuflicient power, computing power, and storage resource,
such as remote monitoring, smart home, and VR. The
guarantee of low-latency services requires a reasonable edge
service placement strategy. In this section, the edge com-
puting servers are deployed at the edge of the network closer
to the power grid equipment. Besides, the computing power
of edge computing is utilized to process service requests
from power grid equipment, close to the edge of the
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network. In this section, we first present the network model.
Then, the placement model of each edge server is proposed.
Finally, we present the wireless communication model be-
tween the grid equipment and the edge cloud.

2.1. Network Model. The network architecture is shown
in Figure 1. There are multiple Small Base Stations (SBS) in
the coverage area of Macro Base Station (MBS). In addition,
all the SBS with edge computing server enhancements
are called edge cloud (EC), and it is expressed as
E=1{1,2,3,...,i,...,N}. To improve service quality for
power grid equipment and reduce service deployment costs
for Application Service Provider (ASP), ASPs deploy a
limited number of power popular application services, such
as intelligence operations and video surveillance service in
each EC by MBS. The set of all the service types of the system
is represented by « ={1,2,3,...,k,...,K}. In this model,
the power grid equipment first uploads the service request to
the local EC through the wireless channel. If the requested
service already exists in the local EC, the power grid
equipment will be served by the EC; otherwise the service
request of the power grid equipment will be uploaded to the
MBS via the local EC and forwarded to the cloud server of
the ASP by the MBS.

2.2. Service Placement Model. The service placement model
is implemented using containers, which are configured to
allocate resource to power grid equipment to provide edge
services [18].

It is assumed that each edge server has a certain number
of unit containers and each unit container has a fixed
amount of storage and compute resources. In addition, all
edge servers use the same size unit container but are dif-
ferences in the number of unit containers. Each container
occupies an integer number of unit container resource. ASP
places the service k on the EC i at the slot t denoted by
yf(t) = 1; otherwise, yf-‘ (t) = 0. We define the number of
containers per unit that the storage service k needs to occupy
as 1. The limited number of unit containers of EC results in
the number of containers per unit occupied by the hosted
service of EC i which needs to meet the following constrains
at the slot ¢.

K
Y ryf (<R, (1)
k=1

where 7, denotes the number of containers per unit that the
service k needs to occupy. R; denotes the total number of
unit containers owned by EC i.

2.3. Wireless Communication Model. The power grid
equipment uploads the service request to the local EC which
would incur a wireless communication delay; thus, we as-
sume that the data to be uploaded after the service requested
by the power grid equipment has been processed as di-f i (1),
and the uplink channel gain between the power grid
equipment j and the base station i is H' f ;(t). The effect on the

channel gain is negligible because the change of power grid
equipment location within a time slot is very small.
Therefore, the channel gain between the power grid
equipment and the base station is assumed to be constant
within a time slot. The transmission power of the power grid
equipment is represented by P;(); thus, the uplink trans-
mission bandwidth between the power grid equipment j and
the EC i can be expressed according to the Shannon channel
capacity formula as

(2)

Cij (t) = Blog2<1 +w>’

N,B+1

where B represents the channel bandwidth. N, is bilateral
power spectral density of additive white Gaussian noise. I
denotes the stochastic noise power.

3. Problem Formulation and Analysis

The edge computing networks can provide distributed
computing resources and low-latency services for power
grid equipment with insufficient battery capacity and
computing resources. A reasonable edge service placement
strategy can enhance the power grid equipment service
quality in the edge computing networks. The resource
constraints reduced QoS of delay-sensitive tasks and heavy
traffic load applications. Thus, we deploy the edge com-
puting server at the Power Internet of Things network edge
closer to the power grid equipment and utilize the com-
puting capacity of the edge computing to process power grid
equipment service requests close to the network edge. In this
section, we first introduce the heterogeneous service net-
work architecture of the edge computing network. Then we
calculate the service placement model and communication
model according to the power grid equipment access net-
work conditions.

3.1. Service Delay Model. In the edge computing network,
U,,i € E, represents the number of power grid equipment
served by EC i. Considering the limited computing resources
and battery capacity of power grid equipment, we upload the
power grid equipment’s service requests to the covered edge
cloud for computing and processing [19, 20].

xf ;(t),k € x, denotes the service type requested by
power grid equipment j in edge cloud i at time t. xf‘ =1
represents the k-th service required by power gri(f equip-
ment j in edge cloud i; otherwise x} ;(£) = 0. We assume that
power grid equipment j served by edge cloud i at any time ¢

can only request a type of service, and x* ;(t) is expressed as
K
Y X (=1, VieE 1<j<U, (3)
k=1

In addition, in Power Internet of Things, considering the
limited computing and storage resources of edge servers,
ASP can only deploy limited services in each edge server, so
ECs in service hotspot areas are prone to overload. In this
regard, if the associated EC of a power grid equipment does
not host the service required by the power grid equipment,
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Figure 1: Edge computing service placement architecture.

the power grid equipment can only upload the service
request to the ASP cloud server hosting all services through
the EC. Therefore, the calculation of the power grid
equipment’s uplink transmission delay mainly includes two
cases.

(i) When there is the k-th service requested by power
grid equipment j in EC i, the uplink transmission
delay of power grid equipment j served by EC i can
be calculated as

di; (1)
10}

TS (b) = (4)

(ii) When there is no k-th service requested by power
grid equipment j EC i, the requested service can
only be uploaded to the MBS through the EC and
then forwarded to the cloud center through the core
network. Thus, the uplink transmission delay of
power grid equipment j served by EC i can be de-
rived as

1 1 1
k + cloud * ~ore > (5)
.. C: C
i,j i

k,c _ gk
TF (1) = df (1)

where c°"d represents the backhaul link bandwidth between
ECiand MBS. ¢ denotes the data transmission rate of the
core network. Therefore, the final uplink transmission delay

of power grid equipment j served by EC i can be expressed as
TH (6 = &5 (0 [yF OT 0 +(1- yF O)TE 0] (6)

Subsequently, we model the calculation delay. Consid-
ering the limited computing capacity of EC and the cloud
computing center, there will be a certain computing delay
when the service requested by power grid equipment is
completed. ¢, denotes the number of central processing unit
(CPU) cycles required to complete the k-th service in edge
cloud, and the unit is CPU cycle. Simultaneously, the
computing capacity of the unit container is expressed as F'?,
and the unit is CPU cycle/s.
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Thus, the calculation delay of power grid equipment j
served by EC i can be calculated as

k k
rhee = O O (7)
F Tk

It is worth noting that the power grid equipment’s
service request can only be uploaded to the cloud server of
ASP through the Power Internet of Things local EC when the
power grid equipment’s service request cannot be responded
to by the local edge cloud. As the cloud server has a strong
computing capacity, it is assumed that the cloud server will
always provide the services for each power grid equipment
with F¢ computing capacity, and the unit is CPU cycle. Thus,
when the service request of power grid equipment j served
by EC i is responded to by the cloud server, the calculation
delay can be derived as

k k
e () = 4 Qe i ®)ex (8)
1] F
For the condition of cloud server storage service, we
assume that there are all types of services in the cloud server
of ASP [21].
To sum up, the total computing delay of power grid
equipment j served by EC i is expressed as

TP (8) = TESC (1) + TE (b). 9

Therefore, the end-to-end delay of all power grid
equipment requesting services in all ECs at time t can be
calculated as

U, K
XY T () + TE (8). (10)

j=1

Mz

D(t) =

I
—
=~
—_

i

3.2. Resource Utilization Model. We allocate containers for
power grid equipment services to provide services [22], and
each container occupies a certain unit container. The re-
sources of the cloud center are relatively sufficient, so the
resource utilization only refers to the utilization of the edge
cloud unit container, and the resource utilization of the edge
cloud is expressed as
e (t) = Z r X (0). (11)

lkl

Then, the resource utilization of all participating edge
clouds is expressed as
_ 1 & ratio
RU(H) = ) ™ (®). (12)

i=1

3.3. Energy Consumption Model. The edge computing server
energy consumption in the Power Internet of Things net-
works is mainly divided into two categories: (1) the basic
energy consumption to ensure the operation of the edge
cloud and the cloud center, and (2) the computing unit

container energy consumption used by the edge cloud and
the cloud center to provide services.

The key factor that affects the basic energy consumption
of edge cloud is the service duration t; of edge cloud n,
which is determined by the service that provides power grid
equipment with the longest service time among all services
and is given as

ty = maxi, x; (O)yF (1) - TH (1), (13)

where Tk ’ (t) denotes the execution time of service k in edge
cloud i.

The basic energy consumption of all edge clouds is
expressed as

N
Py(t) = ) t Py (14)

i=1

Ppc represents the operating basic power of the edge
cloud. To facilitate representation, we assume that the op-
erating power of all edge clouds is stable and constant, and
all edge clouds operate at the same basic power.

The cloud center service duration is determined by the
service with the longest execution time in the cloud, cal-
culated as

Kk k Tk
ty = maxy xi‘j(t)(l -y ()T o (), (15)
where Tk °“(t) denotes the execution time of service k in the
cloud center
The basic energy consumption of the cloud center is
calculated as

P, (t) =ty P, (16)

where P, is the operating basic power of the cloud center.
For the convenience of representation, we assume that the
operating power of the cloud center is unvarying.

The total energy consumption of all unit containers
required to request services from the edge is expressed as

N U,

Pit)=) ’lej(t)yl () TEC ey, (17)

i=1 j=1k=1

where y represents the average operating power of the unit
container. For the convenience of manifestation, it is assumed
that the average running power per unit container required
for all deployment services is stable and unchangeable.

The energy consumption of computing resources
required to request services from the cloud center is
calculated as

Pi(t) = Z X 0(1-yi @) TeSE - (18)

The computing resources allocated by the cloud center
are always stable, so it is assumed that the energy con-
sumption per unit time generated by allocating computing
resources in the cloud is (.



Therefore, after the service placement decision is made at
time ¢ in the system, its total energy consumption is
expressed as

P(t) = Py (t) + P, (t) + P{(t) + P (t). (19)

3.4. Problem Formulation. To sum up, for any edge cloud EC
i and power grid equipment j, the goal of this paper is to
minimize the power grid equipment-aware end-to-end
service delay D (t) and the energy consumption P (t) of edge
cloud in the Power Internet of Things and maximize the
utilization of edge cloud resources RU (¢), that is, to mini-
mize energy consumption while improving overall service
performance, and the problem is formulated as

P1min D(t), P(t)
max RU (t)

K
C1 Zrkyf(t)SRi ,
k=1

K
czy xffj(t) =1,VieE 1<j<U;
k=1
(20)

where C1 indicates that the number of unit containers
requesting services cannot exceed the total number of edge
cloud unit containers. C2 means that each power grid
equipment requests only one service at a time t. Because the
problem P1 is a multiobjective optimization problem and
NP-hard, it is difficult to solve the problem directly. The
heuristic algorithm has strong robustness and global search
ability and is widely used in various optimization problems.
In addition, the heuristic algorithm is more efficient than the
traditional search algorithm and can obtain the approximate
global optimal solution in a short time. Therefore, in this
paper, we consider using the improved genetic algorithm to
solve the problem.

4. Edge Service Placement Strategy Based on
Improved Genetic Algorithm

Genetic algorithm is an adaptive heuristic intelligent search
algorithm that simulates the evolutionary process in nature
to solve optimization problems [23]. The algorithm updates
individuals through selection, crossover, and mutation
operations and obtains an approximate optimal solution
after several generations of evolution. Moreover, it can
automatically adjust the search direction according to the
population selection, so that it has a better global optimi-
zation ability. Compared with other heuristic algorithms,
genetic algorithm avoids falling into a local optimum in the
solution process through gene mutation, making the solu-
tion closer to the global optimum. Therefore, it is more
suitable for solving complex nonlinear optimization prob-
lems [24].

In this section, we propose an edge computing service
placement strategy based on IGA-ESP, which achieves
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multiobjective optimization. In this strategy, population
chromosomes can be used to represent candidate solutions
to the problem. If a solution satisfies the constraints of the
problem, it is feasible; otherwise, it is infeasible. The pro-
posed improved genetic algorithm uses chromosome rep-
resentation, crossover, and mutation operators according to
the needs of the problem, which are used to penalize in-
feasible solutions, so that these infeasible solutions have a
smaller selection (or survival) probability. Specifically, we
first use the IGA-ESP algorithm to select the candidate
solutions. Then, we use the distance method of superior and
inferior solutions and the multicriteria decision selection
genetic algorithm to generate the optimal placement deci-
sion among the candidate decisions.

4.1. Service Placement Strategy Based on Improved Genetic
Algorithm

4.1.1. Chromosomes and Chromosome Codes. For all genetic
algorithms, what is considered firstly is how the chromo-
somes are encoded. In this paper, each chromosome is
represented by an integer array, and each chromosome
represents a complete service placement strategy; thus all
solutions of the problem space can be expressed as the
designed genotype, and any genotype corresponds to a
possible solution, in which the array of each element cor-
responds to a service placement decision parameter for each
service placement strategy. Actually, the service placement
decision of each EC is an array. The algorithm proposed in
this paper defines the chromosome as the set of all array
service placement strategies. We first number the ECs, then
put the service placement decision parameters into the array
in order, and finally get an array with a length of NK.
Numbers 1 and 0 in the array indicate that the service is
placed in and not placed in the edge cloud, respectively.

4.1.2. Initialization. The initial population size in genetic
algorithms has a critical influence on searchability. If the size
is small, searchability is limited and rapid convergence
occurs in early runs. Conversely, a larger initial population
size leads to dispersion of solutions, which affects the effi-
ciency and effectiveness of the algorithm. In addition, the
crossover probability, mutation probability, and the number
of iterations need to be set. The setting of these parameters
requires extensive experimental exploration.

4.1.3. Selection Operator. In this paper, we adopt a binary
tournament selection operator to select individuals with
better performance, thereby enhancing the performance of
the algorithm.

The binary tournament selection operator compares two
individuals. If the matching pool is sufficient, a pruning
process is performed to remove individuals with poor fit-
ness. If the match pool is insufficient, the selection process
continues until the match pool is sufficient. The selection
operator can gradually eliminate inferior genes, so the
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performance of the algorithm can be promoted in the
continuous iterative process.

4.1.4. Crossover and Mutation Operator. We exploit the
single-point crossover operator to randomly select crossover
points from 1 to the number of genes per chromosome. The
single-point crossover operator refers to first selecting a
crossover point in genes with a certain random probability
and then exchanging the gene codes located in the same
position to generate new individuals. The mutation operator
alters partial genes in a single chromosome with a certain
probability, resulting in better chromosomes and preventing
rapid convergence. Inappropriate mutation probability will
have a malign influence on the algorithm results. The
confirmation of the mutation operator requires repeated
attempts, and the optimal mutation operator is selected by
exploring the actual effect of the algorithm obtained by
multiple mutation operators within a reasonable range. The
mutation operator ensures the diversity of the population
and has a very critical impact on the local search ability of the
genetic algorithm.

4.1.5. Fitness Function and Constraints. 'The fitness function
is utilized to calculate the environmental fitness of each
individual. Representing solutions as individuals, all solu-
tions constitute a population. The fitness function needs to
be divided into three types: power grid equipment-aware
delay fitness function, resource utilization fitness function,
and energy consumption fitness function. Considering there
is only one function for the fitness function judgment of the
genetic algorithm, the selection function of the optimal
solution will be obtained after processing these three
functions through the multiattribute decision in the mul-
ticriteria decision and the superior-inferior solution distance
method.

4.2. Optimal Strategy Using Superior-Inferior Solution Dis-
tance and Multicriteria Decision. Among all the strategies
generated by the improved SPEA2 algorithm, the optimal
placement strategy is obtained by using the superior-inferior
solution distance method and the multicriteria decision
method. In the superior and inferior solution distance
method, the solutions are sorted according to the Euclidean
distance between the candidate solution and the superior
and inferior solution, and the superior solution is defined as
the object closest to the ideal solution and furthest away
from the negative ideal solution. Similarly, the inferior so-
lution is defined as the object closest to the negative ideal
solution and farthest from the ideal solution.

We assume that SPEA2 obtains H strategies to wait for
the next step after analyzing all the strategies. Each strategy
includes delay, resource utilization, and power consump-
tion, which can be denoted as D e = [Dy> D, D5
...»Dyl, Rygibute = Ri>RyR3, ..., Ry, and  E
E,,E,,E;, ..., Ey, respectively.

The normalized delay can be expressed as

attribute —

D,

VEE D} )

The normalized resource utilization can be expressed as
Ry,

LR >

The normalized energy consumption can be expressed as
Ey

Vi = ———. 23
S E -

The weight values of delay, resource utilization, and
energy consumption are wp, wp, and wy, respectively.
Therefore, their weighted normalized values are defined as

Wy =wp- Vi,
Wy = wg- V5, (24)
W, = wg - V7.

We aim to maximize resource utilization and delay and
minimize the energy consumption in the Power Internet of
Things through the analysis of the problem. Therefore, we
define the resource utilization as the ideal solution, while
delay and energy consumption are the nonideal solution.
WR WP and WE__are the maximum values of the three
targets, while WR. WP, ~and WE. are the minimum
values.

The distance between the ideal solution and alternative
solution can be denoted as
Dy = \/(Wff - Wy

max

Y+ (WP -WPL ) +(wi-wEL)

max max
(25)

The distance between the nonideal solution and alter-
native solution is given by

D;® = \/(ij -wh

min

Y+ (WP W)+ (WE-WELY.

min min
(26)

The proximity between the ideal solution and alternative
solution can be represented as

NS
Dh

kR (27)
D)® + D}

IS _
Ch -

According to the proximity of alternative solutions, the
superior solution can be expressed as
OP = maxflilC,If,
s.t. wp + wg + wp = 1, (28)
wp, Wy, wg € [0,1],

where the constraints indicate that the weights of delay,
resource utilization, and energy consumption are 0 to 1, and
the sum of the three weight factors is equal to 1.



The specific process of IGA-ESP is summarized in
Algorithm 1. The workflow of IGA-ESP is shown in
Algorithm 1. The input of the algorithm is the iteration times
I, and the output is the optimal service placement strategy
OP. The algorithm obtains the service set and performs
crossover and mutation operations firstly, then performs the
calculation of fitness function and selects the best individual
for the next generation, next calculates the proximity of
service placement strategy, and selects the placement
strategy with the maximum proximity. The above process is
repeated until the maximum number of iterations is reached
to output the best strategy.

5. Numerical Results and Analysis

5.1. Simulation Parameter Settings. Matlab platform is very
suitable for the simulation of complex systems because of its
powerful computing ability. To shorten the simulation time,
Huawei FusionServer Pro rack servers with strong com-
puting performance are used for cloud computing, virtu-
alization, high-performance computing, databases, and SAP
HANA computation-intensive scenarios. In addition, the
integrated high reliability design of the whole process, BSST
system startup accelerated storage, DEMT smart energy
efficiency, FDM smart diagnosis, and other technologies can
further improve system performance.

In Power Internet of Things, we assume that the
number of edge clouds within the coverage area of MBS is 3,
and user power grid equipment is distributed within each
EC. This paper assumes that the number of edge clouds
within the coverage area of MBS is 3, and user power grid
equipment is evenly distributed within each EC uniformly.
The uplink transmission bandwidth allocated by the edge
cloud for each power grid equipment is 10 Mbps. The
number of service requests in the Power Internet of Things
system is 4. Each edge cloud has a unit container range of 50
to 200. The storage capacity of the unit container is 1 GB,
and the computing capacity of the unit container is 1 GHz.
Other simulation parameter settings are shown in Table 1.

In this section, we compare the IGA-ESP algorithm with
other two benchmark algorithms. The first one is the Tabu
Search (TS) algorithm [25]; the algorithm has considered the
cost optimal service placement problem and proposed a
delay aware service placement strategy based on the
placement cost, which can guarantee the minimum QoS
requirements of the service and balance the delay perfor-
mance and deployment cost. The other one is the Greedy
algorithm [26]; the algorithm can meet the requirements of
load balancing and delay performance and reduce the
problem of QoS degradation caused by edge computing
resource constraints.

The power grid equipment-aware delay is an important
parameter to determine the network performance. Resource
utilization and energy consumption are mainly considered
to reduce costs, which must be based on the delay perfor-
mance. The tradeoff among lower delay value, higher re-
source utilization, and lower energy consumption can be
achieved by adjusting weight parameters. Since the weight
parameters of delay, resource utilization, and energy
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consumption are determined by ASP in power scenarios; in
this simulation, the weight parameter of delay is set to 2/3,
and the weight parameters of resource utilization and energy
consumption are set to 1/6.

5.2. Simulation Results Analysis. In Figure 2, it depicts the
relationship between the number of power grid equipment
and the average end-to-end delay of power grid equipment.
It can be found that the IGA-ESP algorithm can achieve the
best performance. Compared with TS algorithm and Greedy
algorithm, IGA-ESP algorithm reduces the average end-to-
end delay by 7.8% and 16.7% under different power grid
equipment. The average delay of the three algorithms in-
creases with the increase of the number of power grid
equipment. As the number of power grid equipment in-
creases, edge servers cannot deal with all tasks locally, and
some services need to be transmitted to the cloud center
through MBS, which will increase delay. Moreover, with the
increase of power grid equipment, the types of requested
services also increase. The edge server cannot store services
that meet all requests of power grid equipment. A large
number of power grid equipment need to request services
from the cloud server, which results in an obvious increase in
delay when the number of power grid equipment changes
from 9 to 12. The average end-to-end delay of power grid
equipment gradually slows down when the number of power
grid equipment continues to increase. It is because, with the
increase of power grid equipment, the edge servers are nearly
full, and some services begin to turn to the cloud center.
Even if the number of power grid equipment continues to
increase, the growth trend is not obvious when the edge
servers are not full. Further, it can be seen that the TS al-
gorithm minimizes the service placement cost while meeting
the power grid equipment QoS. Therefore, more services are
placed in the cloud, resulting in higher delay. Greedy al-
gorithm considers delay and load balance; its delay is close to
the IGA-ESP algorithm at first; however, with the increase of
the number of power grid equipment, its delay is higher and
higher.

Figure 3 describes computing power per container
versus average delay of power grid equipment. When the
computing capacity of unit container increases gradually,
the average end-to-end delay shows a decreasing trend, and
the IGA-ESP algorithm always has the lowest delay. It can
be seen that when the computing ability of the unit con-
tainer is 0.25 GHz, the edge cloud computing ability is too
weak. Even if the transmission delay of cloud computing is
long, the performance is still better than that of the service
placement of edge computing. Therefore, these three al-
gorithms choose to place all services in the cloud for
processing at the initial time. When the unit container
computing ability begins to increase, IGA-ESP and Greedy
algorithm move some services that were not significant to
the edge, which is dependent on the computing power, and
the average end-to-end delay was reduced by 0.125s. As the
computing ability per container continues to increase, the
delay performance of the IGA-ESP algorithm is gradually
better than that of the Greedy algorithm and much
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Input: maximum number of iterations I
Output: optimal service placement strategy OP

(1)  getting service set
(2) fors=1toS do
(3) i=1

(4) whilei < Ido

(16) end for
(17) return OP

(5) mutating and crossover
(6) for all individuals in the population do
(7) calculating D (¢) using (10)
(8) calculating RU (t) using (12)
9) calculating P (t) using (19)
(10) end for
(11) selecting and confirming the offspring
12) i=i+1
13) end while
(14) estimating the relative proximity C/S according to (26)
@15) selecting the best service placement strategy OP according to (27)

ArcoriTHM 1: IGA-ESP.

TaBLE 1: Simulation parameter setting.

Value

Storage capacity required by each service 20~80 Gb
Number of CPU cycles required by each service 10~50 gigacycles

Parameter

Computing ability provided by the cloud server 50 Ghz
Data size of each service request 0.1~0.3 MB
Power of edge cloud 300 W

Operating power of edge cloud 5W

Basic power of cloud center 1500 W
Computing power of cloud center 800W
Number of iterations 500
Probability of crossover 0.9
Probability of mutation 0.007
T T T T T b
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FIGURE 2: The number of power grid equipment versus average
end-to-end delay.
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F1Gure 3: The computing ability per container versus average delay
of power grid equipment.

lower than that of the TS algorithm. It indicates that the
cost considered in TS algorithm has a great impact on the
delay performance. When the computing ability of unit
container increases, the performance of the two algorithms
is basically consistent and worse than the IGA-ESP
algorithm.

Figure 4 shows the unit container computing ability
versus resource utilization. It can be seen that, with the
increase of the computing ability of the unit container, the
resource utilization shows an upward trend. When the
computing ability of the unit container reaches 1 GHz, the
resource utilization of IGA-ESP and TS algorithm reaches
the saturation state under the current parameters. TS al-
gorithm prefers to directly request services from remote
cloud center; to consider the cost of service placement, its
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FIGURE 4: The unit container computing ability versus resource
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FiGure 5: The computing ability versus energy consumption per
container.

edge resource utilization has always maintained a low value.
However, when the edge computing ability is very strong
and reaches 1.5 GHz, its resource utilization suddenly rea-
ches 0.83 together with TS algorithm. It indicates that the
cost-centered TS algorithm only considers to place the
service to the edge cloud when the edge performance is
extremely strong and the delay is extremely low. The uti-
lization of edge resource reflects the cost effect of the al-
gorithm to some extent. After the edge server is established,
the efficiency of ASP can be improved by deploying more
services to the edge.

Figure 5 illustrates the computing ability versus energy
consumption per container. As can be seen, the total energy
consumption of the three algorithms has a trend of rising
first and then decreasing and gradually flattening. The
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reason for the increase in energy consumption is the ad-
dition of the basic power consumption of edge cloud. Al-
though the basic power consumption and operating power
consumption of cloud computing are both high when only
cloud computing is used to provide services at the beginning,
there is no edge server, so the basic power consumption of
three edge servers is 900 W. When more services are placed
in the edge cloud, the total energy consumption of the
system drops sharply. This is because the execution power of
edge computing is far less than that of cloud center. When
the execution power of edge computing is distributed among
various services, the influence on the total energy con-
sumption curve of the system becomes smaller. Another
reason is that the increase of edge cloud computing ability
will lead to a continuous decrease in computing ability. The
total energy consumption will also decrease under the same
power consumption. Finally, when a large number of ser-
vices are deployed to the edge cloud, the low power char-
acteristic of edge computing gradually flattens out. Even if
more services are placed to the edge for hosting, they cannot
be lower than the threshold limit of system energy con-
sumption. It also implies that the IGA-ESP algorithm has the
characteristics of low power consumption, which can reduce
the total energy consumption of the system.

6. Conclusions

This paper studies the problem of edge computing service
placement multiobjective optimization in Power Internet of
Things system. Considering that the transmission distance of
mobile cloud service is too long to guarantee the delay and
the energy consumption, the edge server with limited re-
sources is deployed at the power grid equipment edge of the
network side to realize the nearby service firstly. Secondly,
the service delay, resource utilization, and energy con-
sumption are modeled. Finally, an edge service placement
strategy based on SPEA2 algorithm is proposed, which can
improve the overall performance of EC while optimizing
multiple objectives and control the cost by reducing energy
consumption. Simulation results show that, compared with
the other two benchmark algorithms, the proposed strategy
can effectively reduce system delay, improve resource uti-
lization, and save energy consumption.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
Conlflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.
Acknowledgments

This research was supported by the Foundations of State
Grid Corporation of China, under Grant no. J2021207.



Security and Communication Networks

References

(1]

(2]

(7]

(10]

(11]

(12]

(13]

J. Liu, X. Zhao, P. Qin, S. Geng, and S. Meng, “Joint dynamic
task offloading and resource scheduling for WPT enabled
space-air-ground power Internet of things,” IEEE Transac-
tions on Network Science and Engineering, vol. 9, no. 2,
pp. 660-677, 2022.

J. Franco, A. Aris, B. Canberk, and A. S. Uluagac, “A survey of
honeypots and honeynets for Internet of things, industrial
Internet of things, and cyber-physical systems,” IEEE Com-
munications Surveys & Tutorials, vol. 23, no. 4, pp. 2351-2383,
2021.

M. Rohith, A. Sunil, and Mohana, “Comparative analysis of
edge computing and edge devices: key technology in IoT and
computer vision applications,” in Proceedings of the 2021
International Conference on Recent Trends on Electronics,
Information, Communication & Technology (RTEICT),
pp. 722-727, Bangalore, India, August 2021.

X. Li, L. Huang, H. Wang, S. Bi, and Y.-J. A. Zhang, “An
integrated optimization-learning framework for online
combinatorial computation offloading in MEC networks,”
IEEE Wireless Communications, vol. 29, no. 1, pp. 170-177,
February 2022.

S. Gong, M. Li, S. Wu, H. Cheng, and X. Yin, “Intelligent
networking model at the edge of the power Internet of
Things,” in Proceedings of the 2021 IEEE 5th Information
Technology,Networking,Electronic and Automation Control
Conference (ITNEC), pp. 841-844, Xi’an, China, October
2021.

M. Babar, M. A. Jan, X. He, M. U. Tariq, S. Mastorakis, and
R. Alturki, “An optimized IoT-enabled big data analytics
architecture for edge-cloud computing,” IEEE Internet of
Things Journal, p. 1, 2022.

G. Huang, G. Chen, J. Yi, M. Huang, and Y. Zhang,
“Workload modelling method of edge computing terminals
for distribution service under power Internet of things,” in
Proceedings of the 2021 6th Asia Conference on Power and
Electrical Engineering (ACPEE), pp. 430-435, Chongging,
China, April 2021.

H. Wei, H. Weng, and M. Zhai, “Research on the application
of 5G edge computing technology in the power Internet of
things,” in Proceedings of the 2021 IEEE 5th Information
Technology,Networking,Electronic and Automation Control
Conference (ITNEC), pp. 600-605, Xi’an, China, October
2021.

Z. Ning, P. Dong, X. Wang et al., “Distributed and dynamic
service placement in pervasive edge computing networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 6, pp. 1277-1292, 2021.

H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware
application placement in mobile edge computing: a stochastic
optimization approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 4, pp. 909-922, 1 April 2020.
A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and
M. F. de Castro, “Dynamic service placement and load dis-
tribution in edge computing,” in Proceedings of the 2020 16th
International Conference on Network and Service Management
(CNSM), pp. 1-9, Izmir, Turkey, November 2020.

H. Ding, Y. Guo, X. Li, and Y. Fang, “Beef up the edge:
spectrum-aware placement of edge computing services for the
Internet of things,” IEEE Transactions on Mobile Computing,
vol. 18, no. 12, pp. 2783-2795, 2019.

J. Xiong, X. Chen, Q. Yang, L. Chen, and Z. Yao, “A task-
oriented user selection incentive mechanism in edge-aided

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

11

mobile crowdsensing,” IEEE Transactions on Network Science
and Engineering, vol. 7, no. 4, pp. 2347-2360, 2020.

Y. Tian, T. Li, J. Xiong, M. Z. A. Bhuiyan, J. Ma, and C. Peng,
“A blockchain-based machine learning framework for edge
services in IIoT,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 3, pp. 1918-1929, 2022.

D. Wy, J. Li, P. He, Y. Cui, and R. Wang, “Graph-based edge-
user collaborative caching with social attributes,” in Pro-
ceedings of the 2021 IEEE Global Communications Conference
(GLOBECOM), pp. 1-6, Madrid, Spain, December 2021.

A. Brogi, S. Forti, C. Guerrero, and I. Lera, “Meet genetic
algorithms in Monte Carlo: optimised placement of multi-
service applications in the fog,” in Proceedings of the 2019
IEEE International Conference on Edge Computing (EDGE),
pp- 13-17, Milan, Italy, July 2019.

R. Mennes, B. Spinnewyn, S. Latré, and J. F. Botero, “GRECO:
a distributed genetic algorithm for reliable application
placement in hybrid clouds,” in Proceedings of the 2016 5th
IEEE International Conference on Cloud Networking
(Cloudnet), pp. 14-20, Pisa, Italy, October 2016.

Vmware, vSphere Single Host Management -VMware Host
Client, Vmware, Palo Alto, CA, USA, 2020, https://docs.
vmware.com/cn/VMware-vSphere/5.5/vsphere-html-host-
client-12-guide.pdf.

X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang, and L. Qi, “Trust-
oriented IoT service placement for smart cities in edge
computing,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 4084-4091, May 2020.

P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Dif-
ferentiated service/data migration for edge services leveraging
container characteristics,” IEEE Access, vol. 7, Article ID
139746, 2019.

J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and
edge computing for latency minimization,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 5, pp. 5031-5044, May
2019.

L. Wang, L. Jiao, T. He, J. Li, and H. Bal, “Service placement
for collaborative edge applications,” IEEE/ACM Transactions
on Networking, vol. 29, no. 1, pp. 34-47, 2021.

K. Saadallah, V. Gustavo, W. Nannan, X. Wang, and
P. Palacharla, “Service placement for real-time applications:
rate-adaptation and load-balancing at the network edge,” in
Proceedings of the 2020 7th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud), pp. 207-215,
New York, NY, USA, August 2020.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182-197, 2002.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On multi-access edge computing: a survey of the
emerging 5G network edge cloud architecture and orches-
tration,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 3, pp. 1657-1681.

C. E. F. Caetano, A. B. Lima, J. O. S. Paulino,
W. C. Boaventura, I. J. S. Lopes, and E. N. Cardoso, “A
conductor arrangement that overcomes the effective length
issue in transmission line grounding,” Electric Power Systems
Research, vol. 46, no. 5, pp. 159-162, 2018.


https://docs.vmware.com/cn/VMware-vSphere/5.5/vsphere-html-host-client-12-guide.pdf
https://docs.vmware.com/cn/VMware-vSphere/5.5/vsphere-html-host-client-12-guide.pdf
https://docs.vmware.com/cn/VMware-vSphere/5.5/vsphere-html-host-client-12-guide.pdf

