
Research Article
Bridging the Last-Mile Gap in Network Security via Generating
Intrusion-Specific Detection Patterns through
Machine Learning

Xibin Sun ,1,2 Du Zhang ,1 Haiou Qin ,1 and Jiahua Tang 1

1Faculty of Information Technology, Macau University of Science and Technology, Macau, China
2Guangdong Polytechnic of Science and Technology, Zhuhai, China

Correspondence should be addressed to Xibin Sun; jacky5555@qq.com

Received 9 September 2021; Accepted 22 December 2021; Published 12 February 2022

Academic Editor: Kuo-Hui Yeh

Copyright © 2022 Xibin Sun et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With successful machine learning applications in many fields, researchers tried to introduce machine learning into intrusion
detection systems for building classification models. Although experimental results showed that these classification models could
produce higher accuracy in predicting network attacks on the offline datasets, compared with the operational intrusion detection
systems, machine learning is rarely deployed in the real intrusion detection environment.,is is what we call the last mile problem
with the machine learning approach to network intrusion detection, the discrepancy between the strength and requirements of
machine learning and network operational semantics. In this paper, we aim to bridge the aforementioned gap. In particular, an
LCC-RF-RFEX feature selection approach is proposed to select optimal features of the specific type of attacks from dataset, and
then, an intrusion-specific approach is introduced to convert them into detection patterns that can be used by the nonmachine-
learning detector for the corresponding specific attack detection in the real-world network environment. To substantiate our
approach, we take Snort, KDDCup’99 dataset, and Dos attacks as the experimental subjects to demonstrate how to close the last-
mile gap. For the specific type of Dos attacks in the KDDCup’99 dataset, we use the LCC-RF-RFEX method to select optimal
feature subset and utilize our intrusion-specific approach to generate new rules in Snort by using them. Comparing performance
differences between the existing Snort rule set and our augmented Snort rule set with regard to Dos attacks, the experimental
results showed that our approach expanded Snort’s detection capability of Dos attacks, on average, reduced up to 25.28% false-
positive alerts for Teardrop attacks and Synflood attacks, and decreased up to 98.87% excessive alerts for Mail bomb attacks.

1. Introduction

Intrusion detection systems (IDS) are part of the network
security infrastructure designed to provide timely detection of
various malicious attacks and take proactive responses to
safeguard a network system. Two main approaches exist for
the IDS detection process: misuse/signature-based detection
[1] and anomaly based detection [2]. Anomaly based de-
tection is based on establishing profiles of normal behaviors
and regards any activity deviating from the profiles as ab-
normal. ,e anomaly detection method can be used to
recognize unknown attacks. However, it often suffers from
high false alarms. Signature-based IDS is based on pre-built
patterns of malicious activities and regards anything that does
not match the pre-built patterns as normal. ,e signature-

based IDS can usually obtain high accuracy in recognizing
known attacks of which signatures exist in its predefined
pattern repository. Furthermore, it also has the advantage of
easy and fast deployment to the real-world network envi-
ronment. ,erefore, the signature-based IDS has an absolute
advantage in quantity over anomaly based IDS among the
actual operational IDS products [3]. However, the signature-
based IDS suffers from detecting unknown attacks or new
attacks. ,e quality and reliability of the signature-based IDS
detection results rely on the frequent updating of the sig-
natures repository.

As described above, we can find the challenges in both
the traditional signature-based IDS and anomaly based IDS.
,erefore, many researchers introduce machine learning
(ML) and data mining (DM) technologies to build

Hindawi
Security and Communication Networks
Volume 2022, Article ID 3990386, 20 pages
https://doi.org/10.1155/2022/3990386

mailto:jacky5555@qq.com
https://orcid.org/0000-0002-5308-467X
https://orcid.org/0000-0002-8301-2706
https://orcid.org/0000-0002-2048-348X
https://orcid.org/0000-0001-8645-5337
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3990386

classification models for intrusion detection. Reference [4]
surveyed the intelligent techniques for feature selection and
building classification models for network intrusion de-
tection by using the selected features, such as Decision trees,
Neural networks, Fuzzy sets, and so on. References [5–18]
used supervised machine learning techniques to build
classification models, such as References [6–10] mainly used
to support vector machine (SVM) methods, [8–11]
employed decision tree (DT) methods, and [15–18] pre-
sented deep learning approaches for classifying malicious
traffic. In addition, References [19–25] proposed the
anomaly based network IDS (ANIDS), which attempts to
detect attacks by using semi-supervised or unsupervised
methods. Figure 1 shows the general process of building
classification models by using ML/DM.

So far, there are extensive academic researches about
ML/DM for intrusion detection, and the proposed classi-
fication models by using ML/DM can usually get better
prediction results of network attacks on the test dataset.
However, as described in Reference [3], compared with the
operational intrusion detection systems, the ML/DM
method is rarely employed in the real-world intrusion de-
tection environment. ,is is what we call the last mile
problem with the machine learning approach to network
intrusion detection, the discrepancy between machine
learning and network operational semantics in Figure 1.

,ere are two possible reasons for the last mile problem.
First, the ML/DM methods are best suited for offline net-
work environments rather than real-time network envi-
ronments. For example, the process of building classification
models by using ML/DM is a usual offline process, especially
for the features based on flow(s)-level granularity in the
training dataset. Furthermore, for the input network traffics,
before they are fed to the training models for the prediction,
they must be converted to the specific records according to
the data format of the training dataset.

Second, for classification models obtained through ML/
DM for signature-based or anomaly based detection, it is hard
to convert them into appropriate operations that can be used
by the actual no-machine-learning IDS products for the
specific attacks detection in a real-world network environ-
ment. ,at is to say, there is a semantic gap between the ML/
DM and network operations. In general, ML methods excel
much better at finding current network behavior that is similar
to something previously seen in the training dataset, and less
good at discovering the semantics of network activities. For
example, for signature-based detection by using supervised
machine learning (e.g., Support Vector Machine and Deep
Learning), although the classification models can classify
malicious traffic to a certain extent, they look more like “black
boxes,” which do not align well with the network semantics.
,e classification models cannot be converted into feasible
operations which can be used by the no-machine-learning
detector in the real-world network environment. In addition,
the normal behavior profiles by using semi-supervised or
unsupervised methods can be used to detect abnormal ac-
tivities. However, these detected abnormal activities only in-
dicate that they deviate from the normal profiles, and it does
not express they are the real attacks. Consequently, compared

to ML for signature-based detection, the anomaly based de-
tection by using ML is harder to relate its results into the
network operational semantics for attack detection.

At present, many pieces of literature usually focus on
improving the performance of the classification models by
modifying machine learning algorithms rather than solving
the “last mile problem.” ,erefore, compared to the related
literature, this paper mainly focuses on bridging the gap
between the strength and requirements of ML/DM and
network operational semantics. For most of the operational
network IDS, they are usually based on signature-based
detection (e.g., Snort [26] and Suricata [27]) in the real-
world network environment. So our intrusion-specific
method for closing the last-mile gap aims to convert the
features on which the classification models operate into the
corresponding building blocks of the signature-based IDS,
and the signature-based IDS can use them to define the
detection patterns for specific attacks. ,e contribution of
this paper involves the following aspects:

(1) ,is paper puts forward the “last mile problem”
between the ML/DM and the operational network
IDS, and then provided an intrusion-specific ap-
proach to bridge the gap between the strength and
requirements of ML/DM and network operational
semantics.

(2) A hybrid feature selection method (LCC-RF-RFEX)
is proposed to extract the key features from the
network dataset. Our approach combines the ad-
vantages of high efficiency of the filter feature se-
lection method and the ability of the wrapper feature
selection method, and absorbs the greedy policy
when selecting the feature subset; only the feature
subset which can make the classification model get
the highest values of accuracy rate are remained.
Experimental results showed that our approach can
get better performance by comparing other filter and
wrap feature selection methods.

(3) Snort’s existing detection mechanisms can usually
detect well the packet-level attacks and are not good
at finding the complex attacks, such as flow(s)-level
or connection(s)-level attacks, which span single
flow or multiple flows. ,erefore, for the flow(s)-
level attacks, we added the new rule keywords for
detecting them in the Snort.

(4) To substantiate our approach to bridge the gap be-
tween the strength and requirements of ML/DM and
network operational semantics, we took Snort as our
underlying intrusion detection system, KDDCup’99
dataset as the data source, and Dos attacks as the
attack type of our study, and the experimental results
proved the effectiveness of our intrusion-specific
approach for closing the last-mile gap. By mapping
the aggregated features into the new rule keywords
based on flow(s)-level granularity, the newly gen-
erated rules not only expanded the abilities of Snort
for detecting Dos attacks but also reduced its false-
positive rate and numbers of excessive alarms for the
same Dos attack.

2 Security and Communication Networks

,e rest of this paper is organized as follows: Section 2
discusses the related works on improving the performance of
the operational network IDS by using ML/DM approaches.
Section 3 presents our key features extraction method in
detail. Section 4 describes the process of creating refined
attack signatures based on the newly generated keywords.
Section 5 analyses the experimental results of our proposed
approach and compares its performance with those of re-
lated works. Finally, Section 6 concludes the paper with
comments on future work.

2. Related Works

2.1. Feature Selection byUsingML/DM. ,e feature selection
can reduce the dimension of the dataset by eliminating
redundant and irrelevant features, which makes the classi-
fication task based on learning algorithmsmore effective and
accurate.,emethods for feature selection are classified into
three main categories: filter [28–37], wrapper [38–44], and
hybrid [45–47] approaches. Filter methods use heuristics
based on general characteristics of the data rather than
learning algorithms to evaluate the merit of feature subsets,
so filter methods are generally much faster than wrapper
methods, and more fit for handling high dimension data.
Wrapper strategies for feature selection use an induction
algorithm to estimate the merit of the feature subset. Al-
though wrapper methods usually can get better results than
filter methods, they tend to be much slower than filter
methods. Hybrid methods combine wrapper and filter ap-
proaches to achieve the best performance.

References [28–37] adopted the filter methods to select
features. ,e filter methods mainly use the heuristic eval-
uation function to rank the initial features and remove the
irrelevant features from the ranked features. References
[28–30] used the correlation-based feature selection (CFS)
method to select the feature subset. Reference [29] used the
Pearson correlation to keep relevant features while removing

redundant features, and the final selected features were
tested on different classification algorithms, and the results
indicated that the J48 classifier got the highest classification
accuracy and lowest false-positive rate. References [31–35]
used themutual informationmethod to get relevant features,
such as MIMF [31], MIFS-U [32], and MMIMF [33]. Ref-
erence [34] suggested the flexible mutual information-based
feature selection (FMIFS) that overcame the limitation of
setting an appropriate value for β in [31–33]. Reference [35]
designed a new mutual information algorithm (RPFMI),
which added the redundant penalty between features to
select optimal features, and the experiments on KDDCup’99
[48] showed that the RPFMI method got the better results
with regard to accuracy rate, detection rate, and false-pos-
itive rate metrics by comparing with other feature selection
algorithms; especially for Dos attacks, the RPFMI got the
highest accuracy rate (99.772%).

In addition, Reference [36] proposed to build the layer-
based intrusion detection system (LIDS) which contains four
layers corresponding to the four attacks groups (Probe, Dos,
R2L, and U2R), and selects features for each layer based upon
the type of attacks that the layer is trained to detect. ,ey used
domain knowledge along with practical significance to man-
ually select features. Finally, they selected only 5 features for the
Probe layer, 9 features for the Dos layer, 14 features for the R2L
layer, and 8 features for the U2R layer. Reference [37] proposed
an intelligent CRF-based feature selection automatically by
extending the existing feature selection method in Reference
[36]. ,ey assigned contribution value to each feature in the
layer, and used the threshold to extract features for each type of
attack based on cumulative contribution values. Compared to
Reference [36], Reference [37] selected only five features for
Probe attack, five features for Dos attack, eleven features for
R2L, and five features for U2R finally.

References [38–44] introduced wrapper methods to
select feature subsets. Reference [40] proposed two feature
selection methods: Random Forest Forward Selection

Labeled Normal Abnormal Dataset Labeled Normal Dataset Un-labeled Dataset

Data Preprocessing Data Preprocessing Data Preprocessing

Supervised Learning Algorithms Semi-supervised Learning Algorithms Unsupervised Learning Algorithms

Classification Models
(match patterns of attacks)

Machine Learning for Building
Signature-based IDS: Off-line

Machine Learning for Building
Anomaly-based IDS: Off-line

Last Mile

Traditional IDS (e.g., Snort and Suricata)
Real Network Environment: Online

Normal Behavior Profiles
(anomaly detection)

Cluster/Outlier
(anomaly detection)

Figure 1: ,e last mile problem of machine learning for network intrusion detection.

Security and Communication Networks 3

Ranking (RF-FSR) and Random Forest Backward Elimi-
nation Ranking (RF-BER), and the final selected features
using the two methods proposed were tested on the
NSL-KDD dataset, with a detection rate of 99.80% and a
false-positive rate of 0.1% separately. Reference [44] pro-
posed a dynamic recursive feature selection algorithm that
begins with initialization using an empty set of features and
continues with the addition of features recursively by ap-
plying correlation coefficient values. In this way, the optimal
number of features is obtained when the correlation between
the features varies beyond a TH of 0.75. ,e experimental
analysis was carried out using the KDDCup’99 dataset and
proved that the false-positive rate, energy consumption, and
delay were reduced in the proposed work.

References [45–47] proposed a hybrid feature selection
approach that combined the advantages of both filter and
wrapper methods. Reference [45] designed a combination of
feature grouping based on linear correlation coefficient
(FGLCC) algorithm and cuttlefish algorithm (CFA) to
eliminate irrelevant and redundant features from the original
dataset, and the experiment results verified a high accuracy
(95.03%) and detection rate (95.23%) with a low-false positive
rate (1.65%). Reference [46] proposed to adopt the principle of
mutual information and applied Least Square Support Vector
Machine (LSSVM) to build feature selection algorithm and
got a detection rate of 98.90% with a false-positive rate of
0.521%. Reference [47] designed the conditional random field
and linear correlation coefficient-based feature selection al-
gorithm (CRF-LCFS) to select the most contributed features,
and final selected features are fed to the convolutional neural
network to build a classification model, which finally achieves
98.88% as the overall detection accuracy.

2.2. Improve Performance of Traditional IDS by Using ML/
DM. ,ere were already pieces of literature focusing on
improving the performance of the traditional IDS (e.g.,
Snort) by using ML/DM or other approaches. Summarily,
they were divided into two types: generating Snort rules and
constructing the Snort-based hybrid intrusion detection
system.

References [49–54] attempted to directly generate Snort
rules, which extended the Snort’s ability to detect attacks.
References [49–52] mainly used ML/DM technologies to
characterize attacks, and then extracted their signatures to
generate Snort rules for fast and accurate intrusion detec-
tion. For example, References [49, 50] proposed a hybrid
intrusion detection system that used DM algorithms to
excavate the frequent episode rules from normal traffic, and
used them to find abnormal traffic, and then abstracted the
signatures from the detected anomalous behavior by using a
weighted frequent item set mining scheme. Finally, these
signatures were used to generate Snort rules for future
detection of similar attacks. Yet, Reference [49] only finished
mapping the single connection or flow-level features into
Snort rule keywords, which means that the generated Snort
rules can only detect simple attacks based on a single
connection, such as attacks of R2L and U2R type. For the
attributes based on multiple connections, which can be used

to characterize patterns of the complex attacks, such as Dos
and Probe attacks, it did not give the implementation for
mapping them into Snort rule keywords.

Reference [51] proposed a procedure for generating
Snort rules based on the data mining technique for detecting
network probe attacks. Reference [52] used the classification
model based on the k-SVM algorithm to detect the network
attacks at first, and then used the WEKA tool to extract the
features for the individual attack. Finally, the extracted
features were mapped into the corresponding rule keywords
of Snort and used these mapped keywords to generate Snort
rules. However, References [51, 52] did not explain how the
final selected features were mapped into the rule keywords of
Snort, especially for the features which cannot be directly
mapped into the existing keywords of Snort.

References [53, 54] designed the approaches to derive
new rules from the existing rules in Snort, such as Reference
[53], which introduced the generalization and specialization
methods to relax or vary the parameter conditions of the
existing Snort rules, which can generate new rules for
extending the ability of Snort to identify novel attacks.
Reference [54] proposed a probabilistic abductive reasoning
approach that augmented Snort to detect attacks. Never-
theless, References [53, 54] only derived new rules from the
existing Snort rules and did not extract new patterns from
network traffic to generate new rules.

Furthermore, References [55–60] proposed to build the
hybrid intrusion detection system (HIDS) by combining the
advantages of the low false-positive rate of signature-based
method and the ability of the anomaly based method to
detect unknown attacks, which finally realized the perfor-
mance improvement of signature-based IDS. Reference [55]
identified that the misuse recognition framework was cus-
tomized by embedding the anomaly detection engines (e.g.,
PHAD, ALAD, LERAD), which made the signature-based
IDS own the ability for detecting novel attacks. References
[56, 57] introduced how to take the statistical packet
anomaly detection engine (SPADE) as a preprocessor plugin
to embed into the Snort, which finally extended the func-
tionality of Snort.

References [59, 60] suggested building the hybrid IDS,
which was composed of the anomaly based detector and the
signature-based detector in parallel. ,e hybrid IDS finally
combined the outcomes of both detectors to enhance the
overall detection accuracy. For instance, Reference [59]
showed that the parallel HIDS could get a more accurate
detection rate of Dos attacks compared with no-hybrid IDS.
Although HIDS can expand the scope of detecting attacks of
signature-based IDS, it is difficult to synchronize the
anomaly detection engine and the misuse detection engine
to form the final detection results in the real-time network
environment. Unlike the misuse detection methods working
in the real-time network environment, the anomaly detec-
tion methods preferred the offline working mode.

Finally, Reference [61] used a clustering approach based
on decision trees to optimize the rules-to-input comparison
process of the Snort detection engine and the experimental
results showed that the speed of the detection process was
significantly improved by comparing with the initial

4 Security and Communication Networks

detection engine of Snort. However, Reference [61] only
improved the speed performance of the detection engine of
Snort, rather than generating new rules to expand the
functionality of detecting attacks of Snort.

In this paper, we focus on the “last mile problem” be-
tween ML/DM and the operational network IDS and pro-
pose an intrusion-specific approach to bridge the semantic
gap between ML/DM and network operations. ,e intru-
sion-specific method for closing the last-mile gap mainly
uses ML/DM technologies to abstract the optimal features
for the specific attack from the dataset and converts them
into the building blocks that can be used by the signature-
based IDS to characterize signatures of the specific attack.
Figure 2 shows the details of our intrusion-specific approach.
Furthermore, as we know, for the traditional signature-
based IDS, such as Snort, its existing mechanisms can be
used to detect well the packet-level attacks, but usually
suffers from the sophistication of flow(s)-level attacks that
involve single flow and multiple flows [62].,erefore, in this
paper, for the extracted key attributes from the dataset which
express the patterns of the flow(s)-level attacks, we added the
corresponding new building blocks in the traditional sig-
nature-based IDS. Finally, we take Snort, KDDCup’99
dataset, and Dos attacks as the experimental subjects to
prove the effectiveness of our method. ,e new rule key-
words, belonging to the flow(s)-level granularity keywords,
are added into Snort, and the newly generated rules not only
expand the abilities of Snort for detecting Dos attacks but
also reduce its false-positive rate and numbers of excessive
alarms for the same Dos attack.

3. Proposed Feature Selection Method

,e hybrid feature selection method, which can combine the
advantages of the high efficiency of filter feature selection
method and the ability of the wrapper feature selection
method, can extract more optimal features; therefore, we
proposed a hybrid feature selection method, which is used to
select features of the specific attack from the network dataset.

3.1. Correlation-Based Feature Selection Method. ,e cor-
relation-based feature selection method [63], as a kind of
filter method, mainly uses a correlation-based heuristic
evaluation function to rank the initial features and remove
the irrelevant features. At present, Linear Correlation Co-
efficient (LCC) [64] and Mutual Information (MI) [31] are
two popular heuristic evaluation functions for evaluating the
relationship between two random variables. Considering the
fast-computing speed of LCC, especially when processing
large-scale data, it can show higher efficiency. ,erefore, the
LCC is taken to evaluate the correlations between two
features in this paper.

corr(X; Y) �
􏽐

n
i�1 xi − x(􏼁 yi − y(􏼁

������������������������

􏽐
n
i�1 xi − x(􏼁

2
􏽐

n
i�1 yi − y(􏼁

2
􏽱 , (1)

where x() and y() are expected values of the feature X and
feature Y. xi and yi are the ith values of X and Y separately.

Corr (X; Y) is equal to +1 if X and Y are linearly dependent
and zero if they are completely independent.

In our feature selection approach, in order to reduce the
burden of the wrapper method for selecting features, we use
LCC to remove the irrelevant features and redundant fea-
tures from the original feature space at first.

3.2. Random Forest-Recursive Feature Elimination (RF-RFE)
Method. ,e random forest (RF) algorithm is the most
popular bagging ensemble classifier [65]. Random forest
consists of many decision trees. ,e output of random
forest is decided by the votes given by all individual trees.
Each decision tree is built by classifying the bootstrap
samples of the input data using a tree algorithm. ,en,
every tree will be used to classify testing data. Each tree
has a decision to label any testing data. ,is label is called
a vote. Finally, the forest decides the classification result
of the testing data after collecting the most votes among
trees.

Recursive feature elimination (RFE) is a feature selection
method that fits a model and removes the weakest feature (or
features) until the specified number of features is reached.
Features are ranked by their importance in the model and by
recursively eliminating a small number of features per loop.
Random Forest-Recursive Feature Elimination (RF-RFE)
expresses that the RF algorithm is introduced in the RFE to
perform feature selection by iteratively training a model,
ranking features, and then removing the lowest ranking
features.

3.3. Proposed Feature Selection Method. We propose a hy-
brid feature selection method which calls the filter method
(LCC) to remove the irrelevant and redundant features
from the original feature space at first, and then the
remaining features are fed to the wrapper method (RF-
RFE) for further feature selection. For the RF-RFE feature
selection method, there is a need to specify the number of
final selected features in advance, yet there is no empirical
value for this number. ,erefore, we modify the RF-REF
method and select all possible feature sets by using the RF-
RFE method and use machine learning classification al-
gorithms (e.g., Decision Tree) to evaluate the performance
of each of them. ,e feature set which makes the classi-
fication model get the best performance will be retained as
the final selected features. We call the modified RF-RFE
method as RF-RFEX, and the workflow of the LCC-RF-
RFEX approach is shown in Figure 3.

Specifically, we use LCC as a heuristic evaluation
function and relevance threshold α to select feature subset
from the original features of the dataset in the first step of
our approach. ,e final selected feature subset has such
characteristics that the linear correlation value between any
feature in the subset and the label feature is greater than 0. At
the same time, the linear correlation value of any two fea-
tures in the subset keeps below α. ,e pseudo-code of the
LCC method is shown in Algorithm 1.

In the second step, the filtered features after the first
step are fed to the wrapper method RF-RFEX to select the

Security and Communication Networks 5

final feature subset. In each iteration of the RF-RFEX
method, it calls the RF-RFE method to select a specific
feature set, and counts the Accuracy Rate (AR) based on
the currently selected feature set and Decision Tree al-
gorithm, then, compares the current AR with the maxi-
mum AR of the last iteration and saves the maximum of
AR and the corresponding feature set. At the end of the
loop, the feature set which owns a maximum of AR will
retain as the final selected features. ,e pseudo-code of the
LCC-RF-RFEX method is shown in Algorithm 2.

4. Generating the Rule Keywords and Rules

In this section, we showed how to use the intrusion-specific
method to generate the Snort rules. For each specific type of
attack, the intrusion-specific method calls the LCC-RF-
RFEXmethod to select the optimal features at first. After the
post-process on the selected features, we convert each of the

selected features into the corresponding rule keyword of
Snort. If there are no existing rule keywords that can map to
the selected features, we add new corresponding rule key-
words in Snort. Finally, we use these converted rule key-
words to generate rules for detecting the specific type of
attacks. Figure 2 shows the workflow of our intrusion-
specific approach.

4.1.KDDCupsSection. KDDCup’99 dataset [48] is the public
dataset for intrusion detection evaluation. It contains 39
attack types, with 22 attack types in the training dataset and
17 attack types in the test dataset. Attacks fall into four
categories as Dos, U2R, R2L, and Probing. KDDCup’99
training dataset contains about 4,900,000 connection rec-
ords and the test dataset contains 2 million connection
records, and each connection record contains 41 features
and is labeled as either normal or an attack. ,e 41 features

Start

Network
Dataset

�e Selected Features

�e Processed Features

Building-blocks for Attack Patterns to
be Defined in Signature-based IDS

Patterns (Rules) to Detect Attacks
in Signature-based IDS

Existing Building-blocks New Building-blocks

Existing Patterns (Rules) New Patterns (Rules)

End

Generate Patterns (Rules) of Attacks by
Using Building-blocks

Feature Engineering (e.g., LCC-RF-RFEX Method):
Selected Features of the Specific Attack

Post-process:
Filter non-axis Features or Add axis Features

Convert Processed Features into Building-blocks

Figure 2: ,e flow chart of the intrusion-specific approach.

6 Security and Communication Networks

in the KDDCup’99 dataset are divided into four groups:
Basic Connection Features (No.1-No.9), Content Features
(No.10–No.22), Statistical Features Based on Time
(No.23–No.30), and Statistical Features Based on Connec-
tion (No.31-No.41). ,e Basic Connection Features and
Content Features belong to flow-level features, which can be
extracted from a TCP/UDP/ICMP connection, and the
Statistical Features Based on Time and Statistical Features
Based on Connection belong to flows-level features, which
aggregate information over multiple connections based on

two seconds time window intervals or based on prior 100
connections window intervals separately.

4.2. Post-Processing on the Selected Feature Set. In general,
due to the incompleteness and imperfection of the network
intrusion detection data set, the selected features on which
are operated by the classification models cannot always
have an insight into patterns of the malicious traffic. For
example, Table 1 shows the final selected features of Dos

Init Feature Space

Filter Method (LCC)

Filter Irrelevant and Redundant Features

�e Filtered Features

Count: Number of the Filtered Features

Select Count Features from the Filtered
Features Using RF-RFE

Use the Selected Feature Set to compute the Accuracy Rate
by Using Decision Tree Classification Algorithm

Save the Current Maximum of Accuracy Rate and the
Corresponding Selected Feature Set

Count--

the Feature Set owning the Maximum of Accuracy
Rate is the Final Selected Features

Count>0
N

Y

Figure 3: ,e workflow of the LCC-RF-RFEX method.

Input:,
F: Feature set F� {fi |i� 1,...,n}
α: ,reshold of relevance

Output: S - the filtered feature subset
01: S1: the filtered feature subsetorit Ø
02: Calculate abs of corr (C; fi): |corr(C; fi)|, for each feature fi, i� 1,..,n, C notes the label feature
03: Sort |corr(C; fi)| and Store |corr (C; fi)| to Array: B in descending order, i� 1,...,n
04: For each |corr (C; fi)| in B do
05: If |corr (C; fi)|>0 and fi ∉ S and fi ∉R then
06: S ∪ { fi }
07: F⟵ F \ { fi }
08: For each fj in F do
09: If |corr(fj; fi)|>α then
10: R⟵ R ∪ { fj}
11: F F⟵ j}
12: end if
13: end for
14: end if
15: end for
16: return S

ALGORITHM 1: ,e LCC feature selection algorithm.

Security and Communication Networks 7

Attacks by using different Feature SelectionMethods, and it is
easy to count the times at which each feature has occurred in
the eight feature selection methods from Table 1. For the
limited space, the features placed in the top 2 are listed in
Table 2. Table 2 shows that five ML methods agree uniformly
that the service, count, src_bytes, dst_bytes, and protocol_type
features could express the patterns of Dos attacks. However,
with the help of network security domain knowledge, we
found that the results were not entirely correct. For the two
features: service and protocol_type can describe the basic
connection characteristics of Dos attacks, and the count
feature can reveal the high intensity or frequency charac-
teristics of Dos attacks. ,erefore, we called them as axis
features [66]. For the src_bytes and dst_bytes features, they do
not always give the best description of Dos attacks, and we
called them nonaxis features [66]. After all, hackers can easily
evade detection by tampering with the values of the nonaxis
features. ,erefore, before converting the selected features
into the building blocks of the operational network IDS, the
nonaxis features should be filtered from the selected features,
which makes the converted building blocks express the
patterns of malicious traffic more accurately.

Furthermore, for some attacks, we find that the final
extracted features do not contain the two axis features:
service and protocol_type features. However, when we
generate the rules of Snort by using the final extracted
features, the two axis features are required; therefore, when
the final extracted features do not contain the two axis
features, the two axis features should be added to them.

4.3.MapFeatures into Snort RuleKeywords. After completing
the post-process on the selected features, the final processed
features can be mapped into the building blocks of the oper-
ational network IDS, which can be used to express the attack
patterns. In Snort, the building blocks are Snort rule keywords.
,erefore, in this section, we illustrated how tomap the selected
features from the KDDCup’99 dataset into Snort rule keywords.
As we know, Snort rules are divided into two logical sections:
the rule header and the rule options. ,e rule header contains
the rule’s action, protocol, source, destination IP addresses,
subnet mask, and the source and destination ports information.
,e rule option section provides four major categories of rule
keywords, which are general, payload, nonpayload, and post-
detection.,ese existing rule keywords in Snort usually describe
the characteristics of packet-level traffics, and the KDDCup’99
datasetmainly contains the aggregated features that describe the
characteristics of the flow(s)-level traffic.

,erefore, for a few features in the KDDCup’99 dataset
describing the information of the basic connection, the
existing rule keywords in Snort can correspond to them. For
example, protocol_type, service, and land can be directly
mapped into Snort’s existing rule keywords which are
protocol, destination port, and same ip, respectively.
However, for the most aggregated features in the
KDDCup’99 dataset, no existing rule keywords correspond
to them in Snort. ,erefore, we can add new rule keywords
to establish mapping relations with them by changing the
Snort source code. So far, we have completed mapping the
aggregated features (No.1–No.9, No.23–No.41) of

Input:,
T: Training Data
S: Test Data
F: Feature set F� {fi |i� 1,...,n}
α: ,reshold of relevance

Output:
FS: the Final Select Feature Subset

01: FS←1
02: X←2 : Final Select Feα)
03: count←length(X)
04: If count>0 then
05: T←T [X]
06: S←S [X]
07: end if
08: Initialization Map: maxMap(key, value)�(0,X)
09: while count>0 do
10: Calculate Accurate Rate (AR) metric based on T[X] and S[X] by using Decision Tree Classification Algorithm
11: If (key in maxMap) T[X] and then
12: maxMap(key; value)← (RValue; X)
13: end if
14: count←
15: X← Call RF-RFE Method(T, S, count)1 to select feature subset
16: end while
17: FS← value in maxMap
18: return FS

ALGORITHM 2: ,e LCC-RF-RFEX feature selection algorithm. Note: 1,e RF-RFE Method is the Recursive Feature Elimination
(RFE) method with the Random Forest classifier in the scikit-learn library, and its URL is https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.RFE.html.

8 Security and Communication Networks

KDDCup’99 into Snort’s rule keywords, and the final
modified Snort source code has already been uploaded in
GitHub (the GitHub URL of the modified Snort source code
is https://github.com/jacky-sunxibin/modified-snort). ,e
steps to add new keywords to Snort are described as follows:

Step 1. Enable the preprocessor stream5_global plugin that
can track TCP, UDP, and ICMP sessions in snort.conf file.

Step 2. Add new variables to save connection statistical
values of the previous 100 connections window and the
past 2 seconds window in SessionControlBlock struct
(session_common.h)

Step 3. Modify session preprocessor plugin(spp_session.c)
source code and use the added variables in Step2 to track
statistics of network connections in 2 seconds time window
and 100 connections window.

Step 4. For each new keyword, add a new plugin(sp_xxx.h
and sp_xxx.c) in detection plugins of Snort source code to
complete the addition of the new keyword.

For example, to add a new rule keyword, duration in
Snort, at first, the sp_duration.h and sp_duration.c files are
created under the detection-plugins directory of Snort
source code. And then, the code is added to count the
connection duration according to each incoming packet in
the sp_duration. Table 3 shows the mapping relations be-
tween features in KDDCup’99 and Snort keywords in detail.

4.4. Generating Snort Rules. In this section, we show how to
generate Snort rules by using the newly generated keywords,
and the process of generating Snort rules is described as follows.

Step 1. Sort the final selected feature subset in
descending order according to the linear correlation
values between each feature and target/class feature.
Step 2. Map the sorted feature subset into the corre-
sponding rule keywords of Snort according to Table 3.
Step 3. Assign values to the mapped keywords re-
spectively. For each rule keyword, its values come from
the corresponding feature. If the feature belongs to the
discrete or symbolic category, its final values are the
combination of its discrete values in labeling the cor-
responding attack records of the dataset. Otherwise, it
belongs to the continuous category. We can use sta-
tistical methods to count its thresholds from the cor-
responding attack records in the dataset, such as min,
avg, and max.
Step 4. Generate the Snort rule according to the
mapped keywords. To improve the matching perfor-
mance of each newly generated rule in Snort, for the
rule keyword belonging to the rule options, its order in
the Snort rule is the same as its order in the mapped
keywords.
Step 5. Evaluate the newly generated Snort rules.

For example, for the Mailbomb attack in the
KDDCup’99 dataset, as shown in Table 4, the final selected
features are service, protocol_type, and srv_count separately.
According to Table 3, the final mapped rule keywords are dst
port, protocol, and twoSecondsSameDstServiceSessions sep-
arately. Furthermore, for the protocol_type and service fea-
tures belonging to the symbolic category, their values can
directly come from the records of labeling Mailbomb attack
in the KDDCup’99 dataset, such as protocol_type� tcp and
service� 25. For srv_count belongs to the continuous

Table 1: ,e selected features of Dos Attacks by using different feature selection methods.

Method Count Select features
MMIFS (β � 0.5)
[33] 8 5, 23, 6, 2, 24, 41, 36, 3

FFSA [33] 3 5, 38, 3

LCFS [33] 36 32, 27, 23, 38, 41, 24, 13, 2, 40, 22, 30, 25, 28, 35, 26, 37,12, 36, 39, 1, 10, 14, 11, 17, 33, 16, 19, 18, 9, 5, 34, 31, 6,
3,29, 3

MIFA [41] 10 41, 40, 13, 10, 5, 6, 23, 28, 24, 27
RPFMI [35] 23 7, 2, 13, 4, 19, 15, 16, 17, 18, 14, 28, 20, 23, 31, 29, 11, 26, 27, 40, 41, 3, 38, 1
FMIFS [34] 12 23, 5, 3, 6, 32, 24, 12, 2, 37, 36, 8, 31
Wrapper (C4.5) [41] 10 2, 3, 5, 6, 11, 12, 23, 24, 27, 41
RF-RFE-LCC
(α � 0.9) 11 2, 23, 8, 37, 40, 5, 4, 7, 39, 6, 1

MMIFS (β � 0.5)
[43] 8 5, 23, 6, 2, 24, 41, 36, 3

Table 2: ,e statistics times of features.

Feature Times Method
Service 7 MMIFS, FFSA, LCFS, RPFMI, FMIFS, wrapper, RF-RFE-LCC
Count 7 MMIFS, LCFS, MMIFA, RPFMI, FMIFS, wrapper, RF-RFE-LCC
src_bytes 7 MMIFS, FFSA, LCFS, MMIFA, FMIFS, wrapper, RF-RFE-LCC
dst_bytes 6 MMIFS, LCFS, MMIFA, FMIFS, wrapper, RF-RFE-LCC
protocol_type 6 MMIFS, LCFS, RPFMI, FMIFS, wrapper, RF-RFE-LCC

Security and Communication Networks 9

https://github.com/jacky-sunxibin/modified-snort

category, its thresholds are counted from the records of
labeling Mailbomb attacks by using statistical methods,
such as min � 2, avg � 240, and max � 247. if we
select ≥max as the threshold range of srv_ count, the
mapped rule keywords are service � 25, protocol � tcp, and
twoSecondsSameDstServiceSessions ≥ 247. Finally, one of
the Snort rules for detecting Mailbomb attacks was
generated as follows:

Alert tcp $EXTERNAL_NETany -> $SMTP_SERVER
25 (msg: “mailbomb dos attack”; twoSecondsSa-
meDstServiceSessions:≥247; classtype:attempted-dos;
sid:80018; rev:1).

5. Experiments and Results

5.1. Data Preprocessing. In the KDDCup’99 dataset, the
protocol_type, service, and flag are symbolic features. Our
feature selection method needs input records in the format
of real number vectors. ,erefore, they should be trans-
formed into the numeric feature in advance. LabelEncoder, a
utility class of scikit-learn library, can be used to complete
data preprocessing.

5.2. PerformanceMetrics. ,ese metrics are used to evaluate
the performances of feature selection method and newly
generated Snort rules, and they are accuracy rate (AR),
detection rate (DR), false-positive rate (FPR), precision,
false-negative rate (FNR), and Fβ-score.

AR (accuracy rate) is formally defined by

AR �
TP + TN

TP + TN + FN + FP
. (2)

Precision is formally defined by

precision �
TP

TP + FP
. (3)

DR (detection rate) is formally defined by

DR �
TP

TP + FN
. (4)

FPR (false-positive rate) is formally defined by

FPR �
FP

FP + TN
. (5)

FNR (false-negative rate) is formally defined by

FNR �
FN

TP + FN
, (6)

where TP is the number of correct detection attacks,
FN is the number of undetected attacks, FP is the number
of mistake detection attacks, and TN is the number of
correct detection nonattacks. Fβ-score is the harmonic
mean of precision and DR, which is formally defined by

Fβ − score �
1 + β2􏼐 􏼑∗ precision∗DR

β2 ∗ precision + DR
, (7)

where β is used to set the weights of DR and precision. If
β is greater than 1, it means DR has a higher weight than
precision. Otherwise, precision has a higher weight value.

Table 3: Map Features (No. 1–No. 9, No. 23–No. 41) into snort rule keywords.

Feature name Snort rule keywords New keyword Granularity
Duration Duration Yes Flow level
protocol_type Protocol No Flow level
Service dst port No Flow level
Flag sessionFlags Yes Flow level
src_bytes src_bytes Yes Flow level
dst_bytes dst_bytes Yes Flow level
Land Sameip No Flow level
wrong_fragment Overlapfragment Yes Flow level
Urgent urgentCount Yes Flow level
Count twoSecondsSameDstHostSessions Yes Flow level
srv_count twoSecondsSameDstServiceSessions Yes Flow level
serror_rate twoSecondsSameDstHostSynErrorRate Yes Flow level
srv_serror_rate twoSecondsSameDstServiceSynErrorRate Yes Flow level
rerror_rate twoSecondsSameDstHostRejErrorRate Yes Flow level
srv_rerror_rate twoSecondsSameDstServiceRejErrorRate Yes Flow level
same_srv_rate twoSecondsSameDstHostServiceRate Yes Flow level
diff_srv_rate twoSecondsSameDstHostDiffServiceRate Yes Flow level
srv_diff_host_rate twoSecondsSameDstServiceDiffDstHostRate Yes Flow level
dst_host_count before100SameDstHostSessions Yes Flow level
dst_host_srv_count before100SameDstHostServiceSessions Yes Flow level
dst_host_same_srv_rate before100SameDstHostServiceRate Yes Flow level
dst_host_diff_srv_rate before100SameDstHostDiffServiceRate Yes Flow level
dst_host_same_src_port_rate before100SameDstHostSourcePortRate Yes Flow level
dst_host_srv_diff_host_rate before100SameDstHostServiceDiffSIPRate Yes Flow level
dst_host_serror_rate before100SameDstHostSynErrorRate Yes Flow level
dst_host_srv_serror_rate before100SameDstHostServiceSynErrorRate Yes Flow level
dst_host_rerror_rate before100SameDstHostRejErrorRate Yes Flow level
dst_host_srv_rerror_rate before100SameDstHostServiceRejErrorRate Yes Flow level

10 Security and Communication Networks

5.3. Evaluation of the Proposed Feature Selection Method.
In the KDDCup’99 dataset [48], all kinds of attacks are not
equally distributed, which may affect the performance of our
feature selection method. ,erefore, to avoid an impact on
unbalanced data distribution, we form the training data and
test data, which are shown in Table 5.

We used Python language to fulfill our proposed feature
selection method by calling scikit-learn library. In our
proposed feature selection method, we must provide the
value of relevance threshold (α) at first, and α is a parameter
which is determined empirically. If α� 0, it means that the
algorithm only focuses on the linear correlation value of any
feature in the selected feature subset and the label feature,
and the dependency between features is not considered.
Experimental results showed that the selected features could
get the best performance when α is set 0.9, which indicates
that our algorithm places more emphasis on the dependency
between input features by comparing with the relation
between input features and the label feature.

All experiments were performed on a Windows platform
having configuration i5 core 4 CPU 2.3GHz, 8GB RAM.
Table 6 shows the selected features by using our LCC-RF-
RFEX method for four types of attacks. Table 7 shows the
comparison results of four kinds of attacks between the se-
lected features and full features (41) separately. ,e results
indicated that the classification models based on the selected
features can get better results on DR, AR, and FPRmetrics. At
the same time, as shown in Table 8, the consuming training
time and consuming testing time of selected features are less
than those of full features. ,is is mainly because the irrel-
evant and redundant features, which can degrade the per-
formance of classification models, are removed by using our
approach in advance. In addition, from Table 7, we can find
that the classification models based on selected features show
the poor performance of detecting R2L and U2R attacks
compared to Dos and Probe attacks. ,is may be because the
features in the KDDCup’99 dataset are in favor to describe the
statistics of a single connection or multiple connections, such
as No.1–No.9 features and No.23–No.41 features. ,e
functions of No.10-No.22 features describing the payload of
packet or connection are usually weak, which directly de-
grades the performance of detecting R2L and U2R attacks.
,erefore, new features which are used to describe the
payload of packet or connection in detail are required in the
future to find more R2L and U2R attacks.

Table 9 shows the comparison results of our approach
and the existing Filter methods: linear correlation-based
feature selection (LCFS) [33], mutual information feature

selection (MIFS) [31], and the wrapper method: the Mod-
ified Random Forest-Recursive Feature Elimination (RF-
RFEX). Experimental results illustrated that our proposed
method can make the classification model get the best
performance. ,is is due to absorbing the advantages of the
filter method and wrapper method in our feature selection
process. Furthermore, Table 10 shows the consuming time
of selecting the features of Dos attacks by using different
methods. From Table 10, we can find that our proposed
method consumed more time than LCFS and MIFS

Table 4: ,e final processed features of the specific Dos attacks.

Attack ,e selected feature
Apache2 srv_serror_rate, dst_host_srv_serror_rate, duration, protocol_type, service
Land Land, service, protocol_type
Teardrop wrong_fragment, protocol_type, service
Processtable dst_host_srv_serror_rate, duration, service, protocol_type
Smurf Count, dst_host_same_src_port_rate, protocol_type, service
Neptune same_srv_rate, flag, count, service, diff_srv_rate, protocol_type
Mailbomb Service, protocol_type, srv_count

Table 5: Datasets 1–4 for evaluating feature selection methods.

Attack
category Types Training

size
Testing
size Dataset

Dos

Normal 20000 20000

Dataset-
1

Smurf 10000 10000
Neptune 5000 5000
Mailbomb 1500 1500

Back 500 500
Land 15 15

Teardrop 400 400
Processtable 350 350

Pod 100 100
Apache2 250 250
Subtotal 38115 38115

Probe

Normal 10000 10000

Dataset-
2

Ipsweep 1247 306
Mscan 600 400
Nmap 130 100

Portsweep 540 500
Saint 400 300
Satan 800 600

Subtotal 13717 12206

U2R

Normal 10000 10000

Dataset-
3

buffer_overflow 30 22
Httptunnel 158 158
Loadmodule 9 2

Perl 3 2
Rootkit 10 13
Subtotal 10210 10197

R2L

Normal 20000 20000

Dataset-
4

ftp_write 8 3
guess_passwd 53 4367

Imap 12 1
Multihop 7 18

Phf 4 2
Warezclient 1020 1020
Warezmaster 20 1602

Subtotal 21124 27013

Security and Communication Networks 11

methods but less time than the RF-RFEX method. ,is is
because our LCC-RF-RFEX method contains the feature
selection processes of LCFS and RF-RFEX methods si-
multaneously. ,e experimental results showed that the
consuming time of the RF-RFEXmethod accounts for most
of the total consuming time in the LCC-RF-RFEX method.
In our LCC-RF-RFEX method, we use LCC to remove the
irrelevant features and redundant features from the orig-
inal feature space in advance, which reduces the calculation
amount of the RF-RFEX method; therefore, our method
consumes less time than the RF-RFEX method. Finally, we
also find that the Linear Correlation Coefficient method has

a higher computational efficiency than Mutual Information
method, and this is why we choose the LCC method and
not the MI method to remove the irrelevant features and
redundant features from the original feature space in our
proposed method.

Finally, we compared our approach with the recent
feature selection methods, and the experimental results are
shown in Table 11. As can be seen in Table 11, our proposed
approach outperforms the KH, FAFS, and RPFMI methods.
,e reason is that the proposed LCC-RF-RFEX method
combines filter (LCC) and wrapper (RF-RFEX) approaches
to achieve the best performance. In addition, another reason

Table 7: Performance of decision tree and logistic regression classifier with selected features and 41 features.

Attack
category Methods

Accuracy rate (AR) Detection rate (DR) False-positive rate (FPR)
Selected features

(%)
Full 41 features

(%)
Selected features

(%)
Full 41 features

(%)
Selected features

(%)
Full 41 features

(%)

Dos
Decision tree 99.61 99.61 99.62 99.61 0.39 0.41

Logistic
regression 93.73 92.25 89.37 86.33 2.31 2.38

Probe
Decision tree 98.25 95.92 94.38 81.96 0.89 0.99

Logistic
regression 98.30 96.93 98.83 98.41 1.37 3.39

R2L
Decision tree 83.11 81.14 37.49 27.56 0.90 0.95

Logistic
regression 78.65 75.61 19.29 6.13 0.20 0.53

U2R
Decision tree 99.37 98.21 78.17 10.66 0.21 0.6

Logistic
regression 98.77 98.12 43.65 35.55 0.10 0.14

Table 6: Selected features of four types of attacks by using the LCC-RF-RFE method.

Attack category Selected features (No. 1–No. 41)
Dos 2, 23, 8, 37, 40, 5, 4, 7, 39, 6, 1
Probe 3, 5, 6, 33, 37
R2L 2, 22, 12, 3, 11, 1, 33
U2R 3, 33, 5, 14, 16, 10, 12, 15, 18, 19, 1, 17, 34, 40

Table 8: Building time and testing time of decision tree and logistic regression classifier with selected features and 41 features.

Attack category Methods
Building time (second) Testing time (second)

Selected features Full 41 features Selected features Full 41 features

Dos Decision tree 0.0626 0.1875 0.1875 0.2188
Logistic regression 0.5937 0.8212 0.125 0.1875

Probe Decision tree 0.0234 0.0625 0.0312 0.0938
Logistic regression 0.1719 0.3281 0.0312 0.0938

R2L Decision tree 0.0132 0.0938 0.0625 0.1406
Logistic regression 0.3593 0.6563 0.125 0.1929

U2R Decision tree 0.0312 0.0625 0.0313 0.0625
Logistic regression 0.2187 0.375 0.0312 0.0623

Table 9: Accuracy rate of decision tree classifier with existing feature selection methods and proposed method.

Feature selection method Dos (%) Probe (%) U2R (%) R2L (%)
LCFS (β � 0.5) 98.35 97.67 98.21 73.82
MIFS (β � 0.5) 98.61 97.21 98.23 79.51
RF-RFEX 99.32 98.16 98.22 81.51
LCC-RF-RFEX (β � 0.9) 99.61 98.25 99.37 83.11

12 Security and Communication Networks

is that we adopt the greedy policy when selecting the feature
subset, and only the feature subset which can make the
classification model get the highest values of AR remain as
the final selected features.

5.4. Generation of Snort Rules by Using the Selected Features.
So far, most of the pieces of literature have focused on
extracting optimal features of four kinds of attacks in the
KDDCup’99 dataset, and they rarely focus on extracting
critical features for the specific attack. ,erefore, we selected
seven kinds of Dos attacks from KDDCup’99 as experi-
mental subjects to substantiate our approach. For each
specific Dos attack, the attack records and normal records
from the training dataset and test dataset of KDDCup’99
dataset were separately selected out to generate the corre-
sponding datasets 5–11, and the details are shown in
Table 12.

For each of the specific Dos attacks, our proposed feature
selection method is used on the corresponding dataset 5–11
to select features separately. Table 13 showed the selected
features of specific Dos attacks. As we discussed in the front
section, we should impose a Post-Processing on the Selected
Feature Set before using them to generate Snort rules. Table 4
showed the final processed feature set.

As shown in Table 4, the final processed feature subsets
contain many aggregated features that own the continuous
values, and we can count their thresholds by using statistical
methods before mapping them into Snort rule keywords. As
we know, their thresholds usually express the frequency
characteristics of Dos attacks. ,erefore, the setting of their
threshold ranges will directly affect the performance of Snort
rules. In our experiment, we separately calculated the min
threshold value, the max threshold value, and the avg
threshold value of each aggregated feature from the records
of labeling corresponding Dos attack in the KDDCup’99
dataset. Finally, we mapped the final processed feature
subset into the corresponding rule keywords of Snort
according to Table 3 and used them to generate Snort rules.
For each specific Dos attack, we can generate multiple Snort
rules by combining the threshold ranges of the different

aggregated features. So far, we have already generated 61
Snort rules for detecting Dos attacks in the KDDCup’99
dataset, and due to the limited space, we only showed partly
generated rules in Table 14.

5.5. Evaluation of Newly Generated Rules. To evaluate the
newly generated rules in Snort, we selected Dos attacks raw
packets(.pcap) from 1999 DARPA Intrusion Detection
Evaluation Dataset [68] to generate dataset12–18, which can
be fed to Snort to evaluate the performance of the newly
generated rules, and the details of dataset12–18 are shown in
Table 15.

In order to clearly show the correlation trend between
the threshold ranges setting and the performance of rules,
six kinds of threshold ranges (>min, >20%, >40%, >60%,
>80%, >max) were selected to evaluate the performance
of newly generated rules. Figure 4 shows the false-positive
rate, which presented the downward trend, and Figure 5
shows the false-negative rate, which presented the up-
ward trend, as the values of the threshold range were
increasing.

In addition, considering the case in which many network
security administrators often complain that the alarms trig-
gered by rules usually contain much more false alarms, the
F0.5−score metric was selected to evaluate the comprehensive
performance of the newly generated rules. Figure 6 shows the
values of F0.5−score metric on different threshold ranges, and
the experimental results showed that F0.5−score got the
maximum between >60% and >80%, that is to say, the false
alarm rate dropped the fastest place.

Furthermore, although the newly generated rules can be
used to detect Dos attacks, how to make them get the best
performance for detecting Dos attacks is a difficult point.
One consideration is the incorporation of local network
security demands; in general, if you are more concerned
about reducing the false alarm rate, you are suggested to
select a larger threshold range of statistical keywords, e.g.,
select the >max threshold range. Otherwise, you are sug-
gested to select a smaller threshold range for getting the
lower false-negative rate. In addition, experimental results
also indicated the point at which the false alarm rate drops
the fastest often obtains the best result of the F0.5–score
metric.

Table 10: Consuming time of feature selection of Dos attacks with
existing feature selection methods and the proposed method.

Method Consuming time (seconds)
LCFS (β � 0.5) 3.15
MIFS (β � 0.5) 21.09
RF-RFE 219.92
LCC-RF-RFE (β � 0.9) 128.76

Table 11: Accuracy rate of decision tree classifier with recent
feature selection methods and the proposed method.

Method Dos (%) Probe (%) U2R (%) R2L (%)
LCC-RF-RFEX
(α � 0.9) 99.61 98.25 99.37 83.11

KH [67] 91.75 95.69 98.03 64.35
FAFS [41] 98.72 95.91 97.54 79.75
RPFMI [35] 97.69 97.65 98.37 77.29

Table 12: Datasets 5–11 for selecting features of the Dos attacks.

Name
Training dataset Test dataset
Attacks Normals Attacks Normals

Dataset-5:Apache21 794 97278 794 60593
Dataset-6:Land 21 97278 9 60593
Dataset-7:Mailbomb1 5000 97278 5000 60593
Dataset-8:Neptune 107201 97278 58001 60593
Dataset-9:Processtable1 759 97278 759 60593
Dataset-10:Smurf 280790 97278 164091 60593
Dataset-11:Teardrop 979 97278 12 60593
Note. 1For Apache2, Mailbomb and Processtable attacks do not exist in the
training dataset in KDDCup’99.,erefore, we copied their records from the
test dataset of KDDCup’99 into the training dataset of dataset-2, dataset-4,
and dataset-6 separately.

Security and Communication Networks 13

Table 13: ,e selected features of the specific Dos attacks.

Attack ,e selected feature
Apache2 srv_serror_rate, dst_host_srv_serror_rate, duration, src_bytes
Land Land
Teardrop wrong_fragment
Processtable dst_host_srv_serror_rate, duration, src_bytes
Smurf Count, dst_host_same_src_port_rate, protocol_type
Neptune same_srv_rate, flag, count, diff_srv_rate
Mailbomb srv_count, src_bytes

Table 14: ,e part of generated snort rules for detecting Dos attacks.

Attack
name Rule keyword1 Generated snort rule

Teardrop
overlapfragment� 1, Alert ip2 $EXTERNAL_NET any -> $HOME_NET any (msg:

”teardrop dos attack”; overlapfragment; classtype:attempted-dos; sid:
80000; rev:1)

protocol� udp,
dst port� any

Smurf

twoSecondsSameDstHostSessions
(min� 2,max� 511, avg� 480), Alert icmp $EXTERNAL_NETany -> $HOME_NETany (msg:”smurf

dos attack”;twoSecondsSameDstHostSessions:≥511;
before100SameDstHostSourcePortRate:≥1; itype:0;classtype:

attempted-dos; sid:80006; rev:1)

before100SameDstHostSourcePortRate (min� 1,
max� 1, avg� 1),
protocol� icmp,
dst port� any

Neptune

twoSecondsSameDstHostServiceRate (min� 0,
max� 1, avg� 0.07),

Alert tcp $EXTERNAL_NET any <> $HOME_NET any (msg:
”Neptune same server dos atack”;

twoSecondsSameDstHostServiceRate:≥1; sessionFlags:S0,REJ,RST0;
twoSecondsSameDstHostSessions:≥302;classtype:attempted-dos; sid:

80009; rev:1)

Alert tcp $EXTERNAL_NET any <> $HOME_NET any (msg:
”Neptune diff server dos atack”; sessionFlags:S0,REJ,RST0;

twoSecondsSameDstHostSessions:≥302;
twoSecondsSameDstHostDiffServiceRate:≥1; classtype:attempted-dos;

sid:80007; rev:1)

sessionFlags�(S0, REJ, RST0),
twoSecondsSameDstHostSessions(min� 1,

max� 302, avg� 184),
dst port� 0 :10233,

twoSecondsSameDstHostDiffServiceRate (min� 0,
max� 1, avg� 0.07),

protocol� tcp

Apache2

twoSecondsSameDstServiceSynErrorRate (min� 0;
max� 1.0; avg� 0.32),

Alert tcp $EXTERNAL_NETany -> $HOME_NET 80 (msg:”apache2
attack dos attack “; twoSecondsSameDstServiceSynErrorRate:≥1;
before100SameDstHostServiceSynErrorRate:≥0.84;duration:≥2100;

classtype:attempted-dos; sid:80015; rev:1)

before100SameDstHostServiceSynErrorRate
(min� 0; max� 0.84; avg� 0.12),

Duration
(min� 0; max� 2100, avg� 785),

protocol� tcp,
dst port� 80

Mailbomb

dst port� 25, Alert tcp $EXTERNAL_NET any -> $SMTP_SERVER 25 (msg:”
mailbomb dos attack”; twoSecondsSameDstServiceSessions: ≥247;

classtype:attempted-dos; sid:80018; rev:1)

twoSecondsSameDstServiceSessions (min� 2,
max� 247, avg� 240),

protocol� tcp,

Processtable

before100SameDstHostServiceSynErrorRate
(min� 0, max� 0.84, avg� 0.44), Alert tcp $EXTERNAL_NET any -> $HOME_NET 23 (msg:

”processtable dos attack
“;before100SameDstHostServiceSynErrorRate:≥0.84;duration:≥8233;

classtype:attempted-dos; sid:80021; rev:1)

Duration
(min� 0; max� 8233; avg� 5121),

dst port� 23,
protocol� tcp

Land
Sameip, Alert tcp $EXTERNAL_NETany -> $HOME_NET [79, 23](msg:”land

dos attack”; sameip; classtype:attempted-dos; sid:80003; rev:1;)dst port � (79, 23),
protocol� tcp

Note: 1For each Dos attack, this column mainly showed its rule keywords in descending order of priority. For keywords belonging to category rule options in
Snort, the keyword with higher priority is placed in the further front position of the generated rule. 2For UDP protocol, it does not support fragmentation, and
when the size of the resulting UDP datagram exceeds the link’s MTU, it will be fragmented into multiple IP packets in the network layer. ,erefore, when
generating the rule for detecting the teardrop attack, the IP is used to replace the UDP, which aims to find if there are overlap fragments among the ip
fragments of the UDP datagram. 3For the Neptune attacks, the service feature in the KDDCup’99 dataset contains 54 distinct values. In order to avoid the
generated Snort rule too long, the rule keyword, DST port is set well-known ports (0–1023).

14 Security and Communication Networks

5.6. Performance Comparison between Our Newly Generated
Rules and Jird Party Rules. At last, we evaluated the per-
formance of our newly generated rules compared with other
rules for detecting Dos/DDos attacks in [69, 70]. In

Reference [69], because the rules for detecting Dos attacks
mainly used the existing keywords which belong to the type
of Nonpayload Detection Rule Options in Snort, we called
them the “Nonpayload Option Rules,” denoted as NP. In
Reference [70], the rules mainly used the existing keyword,
detection_filter, which belongs to the type of Post-Detection
Rule Options in Snort, to describe the high frequency
characteristics of Dos/DDos attacks. ,erefore, we called
them the “Post-Detection Option Rules,” denoted as PD. In
this paper, we mainly used the newly added keywords which
belong to the type of aggregated keywords based on flow(s)-
level traffic to gain insights into the semantics of Dos/DDos
attacks. ,erefore, we called our newly generated rules the
“Aggregated Flow Level Rules” (denoted as AF) in which the
continuous type keywords used the≥max threshold range.

As shown in Figures 7 and 8, the “Aggregated Flow Level
Rules” got better performance of FPR and AR metrics than
“Non-payload Option Rules.” ,e “Aggregated Flow Level
Rules” got 1.5% FPR for detecting teardrop attack and 24.5%
FPR for detecting synflood attack separately, which were
lower than the corresponding 28.57% FPR and 48% FPR by
the “Nonpayload Option Rules,” and there are two reasons
for them. One is the aggregated keywords deriving from the
flow-level traffics used in “Aggregated Flow Level Rules,”
and these flow-level features can more accurately describe
the signatures of Dos attacks by comparing to the packet-
level keywords used in “Nonpayload Option Rules.” For
example, the rule for detecting teardrop attack in “Non-
payload Option Rules” (dos.rules file) is shown as follows:

Alert udp $EXTERNAL_NET any -> $HOME_NETany
(msg:”dos teardrop attack”;fragbits:M;id:242; reference:
bugtraq,124; reference:cve,1999-0015; reference:nes-
sus,10279) (NP1).

,is rule mainly detects the teardrop attack by simply
using the packet-level keyword, fragbits, to judge whether
the MF frag bit of the single packet header is set, and does
not consider the correlations among the packets in the same
flow. Obviously, this rule can inevitably cause false alarms
for normal fragments of the UDP datagram with the MF flag
bit setting. For the rule for detecting teardrop attack in
“Aggregated Flow Level Rules,” the newly generated rule
keyword, overlapfragment, which belonged to the flow-level
keyword was used to check offset overlaps among the IP
fragments of the same flow. ,erefore, compared to the
fragbits keyword, it can better describe the characteristics of
the teardrop attack. ,e rule for detecting the teardrop
attack in “Aggregated Flow Level Rules” is shown as follows.

Table 15: Datasets 12–18 for evaluating newly generated Snort rules.

Name
Connections

Total packets
Attacks Normals

Dataset-12: Smurf(.pcap) 1000 200 1400
Dataset-13: Processtable(.pcap) 1000 200 9600
Dataset-14: Apache2(.pcap) 1000 200 7000
Dataset-15: Neptune(.pcap) 1000 200 3000
Dataset-16: Mailbomb(.pcap) 1000 200 24000
Dataset-17: Land(.pcap) 1000 200 3000
Dataset-18: Teardrop(.pcap) 1000 200 2600

0

20

40

60

80

100

Th
e v

al
ue

 o
f f

al
se

 n
eg

at
iv

e r
at

e (
%

)

>20% >40% >60% >80%>min >max
The threshold ranges of statistical rule keywords

The False Positive Rate of Dos Attacks

Smurf
Processtable
Apache2

Neptune
Mailbomb

Figure 4: ,e false-positive rate of Dos attacks.

>20% >40% >60% >80%>min >max
�e threshold ranges of statistical rule keywords

0

10

20

30

40

50

60

70

Th
e v

al
ue

 o
f f

al
se

 n
eg

at
iv

e r
at

e (
%

)

The False Negative Rate of Dos Attacks

Smurf
Processtable
Apache2

Neptune
Mailbomb

Figure 5: ,e false-negative rate of Dos attacks.

Security and Communication Networks 15

alert ip $EXTERNAL_NET any -> $HOME_NET any
(msg:”teardrop dos attack”;overlapfragment;classtype:
attempted-dos; sid:80000; rev:1) (AF1).

,e other reason is that the high intensity and high
frequency of network traffic based on specific time intervals
are often the main characteristics of Dos/DDos attacks.
However, they are not involved in “Nonpayload Option
Rules.” For instance, the rule to detect synflood attack in
“Nonpayload Option Rules” (ddos.rules file).

alert tcp $EXTERNAL NET any <> $HOME NET
any(msg:”DDOS shaft synflood”;flow:stateless;flags:S,12;
seq:674711609;reference:arachnids,253;reference:cve,2000-
0138; classtype:attempted-dos; sid:241; rev:10;) (NP2).

,is rule has some faults. At first, the synflood attacks can
easily escape detection by changing the value of the TCP

sequence number. Furthermore, this rule mainly used the
flags keyword to check whether the syn flag bit of the TCP
datagram header is set, and the high frequency characteristics
of Dos/DDos attacks were not considered. As we know, the
normal syn TCP datagrams usually set the syn flag, which can
be mistaken as synflood attacks by using this rule. In our
“Aggregated Flow Level Rules,” the aggregated keywords
based on flows-level, twoSecondsSameDstHostServiceRate,
and twoSecondsSameDstHostSessions were used to reveal the
high-frequency patterns of the synflood attack, which greatly
reduced the FPR of Snort. One of our generated rules for
detecting the synflood attack was shown as follows.

alert tcp $EXTERNAL_NET any <> $HOME_NET 0:
1023 (msg: “Neptune same server dos atack”;twoSe-
condsSameDstHostServiceRate:≥1;sessionFlags:
S0,REJ,RST0;twoSecondsSameDstHostSessions:≥302;class-
type:attempted-dos; sid:80009; rev:1) (AF2).

Finally, we also evaluated the performance of our
“Aggregated Flow Level Rules” and “Post-Detection Option
Rules” in Reference [70]. Compared to the “Nonpayload
Option Rules” in Reference [69], the “Post-Detection Option
Rules” used the aggregated keyword, detection_filter, to
describe the high frequency characteristics of Dos/DDos
attacks, which led to the decrease of FPR. However, the
detection_filter keyword was based on packet-level traffics,
not based on flow(s)-level traffics, and it usually generates
many packet-level alarms for the complex attacks of which
activities span multiple flows. For example, the rule for
detecting mail bomb attacks in “Post-Detection Option
Rules” is shown as follows.

Alert tcp $EXTERNAL NET any -> $SMTP SERVER 25
(msg:”Possible Mail Bomb attack”;flags:A+;flow:established;
detection_filter:track by dst, count 2000, seconds 2;sid:
10003) (PD1).

Experimental results showed that the above rule gen-
erated about 89 packet-level alarms for each e-mail bomb

�e F0.5-measure of Dos Attacks

Smurf
Processtable
Apache2

Neptune
Mailbomb

65

70

75

80

85

90

95

�
e v

al
ue

 o
f F

0.
5-

m
ea

su
re

 (%
)

>20% >40% >60% >80%>min >max
�e threshold ranges of statistical rule keywords

Figure 6: ,e F0.5-score of Dos attacks.

Synflood AttackTeardrop Attack

�e Attack Name

Non-Payload Option Rules
Aggregated Flow Level Rules

0

10

20

30

40

50

�
e v

al
ue

 o
f F

al
se

 P
os

iti
ve

 R
at

e (
%

)

Figure 7: ,e false-positive rates of “Nonpayload Option Rules”
and “Aggregated Flow Level Rules”.

Non-Payload Option Rules
Aggregated Flow Level Rules

0

20

40

60

80

100

�
e v

al
ue

 o
f A

cc
ur

ac
y

Ra
te

 (%
)

Synflood AttackTeardrop Attack
�e Attack Name

Figure 8: ,e accuracy rates of “Nonpayload Option Rules” and
“Aggregated Flow Level Rules”.

16 Security and Communication Networks

attack after the number of packets reaches the upper limit of
the detection_filter keyword. However, the rules in “Ag-
gregated Flow Level Rules” used the aggregated keywords
based on flow(s)-level to describe the semantics of Dos
attacks. ,erefore, they can be usually triggered to generate
alerts by the flow-level record, not by each packet, which
greatly reduced the number of alarms by comparing to the
rules based on packet-level keywords, such as the rule for
detecting mail bomb attacks in “Aggregated Flow Level
Rules,” which is shown as follows.

Alert tcp $EXTERNAL NET any -> $SMTP SERVER 25
(msg:”Possible Mail Bomb attack”; twoSecondsSa-
meDstServiceSessions:≥247;classtype:attempted-dos;sid:
80018;rev:001) (AF3).

As shown in Figures 9 and 10, we found that our
“Aggregated Flow Level Rules” can generate fewer alarms
and consume less detection time when compared with the
“Post-Detection Option Rules.” For the mail bomb attacks in
1998 DARPA Intrusion Detection Evaluation Dataset [68],
experimental results showed that our “Aggregated Flow
Level Rules” only generated one alarm for each e-mail bomb
attack after the number of flows reaches the upper limit of
twoSecondsSameDstServiceSessions keyword, and the ratio of
alarm numbers generated by “Aggregated Flow Level Rules”
and “Post-Detection Option Rules” is about 1 : 89. In ad-
dition, Figure 10 shows that our newly generated rules can
consume less detection time compared with rules in “Post-
Detection Option Rules.” ,is is mainly because the flow(s)-
level keywords which are used in our newly generated rules
effectively reduce the false alarm rate and the number of
excessive alerts, and then improve the time efficiency of the
detection engine of Snort.

6. Additional Points and Future Work

,is paper analyzed the reasons why the ML/DM ap-
proaches are rarely deployed in the real-world network
intrusion detection environment and pointed out that there
is a gap between the strength and requirements of machine
learning and network operational semantics and properties.
Compared with the traditional ML/DM methods aiming to
build more accurate classification models, this paper focuses
on how to close the last-mile gap. We proposed the in-
trusion-specific approach to convert the selected features by
using the LCC-RF-RFEX method in the network attack-
specific building blocks and then generating the detection
patterns by using them in the signature-based IDS. Finally,
to substantiate our approach, we took Snort, KDDCup’99
dataset, and Dos attacks as experimental subjects to dem-
onstrate the feasibility of our method. Compared to the full
features, the Decision Tree models based on the selected
features by using our proposed LCC-RF-RFEX method
achieved better performance in terms of detection accuracy
(average 1.37% increases), false-positive rate (average 0.14%
decreases), training time (average 0.07s decreases), and
testing time (average 0.05s decreases). In addition, the
proposed LCC-RF-RFEX approach improved the average
accuracy rate of Dos attacks by 3.56%, Probe attacks by
1.83%, U2R attacks by 1.39%, and R2L attacks by 9.31%

when it is compared with the recent feature selection
methods.

Furthermore, we also provided the intrusion-specific
approach to add the new rule flow(s)-level key-
words(building blocks) and generated new rules for
detecting Dos attacks in Snort. ,e experimental results
indicated that the newly generated rules can expand the
abilities of Snort for detecting Dos attacks. Furthermore,
compared with “Nonpayload Option Rules” and “Post-
Detection Option Rules,” our newly generated rules effec-
tively reduced the false-positive rate and numbers of ex-
cessive alarms of the several types of Dos attacks. On
average, a reduction of up to 25.28% false-positive alerts for
Teardrop attacks and Synflood attacks, and a reduction of up
to 98.87% excessive alerts for Mailbomb attacks were
achieved in the experiments.

At present, we only finished extracting key features from
the labeled dataset and converting them into building blocks

50000

100000

150000

200000

250000

�
e n

um
be

r o
f a

le
rt

1000 2500 3000500 1500 2000
�e number of email bomb attack session

Aggregated Flow Level Rules
Post-Detection Option Rules

Figure 9: ,e Number of Alerts generated by “Aggregated Flow
Level Rules” and “Post-Detection Option Rules”.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
�

e c
on

su
m

pt
io

n
tim

e (
s)

1000 2500 3000500 1500 2000
�e number of email bomb attack session

Aggregated Flow Level Rules
Post-Detection Option Rules

Figure 10: ,e processing time of “Aggregated Flow Level Rules”
and “Post-Detection Option Rules”.

Security and Communication Networks 17

of an operational network IDS. However, for unlabeled
network traffic, how to use semi-supervised learning or
unsupervised learning technology to extract patterns of the
novel or unknown attacks, and then convert them into
building blocks to augment the function of the signature-
based IDS, is a problem to be solved. Moreover, how to
design an agent which can help signature-based IDS con-
tinuously expand its ability to detect attacks bymining attack
signatures from the real-time network traffics is also a
problem to be solved in future work.

Data Availability

,e download URL of all the datasets (Dataset1–18) in this
manuscript (id:3990386, title: Bridging the Last-Mile Gap in
Network Security via Generating Intrusion-Specific Detection
Patterns through Machine Learning) is https://github.com
/jacky-sunxibin/modified-snort/tree/master/dataset. Among
the Dataset1–18, Dataset1–4 for evaluating feature selection
methods and Dataset5–11 For selecting features of the Dos
attacks mainly come from the KDDCup’99 dataset (UR
L: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html),
and Dataset12–18 for evaluating the newly generated rules
come from the 1998 DARPA Intrusion Detection Evaluation
Dataset (URL: https://www.ll.mit.edu/r-d/datasets/1998-darpa-
intrusion-detection-evaluation-dataset).

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported in part by the grant of 045/2016/A2
and by the grant of 0025/2019/AKP fromMacau Science and
Technology Foundation.

References

[1] V. Kumar and D. O. P. Sangwan, “Signature-based intrusion
detection system using SNORT,” Int.J.Comput.p-
pl.Inf.Technol, vol. 1, no. 3, pp. 35–41, 2012.

[2] M. Mishin, Anomaly Detection Algorithms and Techniques for
Network Intrusion Detection Systems, ,esis Submitted for
Examination for the Degree of Master of Aalto University
School of Science, Espoo Finland, 2020.

[3] R. Sommer and V. Paxson, “Outside the closed world: on
using machine learning for network intrusion detection,” in
Proceedings of the IEEE Symposium on Security and Privacy,
pp. 305–316, Oakland, CA, USA, May 2010.

[4] S. Ganapathy, K. Kulothungan, S. Muthuraj,
M. Vijayalakshmi, P. Yogesh, and A. Kannan, “Intelligent
feature selection and classification techniques for intrusion
detection in networks: a survey,” EURASIP Journal on
Wireless Communications and Networking, vol. 271, no. 1,
pp. 1–16, 2013.

[5] R. Srivastava and V. Richhariya, “Survey of current network
intrusion detection techniques,” Journal of Information En-
gineering and Applications, vol. 3, no. 6, pp. 27–33, 2013.

[6] H. Wang, J. Gu, and S. Wang, “An effective intrusion de-
tection framework based on SVM with feature

augmentation,” Knowledge-Based Systems, vol. 136, pp. 130–
139, Nov.2017.

[7] MG. Raman, N. Somu, S. Jagarapu et al., “An efficient in-
trusion detection technique based on support vector machine
and improved binary gravitational search algorithm,” Arti-
ficial Intelligence Review, vol. 52, pp. 3255–3286, 2019.

[8] Y. Chang, W. Li, and Z. Yang, “Network intrusion detection
based on random forest and support vector machine,” in
Proceedings of the IEEE Int. Conf. Comput. Sci. Eng./IEEE Int.
Conf. Embedded Ubiquitous Computing, pp. 635–638,
Guangzhou, China, July. 2017.

[9] P. Tao, Z. Sun, and Z. Sun, “An improved intrusion detection
algorithm based on ga and SVM,” IEE Access, vol. 6,
pp. 13624–13631, 2018.

[10] M. Al-Qatf, M. Alhabib, and K. Al-Sabahi, “Deep learning
approach combining sparse autoen-coder with SVM for
network intrusion detection,” IEEE Access, vol. 6,
pp. 52843–52856, 2018.

[11] B. Ingre, A. Yadav, and A. K. Soni, “Decision tree based
intrusion detection system for NSL-KDD dataset,” in Pro-
ceedings of the Information and Communication Technology
for Intelligent Systems (ICTIS 2017) - Volume 2, S. C. Satapathy
and A. Joshi, Eds., , Ahmedabad, India, March 2017.

[12] K. Bajaj and A. Arora, “Improving the intrusion detection
using discriminative machine learning approach and improve
the time complexity by data mining feature selection
methods,” International Journal of Computer Applications,
vol. 76, no. 1, pp. 5–11, 2013.

[13] A. Ahmim, M. A. Ferrag, L. Derdour, and H. Janicke, “A
detailed analysis of using supervised machine learning for
intrusion detection,” in Strategic Innovative Marketing and
Tourism, pp. 629–639, 2020.

[14] R. Panigrahi and S. Borah, “Rank allocation to J48 group of
decision tree classifiers using binary and multiclass intrusion
detection datasets,” Procedia Computer Science, vol. 132,
pp. 323–332, 2018.

[15] R. H. Hwang, M.-C. Peng, V.-L. Nguyen, and Y.-L. Chang,
“An LSTMbased deep learning approach for classifying
malicious traffic at the packet level,” Applied Sciences, vol. 9,
no. 16, p. 3414, Aug. 2019.

[16] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural networks for
representation learning,” in Proceedings of the 31st Interna-
tional Conference on Information Networking, pp. 712–717, Da
Nang, Vietnam, January 2017.

[17] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks,”
IEEE Access, vol. 5, pp. 21954–21961, 2017.

[18] M. Sheikhan, Z. Jadidi, and A. Farrokhi, “Intrusion detection
using reduced-size RNN based on feature grouping,” Neural
Computing & Applications, vol. 21, no. 6, pp. 1185–1190, 2012.

[19] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of
network anomaly detection techniques,” Journal of Network
and Computer Applications, vol. 60, pp. 19–31, 2016.

[20] S. Eltanbouly and M. Bashendy, “Machine learning tech-
niques for network anomaly detection: a survey,” in Pro-
ceedings of the IEEE International Conference on Informatics,
IoT, and Enabling Technologies (ICIoT), Doha, Qatar, Feb-
ruary 2020.

[21] M. Mahoney and P. K. Chan, “PHAD: packet header anomaly
detection for identifying hostile network traffic,” Florida Tech,
technical report CS-2001-04, 2001.

18 Security and Communication Networks

https://github.com/jacky-sunxibin/modified-snort/tree/master/dataset
https://github.com/jacky-sunxibin/modified-snort/tree/master/dataset
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset

[22] M. Mahoney and P. K. Chan, “Learning nonstationary models
of normal network traffic for detecting novel attacks,” Florida
Tech, technical report CS-2001-06, 2002.

[23] S. Staniford, J. Hoagland, and J. McAlerney, “Practical au-
tomated detection of stealthy portscans,” Journal of Computer
Security, vol. 10, no. 1, 2002.

[24] M. Zhang, B. Xu, and J. Gong, “An anomaly detection model
based on one-class svm to detect network intrusions,” in
Proceedings of the 11th International Conference on Mobile
Ad-hoc and Sensor Networks (MSN), pp. 102–107, IEEE,
Shenzhen, China, December 2015.

[25] M. Ahmed, M. Mahfouz, and A. Abuhussein, “Network in-
trusion detection model using one-class support vector ma-
chine,” in Advances in Machine Learning and Computational
Intelligence, pp. 79–86, 2020.

[26] M. Roesch, “Snort-light weight intrusion detection for net-
works,” in Proceedings of the LISA’99:13th Systems Admin-
istration Conference, Seattle, Washington, USA, November
1999.

[27] D. Day and B. Burns, “A performance analysis of Snort and
Suricata network intrusion detection and prevention en-
gines,” in Proceedings of the 5th Int. Conf. Digit. Society,
Derby, UK, 1875.

[28] A. Gul and E. Adali, “A feature selection algorithm for IDS,”
in Proceedings of the (UBMK17) 2nd International Conference
on Computer Science and Engineering, pp. 816–819, Antalya,
Turkey, October 2017.

[29] M. B. Shahbaz and X. Wang, “On efficiency enhancement of
the correlation-based feature selection for intrusion detection
systems,” in Proceedings of the IEEE 7th Annual Information
Technology, Electronics and Mobile Communication
Conference(IEMCON), Vancouver, BC, Canada, October
2016.

[30] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-
Betanzos, “Feature selection and classification in multiple
class datasets: an application to KDD Cup 99 dataset,” Expert
Systems with Applications, vol. 38, no. 5, pp. 5947–5957, 2011.

[31] R. Battiti, “Using mutual information for selecting features in
supervised neural net learning,” IEEE Transactions on Neural
Networks, vol. 5, no. 4, pp. 537–550, 1994.

[32] N. Kwak and C.-H. Chong-Ho Choi, “Input feature selection
for classification problems,” IEEE Transactions on Neural
Networks, vol. 13, no. 1, pp. 143–159, 2002.

[33] F. Amiri, M. Rezaei Yousefi, C. Shakery, and N. Yazdani,
“Mutual information-based feature selection for intrusion
detection systems,” Journal of Network and Computer Ap-
plications, vol. 34, no. 4, pp. 1184–1199, 2011.

[34] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an
intrusion detection system using a filter-based feature se-
lection algorithm,” IEEE Transactions on Computers, vol. 65,
no. 10, pp. 2986–2998, 2016.

[35] F. Zhao, J. Zhao, X. Niu, and S. Luo, “A filter feature selection
algorithm based on mutual information for intrusion de-
tection,” Applied Sciences, vol. 8, no. 9, pp. 15–35, 2018.

[36] K. K. Gupta, B. Nath, and R. Kotagiri, “Layered approach
using conditional random fields for intrusion detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 7,
no. 1, pp. 35–49, 2010.

[37] S. Ganapathy, P. Vijayakumar, P. Yogesh, and K. Arputharaj,
“An intelligent CRF based feature selection for effective in-
trusion detection,” Je International Arab Journal of Infor-
mation Technology, vol. 13, no. 1, pp. 46–50, 2016.

[38] B. Kumar and T. Swarnkar, “Filter versus wrapper feature
subset selection in large dimensionality microarray: a review,”

International Journal of Computer Science and Information
Technologies, vol. 2, no. 3, pp. 1048–1053, 2011.

[39] M. A. M. Hasan, M. Nasser, S. Ahmad, and K. I. Molla,
“Feature selection for intrusion detection using random
forest,” Journal of Information Security, vol. 07, no. 03,
pp. 129–140, 2016.

[40] O. Y. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P. D. Yoo,
S. Muhaidat, and K. Kim, “Machine-learning-based feature
selection techniques for large-scale network intrusion de-
tection,” in Proceedings of the International Conference on
Distributed Computing Systems Workshops, pp. 177–181,
Madrid, Spain, July 2014.

[41] B. Selvakumar and K. Muneeswaran, “Firefly algorithm based
feature selection for network intrusion detection,” Computers
& Security, vol. 83, pp. 148–155, 2018.

[42] F. H. Almasoudy, W. L. Al-Yaseen, and A. K. Idrees, “Dif-
ferential evolution wrapper feature selection for intrusion
detection system,” Procedia Computer Science, vol. 167,
pp. 1230–1239, 2020.

[43] H. Alazzam, A. Sharieh, and K. Eddin Sabri, “A feature se-
lection algorithm for intrusion detection system based on
Pigeon Inspired Optimizer,” Expert Systems with Applications,
vol. 148, Article ID 113249, 2020.

[44] B. Riyaz and S. Ganapathy, “Intrusion detection using dy-
namic feature selection and fuzzy temporal decision tree
classification for wireless sensor networks,” IET Communi-
cations, vol. 14, no. 5, pp. 888–895, 2020.

[45] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and
H. Karimipour, “Cyber intrusion detection by combined
feature selection algorithm,” Journal of Information Security
and Applications, vol. 44, pp. 80–88, 2019.

[46] A. Mohammed and X. He, “A novel feature selection ap-
proach for intrusion detection data classification,” in Pro-
ceedings of the IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications,
Beijing, China, September 2014.

[47] B. Riyaz and S. Ganapathy, “A deep learning approach for
effective intrusion detection in wireless networks using CNN,”
Soft Computing, vol. 24, no. 22, pp. 17265–17278.

[48] A. Gharib, I. Sharafaldiny, A. Habibi Lashkari, and
A. A. Ghorbani, “An evaluation framework for intrusion
detection dataset,” in Proceedings of the Int. Conf. Inf. Sci.
Secur. (ICISS), pp. 1–6, Pattaya, ,ailand, December 2016.

[49] K. Wang, M. Cai, and Y. Chen, “Hybrid intrusion detection
with weighted signature generation over anomalous internet
episodes,” IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 1, pp. 41–55, 2007.

[50] K. J. Sahana Devi and M. Bharathi, “Hybrid intrusion de-
tection with weighted signature generation,” International
Journal of Computer Applications in Engineering Sciences,
vol. 1, no. IV, 2011.

[51] N. Khamphakdee, N. Benjamas, N. Benjamas, and S. Saiyod,
“Improving intrusion detection system based on snort rules
for network probe attacks detection with association rules
technique of data mining,” Journal of ICT Research and
Applications, vol. 8, no. 3, pp. 234–250, 2015.

[52] M. Naga Surya Lakshmi and Y. Radhika, “Detection and
analysis of network intrusions using data mining approaches,”
International Journal of Applied Engineering Research, ISSN
0973-4562, vol. 13, no. 6, pp. 4059–4066, 2018.

[53] U. Aickelin, J. Twycross, and T. H. Roberts, “Rule general-
isation in intrusion detection systems using SNORT,” In-
ternational Journal of Electronic Security and Digital Forensics,
vol. 1, no. 1, pp. 101–116, 2007.

Security and Communication Networks 19

[54] A. Ganesan, P. Parameshwarappa, A. Peshave, Z. Chen, and
T. Oates, “Extending signature-based intrusion detection
systems with Bayesian abductive reasoning,” Learn. Intell.
Cyber Secur. (DYNAMICS) Workshop, vol. 10, pp. 1–10, 2018,
https://arxiv.org/abs/1903.12101.

[55] A. Garg and P. Maheshwari, “A hybrid intrusion detection
system: a review,” in Proceedings of the 10th International
Conference on Intelligent Systems and Control (ISCO), pp. 1–5,
Coimbatore, India, January 2016.

[56] S. Biles, Detecting the Unknown with Snort and the Statistical
Packet Anomaly Detection Engine (SPADE), Computer Security
Online Ltd., 2003, https://www.computersecurityonline.com/
spade/SPADE.pdf.

[57] J. Gomez, C. Gil, N. Padilla, R. Banos, and C. Jiménez, “Design
of a snort-based hybrid intrusion detection system,” in Pro-
ceedings of the 10th International Work-Conference on Arti-
ficial Neural Networks, IWANN 2009 Workshops, vol. 5518,
p. 515pu22, Salamanca, Spain, June 2009.

[58] D. Ocampo, T. M. del Castillo, andM. A. Gomez, “Automated
signature creator for a signature based intrusion detection
system (pancakes),” in Proceedings of the 2nd International
Conference on Cyber Security Peace Fare and Digital Forensic,
pp. 198–205, Kuala Lumpur, Malaysia, March 2013.

[59] Ö Cepheli, S. Büyükçorak, and G. K. Kurt, “Hybrid intrusion
detection system for DDoS attacks,” Journal of Electrical and
Computer Engineering, vol. 2016, Article ID 1075648, 8 pages,
2016.

[60] L. Zhang, J. Zhang, Y. Chen, and S. Lao, “Hybrid intrusion
detection based on data mining,” in Proceedings of the 11th
International Conference on Intelligent Computation Tech-
nology and Automation, Changsha, China, September 2018.

[61] C. Kruegel and T. Toth, “Using decision trees to improve
signature-based intrusion detection,” Lecture Notes in Com-
puter Science, in Proceedings of the 6th Int. Workshop Recent
Adv. Intrusion Detect, pp. 173–191, Pittsburgh, PA, USA,
September 2003.

[62] B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, “A survey of
network flow applications,” Journal of Network and Computer
Applications, vol. 36, no. 2, pp. 567–581, 2013.

[63] M. A. Hall, Correlation-based Feature Selection for Machine
Learning, Ph.D. thesis, University of Waikato, Hamilton, New
Zealand, 1999.

[64] R. Taylor, “Interpretation of the correlation coefficient: a basic
review,” Je Journal of Defence Modelling and Simulation,
vol. 6, no. 1, pp. 35–39.

[65] N. Farnaaz and MA. Jabbar, “Random forest modeling for
network intrusion detection system,” Procedia Computer
Science, vol. 89, pp. 213–217, 2016.

[66] W. Lee, S. J. Stolfo, and K. W. Mok, “Adaptive intrusion
detection: a data mining approach,” Artificial Intelligence
Review, vol. 14, no. 6, pp. 533–567, 2000.

[67] L. Xin, Y. Peng, J. Yiming, and L. Tian, “LNNLS-KH: a feature
selection method for network intrusion detection,” Security
and Communication Networks, vol. 2021, Article ID 8830431,
22 pages, 2021.

[68] J. McHugh, “Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by Lincoln Laboratory,” ACM
Transactions on Information and System Security, vol. 3, no. 4,
pp. 262–294, 2000.

[69] Eldon, Je GitHub URL of the Dos Attacks, https://github.
com/eldondev/Snort.

[70] A. Gupta and L. S. Sharma, “Mitigation of dos and port scan
attacks using snort,” International Journal of Computer Sci-
ence and Engineering, vol. 7, no. 4, pp. 248–258, 2019.

20 Security and Communication Networks

https://arxiv.org/abs/1903.12101
https://www.computersecurityonline.com/spade/SPADE.pdf
https://www.computersecurityonline.com/spade/SPADE.pdf
https://github.com/eldondev/Snort
https://github.com/eldondev/Snort

