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Blockchain technology has been widely applied in numerous industries with its decentralization, verifiability, distributivity, and
immutability. However, the identity privacy security of blockchain users is facing serious threats because of the openness of
traditional blockchain transaction information. Moreover, numerous traditional cryptographic algorithms used by blockchain
transaction networks are difficult to attack quantum computing. In this paper, we propose a new lattice-based blind ring signature
scheme in allusion to completely anonymous blockchain transaction systems. ,ere into, the blind ring signature can implement
the complete anonymity of user identity privacy in blockchain transactions. Meanwhile, lattice cryptography can availably resist
quantum computing attacks. Firstly, the proposed signature scheme has strong computational security based on the small integer
solution (SIS) problem and a high sampling success rate by utilizing the techniques of rejection sampling from bimodal Gaussian
distribution. Secondly, the proposed signature scheme can satisfy the correctness and security under the random oracle model,
including anonymity, blindness, and one-more unforgeability.,irdly, we construct a blockchain transaction system based on the
proposed blind ring signature algorithm, which realizes the completely anonymous and antiquantum computing security of the
blockchain users’ identity privacy. Finally, the performance evaluation results show that our proposed blind ring signature scheme
has lower latency, smaller key size, and signature size than other similar schemes.

1. Introduction

Blockchain has gained much attention that is widely used in
digital currency, medical, government services, and other
applications, however, the security problems of blockchain
have become increasingly prominent in recent years. As the
data information needs to be jointly maintained by each
node in the blockchain distributed network, it requires that
the transaction information must be public, which will lead
to the disclosure of personal identity privacy data. In many
classical blockchain systems represented by Bitcoin [1], users
utilize a string of numbers unrelated to their real identity
information as the transaction address, which preliminarily
realizes the anonymity of identity privacy. Unfortunately,
because transactions in the Bitcoin network can be linked,
attackers can discover users’ real identity information by
their blockchain addresses [2, 3]. ,erefore, to realize the

veritable anonymity of the users’ identity privacy, it is
necessary to ensconce the relationship between users and
their corresponding blockchain addresses.

,e anonymity of identity information can be realized by
ring signature and blind signature cryptography algorithms.
Ring signature, developed from group signature [4], was first
proposed by Rivest [5] in 2001. In the ring signature scheme,
multiple users spontaneously constitute a ring and then
randomly choose a member in the ring to sign the message.
,e signer uses his secret key and ring public keys of all
members to generate a legal and valid ring signature. ,e
ring signature prevents the exposure of the actual signer and
invariably protects the signer’s identity privacy. Another
algorithm that can provide anonymity is the blind signature,
which was first proposed by Chaum [6] in 1983. In the blind
signature scheme, the signer can sign the message in case of
unknowing the true content of the signature file. ,e sign
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holder sends the blinded message to the signer for signature.
,e blind signature guarantees that signers hardly infer sign
holders’ real identity information through the blind mes-
sage, which effectively protects sign holders’ identity in-
formation privacy. In the blockchain transaction network,
numerous anonymous transaction schemes are based on
blind signature or ring signature [7–9]. However, the ring
signature or blind signature can only guarantee the ano-
nymity of a single user participating in the blockchain
transaction, which cannot protect the identity privacy of
both parties at the same time. To satisfy the complete an-
onymity of blockchain transaction users’ identity privacy, it
is significant to establish a blind ring signature scheme
suitable for complete anonymous blockchain transactions.
In 2005, Chan et al. [10] first proposed a blind ring signature
algorithm, and since then, numerous blind ring signature
schemes have been designed [11–13].

,e security of traditional signature algorithms depends
on integer decomposition, discrete logarithm and bilinear
equivalent mathematical problems. Unfortunately, quantum
computing can easily solve traditional difficult mathematical
problems. Shor [14] proposed a quantum algorithm that lets
RSA cryptography, elliptic curve cryptography, and cryp-
tosystems based on bilinear pairings face serious security
challenges. Grover [15] proposed a quantum search algo-
rithm that could provide secondary acceleration for search
problems, which seriously threatened the security of sym-
metric cryptography and the Hash function.,erefore, it is a
key research work to find a cryptosystem that can resist
quantum computing attacks.

Lattice cryptography is a kind of antiquantum com-
puting cryptography with strong security and high com-
putational efficiency, which is widely used in digital
signature algorithm design and blockchain transaction
networks. Gentry et al. [16] first designed a signature al-
gorithm with lattice trapdoor sampling, whose security
depends on solving the SIS problem. Lyubashevsky [17]
proposed a signature scheme without trapdoor sampling,
which uses rejection sampling to greatly improve the
sampling efficiency. Ducas et al. [18] designed a new sig-
nature algorithm with lattice rejection sampling, which
further improves the sampling success rate through random
sampling on bimodal Gaussian distribution. In 2018, Gao
et al. [19] first proposed a postquantum blockchain system,
which integrated a lattice-based signature algorithm. In
2022, Zou et al. [20] proposed a lattice-based proxy signature
scheme for anonymous blockchain-enabled electronic
reporting systems, which not only realized the anonymity of
user identity but also solved the problem of misbehaviors
untraceability on the blockchain. Moreover, Rückert [21]
proposed the first blind lattice-based signature algorithm. Li
et al. [22] proposed a new blind signature algorithm applied
in blockchain anonymous transaction authentication on the
lattice. In addition, Melchor et al. [23] designed the first ring
signature algorithm based on lattice cryptography. To fur-
ther improve the sampling success rate, Wang et al. [24]
designed a new ring signature algorithm using

Lyubashevsky’s rejection sampling signature [17]. In 2019,
Le et al. [25] designed the first blind ring signature algorithm
based on the SIS problem with rejection sampling. More-
over, numerous lattice-based blind signature and ring sig-
nature schemes have been proposed [26, 27].

In this paper, we design a new lattice-based blind ring
signature algorithm in allusion to the completely anonymous
blockchain transaction system. ,e constructed transaction
system satisfies the requirements of the user’s identity privacy
protection and resistance to quantum attacks. ,ere are three
main contributions, which are as follows:

(1) We propose a new lattice-based blind ring signature
algorithm using the rejection sampling technology.
Sampling on the bimodal Gaussian distribution can
greatly improve the success rate. In addition, we give
proof of correctness and security under the random
oracle model, including anonymity, blindness, and
one-more unforgeability.

(2) We construct a completely anonymous blockchain
transaction system based on the proposed blind ring
signature and provide detailed processes of the
anonymous transaction. ,e system satisfies the goal
of blockchain users’ identity privacy protection and
antiquantum computing security.

(3) We evaluate the performance of the proposed sig-
nature algorithm with other similar literature
schemes, including the sampling method, algorithm
latency, the size of the signature, and secret and
public keys. ,e evaluation results indicate that our
proposed scheme has lower latency and smaller key
and signature sizes than other similar schemes.

,e organization of this paper is as follows: we present
some lattice theories and the blind ring signature’s definition
and security model in Section 2. In Section 3, a new lattice-
based blind ring signature is designed. In Section 4, we prove
the security of our signature algorithm. We construct a
completely anonymous blockchain transaction system based
on the proposed blind ring signature in Section 5. ,e
performance evaluation of signature algorithms is shown in
Section 6. Finally, we provide a conclusion of the paper in
Section 7.

2. Preliminaries

2.1. Some Related +eories of Lattice

Definition 1 (Lattice [28]). Given amatrixB ∈ Rm×n consists
of a group of m-dimensional linearly independent vectors
b1,. . ., b2, . . . bn. where m≥ n Define latticeΛ generated by B
as the set.

Λ(B) � Bx | x ∈ Zn
􏼈 􏼉. (1)

Given a prime number q, a matrixA ∈ Zn×m
q , and e ∈ Zn

q,
define some q-ary lattices.
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Λq(A) � y ∈ Zm
| y ∈ ATxmod q, x ∈ Zn

􏽮 􏽯,

Λ⊥q (A) � y ∈ Zm
|Ay � 0mod q􏼈 􏼉,

Λe
q(A) � y ∈ Zm

|Ay � emod q􏼈 􏼉.

(2)

Definition 2 (Discrete Gaussian Distribution [17]). Define
Dm

v,σ(z) � ρm
v,σ(z)/ρm

v,σ(Zm) as a discrete Gaussian distribu-
tion, where ρm

v,σ(z) � (1/
����
2πσ2

√
)me− ‖z− v‖2/(2σ2) and

ρm
v,σ(Zm) � 􏽐z∈Zmρm

σ (z).

Definition 3 (SIS problem). Given a random matrix
A ∈ Zn×m

q and parametersm, n, q, β, the SISq,n,m,β problem is
to find a nonzero integer vector v ∈ Zm

q , such that Av �

0(mod q) and ‖v‖≤ β.

Lemma 1 (see [17]). For any v ∈ Rm, σ > 0, k> 1, it satisfies
the following:

Pr ‖z‖> kσ
��
m

√
; z←D

m
σ􏼈 􏼉≤ k

m
e

(m/2) 1− k2( ). (3)

Lemma 2 (see [17]). For any v ∈ Zm, σ � α‖v‖, α> 0, it
satisfies the following:

Pr
D

m
σ (z)

D
m
v,σ(z)
< e

(12/α)+ 1/ 2α2( )( ): z←D
m
σ􏼨 􏼩> 1 − 2− 100

. (4)

More specially, if α � 12, σ � 12‖v‖, then (Dm
σ (z)/

Dm
v,σ(z))< e1+(1/288) with a probability of at least 1 − 2− 100.

Lemma 3 (Rejection Sampling [17]).Select a random vector
v ∈ Zm and a real number σ � ω(t

�����
logm

􏽰
), given a subset

V � v ∈ Zm: ‖v‖< t{ }, and define on V a probability distri-
bution h: V⟶ R. +en, there exists a constant M � O(1)

such that the outputs of the following two algorithms A and B
have a negligible statistical distance of Δ(A,B) �

2− ω(logm)/M:

Algorithm A: v←h, z←Dm
v,σ , output (z, v) with proba-

bility min(Dm
σ (z)/(MDm

v,σ(z)), 1).
Algorithm B: v←h, z←Dm

σ , output (z, v) with proba-
bility 1/M.

Moreover, the probability that the algorithm A outputs
something is at least (1 − 2− ω(logm))/M.

More specially, if σ � αt for any α> 0, then M �

e(12/α)+(1/(2α2)). ,e two algorithms A and B have a negligible
statistical distance off Δ(A,B) � 2− 100/M, and the proba-
bility that A outputs something is at least (1 − 2− 100)/M.

2.2. Blind Ring Signature Model

2.2.1. System Model. ,e blind ring signature system model
is composed of four parts called setup, key generation,
signature, and verification [25]. ,e detailed steps are as
follows:

Setup. Input a security parameter n and output public
parameters PP.
Key generation. Generate public key pk and secret key
sk for each member of the ring R � S1,S2, . . . ,Sl􏼈 􏼉

according to the input set of public parameters PP.
Signature.,e userΥ submits a messagem and blinds it
to μ before sending the message to the signer. ,en, the
ring R chooses a signer Σj, who takes the secret key skj.
,e signer Σj signs the message μ and generates a
blinded signature Σ′. ,e user Υ unblinds Σ′ and gets
the real signature Σ.
Verification. Output 1 or 0 according to the public
parameters PP, message m, signature Σ, and ring public
keys PK � pki􏼈 􏼉i∈[l]. ,e output of 1 means that the
verification is passed, and 0 indicates that it is otherwise.

2.2.2. Security Model. ,e security model of the blind ring
signature includes anonymity, blindness, and one-more
unforgeability.

Anonymity: the anonymity property ensures that the
user cannot know which member of the ring was the real
signer participating in the blind ring signature protocol. For
any polynomial-time adversary, the blind ring signature
scheme satisfies the anonymity under full key exposure if his
advantage in winning the following game with the challenger
is negligible.

(1) Setup: assume n to be the system security param-
eter. ,e challenger calls the setup algorithm in the
blind ring signature scheme to generate the set of
common parameters PP. ,en, according to the
common parameters PP, the challenger calls the key
generation algorithm to generate a set of public and
secret keys (PK, SK) for the ring
R � S1,S2, . . . ,Sl􏼈 􏼉. ,e challenger sends the set of
common parameters PP and public key PK to the
adversary .

(2) Query: the adversary submits a message m, a ring R,
an index I, and the corresponding public key pki to
the challenger . ,e challenger queries the corre-
sponding secret key ski according to the index I and
then calls the signature algorithm to generate a
blinded signature Σi′ on m for the adversary .

(3) Challenge: the adversary submits a messagem, a ring
R, and two public keys pkib

∈ R to the challenger for
the signature query, where b ∈ 0, 1{ }. ,e challenger
chooses a random bit b ∈ 0, 1{ }. ,en, it uses the
secret key skib

and calls the signature algorithm to
generate a blinded signature Σi′ on m and returns Σi′
to the adversary .

(4) Guess: the adversary outputs a bit b′ as a guess of the
random bit b. He wins the game if b′ � b.
,e advantage of the adversary in the above game is
defined as follows:

Advanonymity
BRS (A) � Pr b′ � b􏼈 􏼉 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (5)
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Blindness: it is a basic attribute of the blind ring
signature, i.e., all members in the ring cannot know
any information about the message to be signed. In
other words, the attacker cannot distinguish the
original signature of which message a blind ring
signature comes from. For any polynomial-time ad-
versary , the blind ring signature scheme satisfies the
statistical blindness if his advantage in winning the
following game with the challenger is negligible.

(1) Setup: assume n to be the system security parameter.
,e challenger calls the setup algorithm in the blind
ring signature scheme to generate the set of common
parameters PP. ,en, according to the common pa-
rameters PP, the challenger calls the key generation
algorithm to generate a set of public and secret keys
(PK, SK) for the ring R � S1,S2, . . . ,Sl􏼈 􏼉. ,e
challenger sends the set of common parameters PP
and public key PK to the adversary .

(2) Challenge: the adversary α chooses two different
blinded messages μ0 and μ1, a subring R′ ∈ R, and its
corresponding public keys PK to send it to the
challenger . ,e challenger chooses a random bit
b ∈ 0, 1{ }, then sets up a blind ring signature protocol
taking μb and the ring R′ as input. ,e adversary
chooses a signer Σj in the ring R′ to sign the hidden
blinded message μb. Finally, the adversary obtains
the unblinded signature Σb ≠⊥, otherwise, it restarts
this game.

(3) Guess: the adversary outputs a bit b′ as a guess of the
random bit b. He wins the game if b′ � b.
,e advantage of the adversary in the above game is
defined as follows:

AdvblindnessBRS (A) � Pr b′ � b􏼈 􏼉 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (6)

One-more unforgeability: the one-more unforge-
ability property ensures that the attacker cannot
successfully forge a new correct signature through
multiple signature inquiries. For any polynomial-
time adversary , the blind ring signature scheme
satisfies the one-more unforgeability if his proba-
bility of winning the following game with the
challenger is negligible.

(1) Setup: assume n to be the system security parameter.
,e challenger calls the setup algorithm in the blind
ring signature scheme to generate the set of common
parameters PP. ,en, according to the common
parameters PP, the challenger calls the Key gener-
ation algorithm to generate a set of public and secret
keys (PK, SK) for the ring R � S1,S2, . . . ,Sl􏼈 􏼉. ,e
challenger sends the set of common parameters PP
and public key PK to the adversary . ,e secret key
SK cannot be disclosed.

(2) Query: the adversary submits a message m, a ring R,
and its corresponding public keys PK. ,en, adap-
tively, it makes multiple hash queries and blind ring
signature queries to the challenger . ,e challenger

must return the hash value H(m) and signature
value Σ of the corresponding message m to the
adversary .

(3) Forge: the adversary uses the result of multiple
queries to forge Σ∗ of the target message m∗. One-
more unforgeability requires that the pair (m∗,Σ∗)
has never passed the signature verification algorithm.

3. Proposed Blind Ring Signature Algorithm

Our proposed blind ring signature algorithm includes five
parts: key generation, message blinded, signature, unblind,
and verification.

Key generation. Assume n is a system security parameter.
We generate the common parameter PP, which has been se-
lected by the same methodology of Li’s scheme [22]. ,e in-
dependent public and secret key pairs (Ai, Si) for each signer
Si, i ∈ [l] of the ring R � S1,S2, . . . ,Sl􏼈 􏼉 are generated using
the method described in Ducas’s scheme [18], where
Ai ∈ Zn×m

2q , Si ∈ Zm×n
2q , and satisfying AiSi � qIn(mod 2q).

Message blinded: the signer of the ring R first computes a
commitment to the user Υ. ,en, the user Υ hides the
original message m by running the message blinded algo-
rithm and outputting the blinded messageμ. ,e detail is
shown in algorithm 1.

Signature: the ring R chooses a signer Σj. Σj calls the
signature algorithm after receiving the blinded message μ
and then outputs the blinded signature Σ′. ,e detail is
shown in algorithm 2.

Unblind: the user Υ runs the unblind algorithm after
receiving the blinded signature Σ′ and then outputs the real
blind ring signature Σ. ,e detail is shown in algorithm 3.

Verification: the verifier runs the verification algorithm
after receiving the original message m and bling ring sig-
nature Σ. ,en, he outputs 1 if the verification is passed. It is
0, otherwise. ,e detail is shown in algorithm 4.

4. Correctness and Security Proof

4.1. Correctness. For the generated blind ring signature
Σ � ( ei􏼈 􏼉i∈[l], c), ei􏼈 􏼉i∈[l] are sampled from the distribution
Dm

σ3 , and according to Lemma 1, ‖ei‖≤ ησ3
��
m

√
is established

with an overwhelming probability for all i ∈ [l]. ,erefore,
the correctness is to prove 􏽐i∈[l]Aiei + qc � x + w(mod 2q).
,e proof of the equation is as follows:
􏽘
i∈[l]

Aiei + qc � 􏽘
i∈[l]

Aiyi + 􏽘
i∈[l]

Aizi + qc

� 􏽘

i∈[l]\ j{ }

Aizi + Ajzj + 􏽘
i∈[l]

Aiyi+qc

� 􏽘

i∈[l]\ j{ }

Airi + Aj rj + Sjμ􏼐 􏼑 + 􏽘
i∈[l]

Aiyi+qc

� 􏽘
i∈[l]

Airi + AjSjμ + 􏽘
i∈[l]

Aiyi+qc

� x + w + q(− 1)
tInc + qc � x + w(mod 2q).

(7)
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4.2. Security Proof

4.2.1. Anonymity. ,e adversary submits a message m and
two usersUi0

,Ui1
∈ R to the challenger for a signature query.

,e challenger randomly chooses a bit b ∈ 0, 1{ } and calls the
message blinded algorithm and signature algorithm to
generate a blinded signature Σib′ � z1, . . . , zib

, . . . , zl􏽮 􏽯 on m,
where zib

� rib
+ Sib

μ, output probability min(Dm
σ2(zib

)/
M2D

m
Sib

μ,σ2(zib
), 1), and zi � ri←Dm

σ2 for all i ∈ [l]/ ib􏼈 􏼉. ,en,

the challenger returns Σi′ to the adversary . Let two random
variables X0 and X1 represent the blinded signatures gen-
erated by the user Ui0

and Ui1
.

Suppose that the adversary obtains the blinded signature
Σib′ � z1, . . . , zib

, . . . , zl􏽮 􏽯 by sampling each zi from Dm
σ2
with

probability 1/M2, let the random variable Y represent the
blinded signature generated by this way. ,e statistical
distance [28] between X0 and Y satisfies
Δ(X0, Y)≤ 2− ω(logm)/M2, and the statistical distance be-
tween X1 and Y satisfiesΔ(X1, Y)≤ 2− ω(logm)/M2.,erefore,
we have the following:

Δ X0, X1( 􏼁≤Δ X0, Y( 􏼁 + Δ X1, Y( 􏼁≤
21− ω(logm)

M2
. (8)

Input: system public parameters PP, original message m, public keys Ai􏼈 􏼉i∈[l] of the ring R.
Output: blinded message μ.
Step 1: choose a set of random vectors ri􏼈 􏼉i∈[l] from the bimodal Gaussian distribution Dm

σ2 .
Step 2: compute the commitment x � 􏽐i∈[l]Airi(mod 2q).
Step 3: choose a set of blind factors yi􏼈 􏼉i∈[l] from the bimodal Gaussian distribution Dm

σ3 .
Step 4: compute w � 􏽐i∈[l]Aiyi(mod 2q).
Step 5: compute c � H(x + w(mod 2q), m).
Step 6: choose a random bit t← 0, 1{ }n.
Step 7: compute μ � (− 1)tc.
Step 8: output the blinded message μ with probability min(Dm

σ1
(μ)/(M1D

m
c,σ1

(μ)), 1).

ALGORITHM 1: Message blinded algorithm.

Input: system public parameters PP, blinded message μ, the secret key Sj of the signer Σj.
Output: blinded signature Σ′ � zi􏼈 􏼉i∈[l].
Step 1: for all i ∈ [l]/ j􏼈 􏼉: compute zi � ri; for j: compute zj � rj + Sjμ.
Step 2: output zj with probability min(Dm

σ2(zj)/(M2D
m
Sjμ,σ2(zj)), 1).

Step 3: output the blinded signature Σ′ � zi􏼈 􏼉i∈[l].

ALGORITHM 2: Signature algorithm.

Input: system public parameters PP, blinded signature Σ′ � zi􏼈 􏼉i∈[l].
Output: blind ring signature Σ � ( ei􏼈 􏼉i∈[l], c).
Step 1: for all i ∈ [l]: compute ei � yi + zi.
Step 2: output ei with probability min(Dm

σ3(ei)/(M3D
m
yi ,σ3(ei)), 1).

Step 3: output the real blind ring signature Σ � ( ei􏼈 􏼉i∈[l], c).

ALGORITHM 3: Unblind algorithm.

Input: system public parameters PP, original message m, public keys Ai􏼈 􏼉i∈[l] of the ring R, blind ring signature Σ � ( ei􏼈 􏼉i∈[l], c).
Output: 1 or 0.
Step 1: verify that ‖ei‖≤ ησ3

��
m

√
for all i ∈ [l].

Step 2: verify that c � H(􏽐i∈[l]Aiei + qc(mod 2q), m).
Step 3: output 1 if the verification in steps 1 and 2 passed and 0 otherwise.

ALGORITHM 4: Verification algorithm.

Security and Communication Networks 5



,e statistical distance between X1 and X1 is negligible.
,erefore, the distribution of blinded signatures Σi0′ and Σi1′ is
indistinguishable. ,e proposed scheme satisfies anonymity.

4.2.2. Blindness. ,e adversary submits two different blinded
messages, μ0 and μ1, and interacts with two different usersUi0
and Ui1

. ,e adversary and the challenger only choose one of
the two users for establishing an interactive blind ring signature
protocol. It should be noted that the adversary does not know
the user’s information who is interacting with him, i.e., we can
only prove that the outputs, i.e., the two blind messages μ0 and
μ1, are indistinguishable, and the corresponding blind ring
signatureΣi0 and Σi1 are also indistinguishable, where b ∈ 0, 1{ }

and Σib � e1, . . .􏼈 eib
, . . . , el}.

For two blinded messages, μ0 and μ1, because of the
construction μ � (− 1)tc and the output probability
min(Dm

σ1(μ)/(M1D
m
c,σ1(μ)), 1), we can get that μ0 and μ1 are

sampled from the same distribution Dm
σ1
. ,erefore, the

statistical distance between μ0 and μ1 satisfies Δ(μ0, μ1) � 0
and they are indistinguishable. For two blind ring signatures
Σi0 and Σi1, because ei � yi + zi for all i ∈ [l] and the output
probability min(Dm

σ3
(ei)/(M3D

m
yi ,σ3

(ei)), 1), we can get Σi0
and Σi1 are sampled from the same distribution Dm

σ3 .
,erefore, the statistical distance between Σi0 and Σi1 satisfies
Δ(Σi0,Σi1) � 0, and they are indistinguishable. ,e proposed
scheme satisfies blindness.

4.2.3. One-More Unforgeability

Theorem 1. If an adversary α can successfully give the ef-
fective forgery, there will be existing a polynomial-time al-
gorithm Φ that can solve the SISq,n,lm,β problem with non-
negligible probability.

Proof. We will prove the one-more unforgeability of the
scheme by the simulation game between challenger and
adversary . ,e simulation game controlled by challenger is
executed as follows:

Setup: challenger builds two initial empty lists, List 1
and List 2, respectively, to store the hash value H(m)

and signature value Σ � ( ei􏼈 􏼉i∈[l], c) of message m.
,en, adversary will make hash queries and signature
queries to challenger.
Hash queries: +e adversary sends a hash query for
message m to challenger . Challenger checks List 1,
where List 1 consists of the pair (m, H(m)). If the
queried message m is in List 1, challenger sends the
corresponding H(m) to adversary. If not, challenger
will compute a new H(m), restore (m, H(m)) into List
1, and send it to adversary.
Signature queries: +e adversary sends a signature
query for message m to challenger. h,e challenger
checks List 2, where List 2 consists of the pair
(m,Σ � ( ei􏼈 􏼉i∈[l], c)). If the queried messagem is in List
2, challenger sends the corresponding signature value

Σ � ( ei􏼈 􏼉i∈[l], c) to adversary . If not, challenger will
generate a new signature, restore the new pair (m,Σ �

( ei􏼈 􏼉i∈[l], c)) into List 2, and send it to adversary .
Forge: suppose cj is a result of a hash query made by the
adversary . ,en, we can get the following:

H 􏽘
i∈[l]

Aie
∗
i + qcj(mod 2q), m

∗⎛⎝ ⎞⎠

� H 􏽘
i∈[l]

Aiei
′ + qcj(mod 2q), m′⎛⎝ ⎞⎠.

(9)

For two different blind ring signature pairs, (m∗,Σ∗ �

( e∗i􏼈 􏼉i∈[l], cj)) and (m′,Σ′ � ( ei
′􏼈 􏼉i∈[l], cj)). We can find a

hash collision if there exists inequality in the input of the
hash function H on both sides of the equal sign of equation
(10). ,erefore, we can derive that 􏽐i∈[l]Aie∗i + qcj �

􏽐i∈[l]Aiei
′ + qcj(mod 2q), m∗ � m′ with an overwhelming

probability. Further simplification can be obtained as
􏽐i∈[l]Ai(e∗i − ei

′) � 0(mod 2q). Let ei � e∗i − ei
′, and we have

the following:

􏽘
i∈[l]

Aiei � A1 |A2 | . . . |Al􏼂 􏼃 eT
1 , eT

2 , . . . , eT
l􏼐 􏼑

T
. (10)

Let A � [A1 |A2 | · · · |Al] ∈ Zn×lm and e � (eT
1 , eT

2 ,

. . . , eT
l )T ∈ Zlm. ,en, we have Ae � 0(mod 2q).As the

forgery of the adversary is valid, there exists at least a bit i such
that e∗i ≠ ei

′ and e∗i − ei
′ ≠ 0(mod q) with an overwhelming

probability, i.e., we can get e≠ 0(mod q) with great proba-
bility. Finally, we say that we can successfully solve the SIS
problem. ,e detailed proving process is as follows:

Suppose that cj is a result of a hash query made by the
adversary , and we can get a new valid forgery
Σ′ � ( ei

′􏼈 􏼉i∈[l], cj
′) for message m∗ and ring R∗. We have

cj
′ ≠ cj and 􏽐i∈[l]Aie∗i + qcj � 􏽐i∈[l]Aiei

′ + qcj
′ with a non-

negligible probability according to the Forking lemma [29].
Let ei � e∗i − ei

′, A � [A1|A2| · · · |Al] and
e � (eT

1 , eT
2 , . . . , eT

l )T. We have Ae � q(cj
′ − cj)(mod 2q).

Because cj
′ ≠ cj and q(cj

′ − cj) � 0(mod q), we can derive
e≠ 0(mod 2q) and Ae � 0(mod q). In addition, as ‖e∗i ‖ �

‖ei
′‖≤ ησ3

��
m

√
for all i ∈ [l], according to algorithm 4, we

have ‖ei‖ � ‖e∗i − ej
′‖≤ ‖ei
′‖ + ‖ei
′‖ � 2ησ3

��
m

√
. ,en, it sat-

isfies ‖e‖ � 􏽐
i∈[l]

‖ei‖≤ 2lησ3
��
m

√
. ,erefore, e is a solution to

the SISq,n,lm,β problem with β � 2lησ3
��
m

√
, where

Ae � 0(mod q) and e≠ 0(mod q). ,e proposed scheme
satisfies the one-more unforgeability. □

5. The Completely Anonymous Blockchain
Transaction System

In this section, we construct a completely anonymous
blockchain transaction system based on the proposed lattice-
based blind ring signature algorithm. Assume a blockchain
transaction is required between Alice and Bob, and stipulate
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that Alice transfers accounts to Bob. ,e transaction be-
tween Alice and Bob is recorded in a ledger and packaged
into the blockchain. ,e overall schematic diagram of the
anonymous blockchain transaction system is shown in
Figure 1. ,e detailed process mainly includes the following
five steps:

Key generation: firstly, Alice constructs a ring R com-
posed of multiple members and calls the key generation
algorithm and then gets the public and secret key pair
(pkA, skA) of ring R, where pkA � (pk1,

. . . , pka, . . . pkn) is a set of ring public keys.
Transaction generation: Bob initiates a transaction
request with Alice and generates a piece of transaction
information m. Bob and Alice run the blind ring sig-
nature algorithm in Section 3. ,en, Bob selects the
blind factor and utilizes the ring public keys pkA of
Alice to blind the transaction informationm to μ. Alice
uses the secret key skA to generate a signature Σ′ for
blinded transaction information μ. Bob obtains the real
blind ring signature Σ of the transaction informationm
using the unblind algorithm. Finally, Bob generates a
new transaction Tx utilizing the ring public keys pkA

and the blind ring signature Σ of the transaction in-
formation m.
Transaction authentication: Bob broadcasts the trans-
action Tx to the blockchain network, and the miner
nodes in the blockchain use the ring public keys pkA of
Alice to verify whether the blind ring signature Σ is
correct. It indicates that the transaction is correct if the
verification passes, and then, it encapsulates the
transaction Tx in a new block. Otherwise, the trans-
action will be discarded.
Network-wide consensus. ,e miners broadcast com-
munication through the consensus mechanism and
agree to add a new block containing the transaction to
the blockchain. Meanwhile, miners who create the new
block will be rewarded by the system.
Transaction completion: after blockchain miners have
successfully reached the network-wide consensus on
the transaction, Bob can consume the transfer received
from Alice under the above steps.

,e proposed transaction system has the characteristic of
complete anonymity that can hide the identity privacy in-
formation of both parties participating in a blockchain
transaction. For the internal attackers involved in the
transaction, based on the blind signature feature, as the
transaction initiator performs blind processing on the
transaction information, the internal attacker cannot asso-
ciate any veritable identity of the initiator through the
transaction information. ,erefore, for the input of each
transaction, the internal attacker cannot trace whether it was
initiated by the same user. For the external attackers not
involved in the transaction, based on the ring signature
feature, as the signature of the transaction is verified through
ring public keys rather than a unique public key, it is im-
possible to determine the specific public key associated with

the real signer. ,erefore, for the output of any two
transactions, the external attacker cannot link to the same
transaction user. Moreover, the signature algorithm adopted
in this system is based on the SIS problem, which cannot be
availably solved by existing quantum computing algorithms.
,erefore, the system satisfies antiquantum computing
security.

6. Performance Evaluation

In this section, wemake an evaluation on the performance of
the proposed signature algorithm by comparing with other
similar literature schemes, including signature and verifi-
cation algorithm latency, sampling method, the size of the
signature, and secret and public keys. Firstly, we give some
parameter settings, and then, the comparison results will be
presented through theoretical analysis and simulation
experiments.

6.1. Parameters Setting. ,e relevant public parameters of
our scheme are set as shown in Table 1, which are the same as
in [17]. We select the security level k � 128 bits and cor-
responding challenge size κ � 28 as an example. Meanwhile,
the computational complexity of the SIS problem is main-
tained by reasonably selecting the parameter n, m, q, which
can guarantee the security of public key and secret key.
Moreover, the correctness error of the reject sample will be
at the most 2− 100, which requires that σ1 � 12‖v‖ � 12

�
κ

√

and M1 � e12
�
κ

√
/σ1+κ/2σ21 � e1+1/288 ≈ 2.72. ,en, M2 and M3

will be derived by the same method.

6.2. Comparison with Other Similar Schemes. We carry out
the simulation experiment of efficiency comparison by
utilizing MATLAB R2021b in the environment of Windows
11 with Intel(R) Core(TM) i7-10510U CPU 1.80GHz and
16G RAM. Assume that the same parameters
(n, m, q, l, k, κ), set according to Table 1, are utilized in each
of these schemes, the detailed keys and signature size
comparison results are shown in Table 2. We choose the
parameters l � 10, q � 227, k � 128 and κ � 28 for the
simulation experiment. ,en, we compute the public key
size, secret key size, and signature size for the different
security parameter n, such as 80, 112, 128, 192, 256, 512. ,e
comparison results of the public key size, secret key size, and
signature size are separately shown in Figures 2–4. It can be
seen from the experimental results that the size of the
signature, secret, and public keys of our proposed scheme
are all smaller than others [25, 30]. Moreover, we generate
the public and secret keys without trapdoor sampling, which
improves sampling efficiency and saves more time for
performance.

Next, the results of the signature and verification
algorithm latency comparison are shown in Table 3.
,e signature algorithm latency of the blind ring
signature scheme includes message blinded, signature,
and unblind algorithm latency. Here, some notations,
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Table 1: Public parameters setting.

Parameter PP Definition Example
N Security parameter 512
l Number of ring members 10
Q poly(n), prime 227
m m � n logq 13824
H Hash function H: 0, 1{ }∗ ⟶ c ∈ − 1, 0, 1{ }k: ‖c‖1 ≤ κ􏽮 􏽯 -
k and κ In the hash function H and 2κ · Cκ

k ≥ 2
100 k � 128, κ � 28

η [1.1, 1.3] 1.1
σ1 12

�
κ

√
63

σ2 12ησ1
���
mk

√
220

σ3 12ησ2
��
m

√
230

M1 � M2 � M3 exp(12
�
κ

√
/σ1 + κ/2σ21) 2.72

Secret key size lmn log2q 236MB
Public key size lmn log2q 236MB
Signature size lm log(12σ3) + κ 0.55MB

TxTxTxTxTxTx

Block n-1 Block n Block n+1

9. Broadcast and consensus

8. Signature verification 6. Unblind Σ' to Σ

7. Generate transaction Tx
Miner node

5. Send Σ' to Bob

Ring public
key pkA

4. Generate signature
Σ' for μ

Signature Σ'

2. Blind m to μ

1. Generate
information m

Transaction information m

Alice

3. Send μ to Alice

Blinded information μ

Tx: Alice -Bob

Including:

Information m

Signature Σ

Bob

Figure 1: ,e completely anonymous blockchain transaction system.
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Figure 2: ,e comparison of public key size.
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Figure 3: ,e comparison of secret key size.

Table 2: Keys and signature size comparison.

Scheme Public key size Secret key size Signature size Sampling method
Wang et al. [30] 6lmn logq l(6m)2 logq 6lm logq + l Trapdoor sampling
Le et al. [25] 6lmn logq 6lmn logq 6lm log (12σ3) + n + κ Trapdoor sampling
Our scheme lmn log2q lmn log2q lm log (12σ3) + κ Without trapdoor sampling
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such as TMul, THash, TRS, and TCom, should be explained.
,e latency for multiplication is represented by TMul.
,e latency for the Hash operation is represented by
THash. ,e latency for rejection sampling operation is
represented by TRS. ,e latency for commitment
function calculation is represented by TCom. As can be
seen from Table 3, our proposed blind ring signature
scheme has lower signature and verification algorithm
latency than the other similar scheme [25].

7. Conclusion

In this paper, we propose a new lattice-based blind ring sig-
nature scheme, which satisfies the correctness and security
under the random oracle model, including anonymity,
blindness, and one-more unforgeability. Meanwhile, the
constructed blockchain transaction system based on our
proposed blind ring signature satisfies the complete anonymity
and antiquantum computing security of users’ identity privacy.
Moreover, the proposed signature scheme has lower latency,
smaller key, and signature sizes than other similar schemes.

However, our proposed scheme has some limitations. On
the one hand, the proposed blind ring signature scheme relies
on the difficult problem on the standard lattice, which leads to
some disadvantages, such as large storage space of the key

matrix, low operation speed, and slow sampling rate, by
comparing with structured lattice, such as ideal lattice. On the
other hand, our constructed blockchain transaction system
focuses on the implementation of user identity anonymity
while ignoring the problem of double-spending attacks. In the
future, firstly, we will study the linkable blind ring signature
algorithm based on the ideal lattice to solve the limitations in
the current work. Secondly, we will introduce the proposed
blind ring signature algorithm into more specific blockchain
application scenarios, such as medical blockchain and
blockchain-enabled Internet of ,ings. Finally, we will study
more cryptographic methods for blockchain data privacy
protection, such as searchable encryption [32, 33], to improve
blockchain privacy protection mechanisms.

Data Availability

,e data and the code used to support the findings of this
study are available from the corresponding author upon
request.
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Figure 4: ,e comparison of signature size.

Table 3: Latency comparison.

Scheme Signature algorithm latency Verification algorithm latency
Le et al. [25] 4(l + 1)TMul + 2THash + 3TRS + TCom (l + 1)TMul + THash + TCom
Our scheme (2l + 1)TMul + THash + 2TRS (l + 1)TMul + THash
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