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How to deal with the increasing video traffic and diverse service demands while ensuring the security of transmission is an open
issue in the multimedia Internet of ,ings (IoT). ,is paper addresses this issue and studies a secure delivery scheme under a
multicast scenario in the presence of multiple eavesdroppers where small base stations (SBSs) can send videos to users co-
operatively. Aiming at potential eavesdroppers, a channel model including artificial noise is introduced to reduce the harm of
illegal data acquisition. A network quality of experience (QoE) optimization problem is first formulated to account for video
quality and delivery delay. In order to solve the nonconvex problem, the successive convex approximation (SCA) technique is
applied to optimize multicast group beamforming, reduce the possibility of multicast video eavesdropping, and select video
quality where a heuristic scheme is proposed to maximize the network QoE. ,e effectiveness of the proposed scheme is finally
validated by extensive simulations in terms of algorithm convergence performance and network QoE-enhanced performance.

1. Introduction

Recently, with the rapid development of mobile commu-
nication networks, the multimedia-oriented Internet of
,ings (IoT) network has shown a strong development
momentum. Diversified multimedia services, such as video
surveillance, make video data occupy a large proportion of
multimedia IoT [1–3]. According to the existing data, the
mobile network traffic data has increased by 42% from 2020
to 2021 [4]. By the end of 2022, the multimedia content data
will account for 82% of the global mobile traffic [5]. ,e
integration of various mobile terminals and multimedia IoT
will promote the rapid growth of this number. In particular,
the continuous upgrading of the multimedia IoT industry
will have higher requirements for services, resulting in more
video data, such as automatic driving and smart city. ,e

resulting multimedia data brings more tremendous pressure
to the uplink and downlink transmission of IoT [6]. In this
regard, deploying MEC at the small base station (SBS) can
bring services to the edge of the network and enable IoT
users to obtain better experience [7, 8]. Due to the large
number of users and the diversity of video requirements, it is
worth studying how to efficiently deliver videos to IoTusers
with limited resources.

With layered technology such as H.264/moving Picture
Experts Group-4 (MPEG-4) scalable video coding (SVC), a
video stream can be divided into different quality levels to
provide users with more personalized services [9]. Generally,
more multimedia data layers can bring users a better ex-
perience, but it also needs to paymore communication costs.
When faced with many requests, some additional video
enhancement data may squeeze the resources of other

Hindawi
Security and Communication Networks
Volume 2022, Article ID 4126494, 11 pages
https://doi.org/10.1155/2022/4126494

mailto:hongzhang@cqupt.edu.cn
https://orcid.org/0000-0003-2105-9418
https://orcid.org/0000-0001-8921-5574
https://orcid.org/0000-0002-3406-5713
https://orcid.org/0000-0001-5810-541X
https://orcid.org/0000-0003-3109-4807
https://orcid.org/0000-0002-3054-1786
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4126494


vulnerable users and introduce additional interference,
resulting in unfair resource allocation [10]. On the other
hand, users with similar needs in the network can be divided
into the same multicast group through multicast trans-
mission. Multicast transmission of SVC video can make full
use of its hierarchical structure, effectively reducing the
system energy consumption and significantly reducing the
reception delay in the face of many IoT users [11]. With a
reasonable beamforming design, SBS can use limited
communication resources to serve more users on the
premise of reducing resource loss [9]. However, the nature of
multicast transmission makes the communication over this
medium vulnerable to eavesdropping [12]. In network
service, transmission security and privacy issues will directly
bring terrible experiences to users. A part of the literature
has studied this problem from the perspective of security
protocols and encryption algorithms [11, 13, 14]. In addi-
tion, there are often eavesdroppers in the process of wireless
transmission. Eavesdroppers trying to access multicast
services without authorization will cause economic losses to
operators. Using beamforming technology and SVC tech-
nology [15–18], through more accurate beamforming de-
sign, artificial noise can be introduced to reduce the channel
quality of potential eavesdroppers as much as possible,
making it difficult for them to obtain complete transmitted
video [19]. On the other hand, if the eavesdropper cannot
obtain the basic layer data, the transmission security of the
complete video can be guaranteed.

In the literature, researchers usually design optimization
strategies to improve the performance in the network from
two directions, that is, secure transmission and cached video
delivery. On the security of transmission studies, it is often
assumed that there are potential eavesdroppers in the net-
work. ,e transmission signals of actual users are designed
from the perspective of the physical layer to improve con-
fidentiality and prevent data leakage [20, 21]. However, most
studies regard security as the main goal rather than a pre-
requisite to optimizing network performance. An effective
active caching strategy can filter out popular data from a large
amount of data for caching to reduce the delay of users
obtaining content and improve the user experience. However,
this often depends on the screening of a large number of
historical data, and the improvement of performance depends
toomuch on the accuracy of cache. Using reasonable resource
allocation strategy, the improvement of network performance
will often have greater guarantee [22, 23]. Many efforts have
been devoted to the efficient transmission of cached content at
the edge of the network. However, how to jointly consider the
cost of content cache location and limited network resources
to deliver video while ensuring transmission security still lacks
understanding.

Motivated by this, we study a video delivery scheme to
maximize the weighted sum of QoE in a multimedia IoT
network. ,e multicast transmission model with eaves-
droppers, cache cost model, and QoE model are first in-
troduced, based on which a network QoE optimization
problem is formulated. By applying the SCA technique,
cooperative beamforming and video quality selection are
jointly optimized to guide how to deliver videos to different

IoT users. Furthermore, extensive simulation experiments
are carried out to verify the QoE enhancement performance
of our proposed scheme.

,e contributions of this paper are summarized as
follows:

(i) In the multimedia IoT network scenario, the cor-
responding transmission model and the user QoE
model are designed according to the existence of
eavesdroppers. ,e design of the beamforming
model is used to prevent insecurity in the multicast
process, which is reflected in the design of the
optimization problem.

(ii) An alternating iterative scheme considering system
beamforming design and user acquired video
quality selection strategy is designed with SCA
technology. ,e QoE optimal solution under the
condition of fixed video quality is found step by step
through alternating updating.

(iii) A user selection scheme for video quality en-
hancement is designed by adding penalty parame-
ters. ,e simulation results show that, combined
with an iterative alternating algorithm, this mech-
anism can ensure that the system can use limited
resources to obtain the best weighted QoE.

,e rest of the paper is organized as follows. ,e related
works are reviewed in Section 2. Section 3 introduces the
transmission model and the optimization problem. ,e
algorithm is designed in Section 4. Section 5 provides and
discusses the simulation results. Section 6 concludes the
paper.

2. Related Work

In the literature, the service experience enhancement is
usually studied through proactive caching and content de-
livery. When seeking the best experience, the security of
transmission also needs to be considered [24]. Hence, the
related works are reviewed based on the lines of security of
multicast transmission and cached-enabled video delivery,
respectively.

On the security of transmission study, the focus is mainly
on the impact of the insecure channel model and preventing
content from being eavesdropped on during multicast
transmission. In [20], two cognitive single-group multicast
secure beamforming (SGMC-S-BF) schemes were proposed
for a scenario where there exists one eavesdropper who is
actually a regular user of the legitimate communication
system. However, it attempts to access unauthorized mul-
ticast services. In [25], a task-oriented user selection in-
centive mechanism was proposed, which clusters the
similarity of users by jointly considering the security and
fairness of served users to realize efficient user dynamic
selection. In [26], the constant modulus (CM) signaling was
studied, and beamforming is designed using the semidefinite
relaxation (SDR) technique and a custom-build nonconvex
alternating direction method of multipliers (ADMM) al-
gorithm, respectively. In [27], power minimization and
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secrecy rate maximization were considered in the secrecy
network. A closed-form solution of transmit beamforming is
given by exploiting the Bernstein-type inequality and the
S-Procedure to convert the probabilistic secrecy rate con-
straint into the determined constraint. Literatures [20–27]
focus on improving security performance but ignore the
improvement of user performance indicators. In [21], a
SDP-based secure layered video transmission scheme was
proposed, but it is not suitable for the case of multiple base
stations. Hence, the improvement of video delivery per-
formance considering a nonsecure environment still needs
further study in multigroup multicast scenarios.

Research on video delivery focuses on limited resource
allocation and delay optimization. In [22], a dynamic in-
terest capture model in the Industrial Internet was proposed
to mine the individual user interest, based on which a group
interest aggregation algorithm is then studied to determine
the content caching strategies for edge nodes. In [28], an
adaptive active cache scheme combined with reinforcement
learning was proposed to improve user QoE of content-
centered edge cache IoT and reduce cache cost. However,
[22–28] mainly focus on the active cache scheme, ignoring
system performance optimization by transmission strategy.
In [29], the authors predicted video content requests from
the perspective of the traces collected over a big city, and a
joint active caching, power allocation, and user association
scheme was designed to optimize the QoE of user content
delivery. In [30], an active cache and user association scheme
based on belief propagation was proposed to maximize the
revenue of operators on the premise of ensuring the quality
of service (QoS). In [31], a social-aware spectrum sharing
and caching helper selection (SSC) strategy was proposed to
share and cache downlink spectrum resources of multicast
storage resources and unload multimedia content. In [32],
the authors addressed the impact of cache on the trans-
mission design, and a robust joint optimization strategy is
designed for the case of incomplete channel information to
minimize the transmission cost. In [33], a multiquality video
transmission scheme based on SBS clusters division was
proposed to maximize the economic efficiency (ECE) of
network transmission. In summary, [29–33] optimized
video delivery based on only unicast or multicast trans-
missions under the scenario with single base station. In
addition, the above literature ignores the personalized de-
mands of users, and multiquality video transmission is often
more accurate to serve each user and save limited network
resources.

Due to the increasingly personalized user demands and
the complexity of the network environment, SVC tech-
nology is usually applied to meet the diverse requirements of
video delivery in IoT network. In [34], the author used the
stochastic geometry tool to increase the probability of
successful transmission of multiquality video and proposed a
two-stage transmission optimization algorithm based on the
convex optimization and the packing problem. In [35], a
matching sensing scheme considering relay selection was
proposed to optimize the cooperative transmission perfor-
mance of SVC video and improve the QoE of users. In [36], a
multicast video transmission strategy based on the multicast

subgrouping and SVC technology is proposed, and the
transmission efficiency and fairness between users were
discussed. In [37], the author addressed the application of
multiquality video in multicast transmission and described
the optimal beamforming as a power minimization problem
and user experience maximization problem, respectively. In
[23], cache-assisted data rate (CADR) was proposed as a
performance index to measure the SVC video transmission
performance in nonorthogonal channel D2D scene, and a
two-stage joint optimization scheme is proposed. However,
[34–37] mainly discussed the perspective of multiquality
video transmission, but the cost of cache location and
transmission interference in the case of multigroup multi-
cast has not been considered. ,e D2D auxiliary trans-
mission strategy proposed by [23] is difficult to apply directly
in multicast transmission based on multi-SBS.

In summary, on the premise of the existence of eaves-
droppers, there is still lack of deep understanding on how to
meet the personalized user demands through jointly opti-
mizing the multiquality video and multicast transmission
beamforming and ensure transmission security, which
motivates this paper.

3. System Model

In this section, we present a multimedia IoT network ar-
chitecture, transmission model with eavesdroppers, cache
model, and delay cost and QoE model, and the modeling of
the optimization problem is introduced.

3.1. Transmission Model. As depicted in Figure 1, we focus
on a cached-enabled radio access network that includes
multiple densely deployed SBSs and multiple IoT users and
eavesdroppers indicated by K � 1, . . . , k, . . . , K{ },
U � 1, . . . , u, . . . , U{ }, and UE � 1, . . . , uE, . . . , UE , re-
spectively, where videos can be transmitted through non-
orthogonal multicast mode. In addition, each of SBS is
configured with Ak antennas and can cache popular content
in the equipped MEC storage unit at the network edge, so
that IoTuser requests can be responded to quickly. Based on
the content and the quality level of a video request, the IoT
users are divided into several multicast groups
G � 1, . . . , g, . . . , G . In this regard, wireless resources can
be saved by multicasting the videos to users with identical
content and quality request in a group.

In this paper, SBS k can be associated with multiple
groups kg, and the user in such group is represented by gu.
,e channel power gain between IoT user u, eavesdroppers
j, and SBS k is denoted by hu � [hH

1,u, . . . , hH
K,u]H ∈ CAnK×1

and eu � [eH
1,uE

, . . . , eH
K,uE

]H ∈ CAnUE×1, respectively. ,e
beamforming vector of SBS k to multicast group g is denoted
by Wk � wk,g ∈ CAk×1 . On the other hand,
vk � [vH

1 , . . . , vH
K ]H ∈ CAnK×1 represents the artificial noise

generated by SBS by beamforming, which is used to further
reduce the channel conditions of eavesdroppers. Besides,
Pk > 0 is used to denote the maximum transmission power of
SBS k; there holds
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g∈G

w
2
k,g2 + v2k2 ≤Pk, ∀k ∈K.

(1)

For multicast group g, we use wg � [wH
1,g, . . . ,wH

K,g]H to
represent the beamforming vector group it receives. For
simplicity, the SVC technology encodes a video into two
layers, and SBSs will store different quality files of a video in
the cache space. To deal with the quality level of each video,
the base layer (BL) and the enhancement layer (EL) are used
to characterize the basic video quality and the enhancement
video quality, respectively. ,e multimedia contents quality
requested by IoT user u is represented by lu � 1, 2{ }, where
lu � 1 represents that IoT user requests low-quality multi-
media contents and lu � 2 represents that IoT user requests
high-quality multimedia contents. Besides, the requested
video content and the video quality of the multicast group g

are represented as gf and gl, respectively. Note that high-
quality multimedia contents include both BL data and EL
data at the same time. A video content cannot be decoded
with only EL data. Let l

req
u denote the quality level requested

by user u; there holds

lu ≥ l
req
u , ∀u ∈ U. (2)

In order to improve the multimedio content delivery
efficiency, a user can be assigned to at most two groups
where one group only receives BL data and the other
receives EL data, as depicted in Figure 2. ,e network only
needs to allocate a multicast beamforming vector to
provide BL data to users requesting low-quality video and
users requesting high-quality video simultaneously. On
the other hand, when SBS transmits data to multicast
group users, eavesdroppers can receive broadcast infor-
mation and obtain unauthorized video content. By re-
ducing its signal-to-interference-to-noise ratio (SINR), it
cannot restore the complete video, so as to prevent the

content from being intercepted. In this sense, the network
only needs to assign only one multicast beamforming
vector to provide BL version video to the users requesting
low-quality videos and those requesting high-quality
videos at the same time. ,e received signals of IoT user u

and eavesdropper j are given by, respectively,

yu � 
g∈Gu

hH
u wgsg + 

i∈G∖Gu

hH
u wisi + nu, ∀u ∈ U,

yuE
� 

g∈G
eH

uE
wgsg + 

k∈K
eH

uE
vksg + nj, ∀uE ∈ UE,

(3)

whereGu represents the multicast group set assigned by the
user u. sg with E|sg|2 � 1 represents the precoding binary
symbols of the video requested by group g, and
nu ∼ CN(0, σ2u) denotes the additive white Gaussian noise
(AWGN). Applying Shannon’s theory, the transmission
rate of uwhen requesting a video f with quality level l holds
as

Ru,fl
� Blog2 1 + Γu,fl

 . (4)

,e SINR is denoted by

Γu,fl
�

hH
u wg,fl




2

Iu,fl

, ∀u ∈ g, g ∈ G, (5)

where

Iu,fl
� 

l> lreq

hH
u wg,fl




2

+ 

i∈∖ g{ }

hH
u wi




2

+ σ2,

∀u ∈ g, g ∈ G.

(6)

In (5), wg,fl
denotes the multicast group beamforming

vector which provides content f with quality level l. In (6),
the first term denotes higher-quality version signal
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Figure 1: A video streaming multicast transmission scenario with eavesdroppers.
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interference to the same video content, and the second term
denotes the other group signal interference. Since SBS ac-
tively generates artificial noise, the coded information can be
transmitted to the user in advance, so it will not be regarded
as noise. In addition, to ensure the user fairness in group g,
the transmission rate should depend on the user with the
worst channel condition in the group, and the group
transmission rate thus holds

Rg,fl
� min

u∈g
Ru,fl

. (7)

On the other hand, the transmission rate of eaves-
dropper j can be obtained as

RuE,fl
� Blog2 1 + ΓuE,f ,

ΓuE,f �
eH

uE
wg,fl




2

IuE

,∀uE ∈ UE,

(8)

where

IuE
� 

i>1
eH

u wi




2

+ 4 
k∈K

eH
u vk




2

+ σ2,∀uE ∈ UE. (9)

In (9), the noise can inform the authorized user in
advance, and it will not cause additional interference to
the target user. Due to the characteristics of SVC, we can
ensure the security of multicast video transmission only
by ensuring that the video of BL layer is not completely
eavesdropped. ,erefore, we give a maximum tolerance
ΓuE,f<Γtoler of the eavesdropper, so that it cannot obtain
the complete video.

3.2. Cache Model. ,e limited video content library is
denoted by F � 1, . . . , f, . . . , F , where F is the library
size. ,e size of a unit video block with quality l of
different content f is denoted by Sf,l. In order to facilitate

the experiment, different video blocks of the same quality
are assumed to have the same size Sl, which can be re-
alized by adaptive slicing of video. ,e popularity of all
contents is assumed to follow the Zipf distribution [38],
that is, the probability that content f − th being requested
is given by

P(f) �
f

− α


F
i�1 i

−α,

f � 1, 2, . . . , F,

(10)

where α denotes the Zipf parameter. ,e larger α, the more
significant the popularity skewness between different con-
tents. Suppose that each SBS will cache contents according to
the popularity ranking until the cache space is full, and the
cache state of content f at SBS k can be obtained as

ck,f �
1, if f is cached by SBS k,

0, otherwise.
 (11)

3.3.DelayCost andQoEModel. As the cache capacity of each
MEC is finite, only some popular videos can be precached. If
a video is not cached in theMEC of the local SBS, the content
must be obtained from the neighbor SBS or cloud center,
which will introduce the extra delay in the video trans-
mission process. Since multiple SBSs cooperate to transmit
multimedia content to IoT users simultaneously, let Dfu

denote the extra delay; there holds

Dfu
�

0, 
k∈K

ck,f � 1,

df, 
k∈K

ck,f � 0, ∃ck,f � 1, ∀k ∈ K,

d0, 
k∈K

ck,f � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)
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Figure 2: Cooperative video multicast transmission model.
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Equation (12) indicates that there is no extra delay if the
video is stored in all MEC cache equipped with SBS. If the
video is only cached in the MEC of a part of SBSs, the extra
delay equals a fixed value df. It is caused by the video content
sharing between SBSs using Xn interface in the 5G networks
[39]. A fixed extra delay d0(d0≫ df) is needed if the video
can only be obtained in the cloud center [40]. Furthermore,
taking the video transmission delay from the local SBS to the
user into account, the total video delivery delay is given by

Du �
Sl

Rg,fl

+ Dfu
, ∀u ∈ g, ∀g ∈ G. (13)

Compared with other factors, the startup delay of the
video often directly affects the willingness of the user to play
the video. In addition, from the practical experience, the
benefits of reducing the startup delay meet the feature of
diminishing margins rather than a fixed value. ,e lower the
delay is, the lower the QoE improvement that can be
achieved. Hence, we apply a logarithm to characterize the
impact of startup delay of the video on the QoE in this paper
[41]. On the other hand, a higher-quality level of video is able
to improve the QoE compared to the one with low-quality
level. Hence, the QoE of user u can be modelled by

QoEu � (1 − η)
lu

lEL
+ η log2 1 +

β
max
l≤lu

Du 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (14)

where η ∈ [0, 1] is a weight factor that characterizes the
importance of the video quality and that of the delay on the
QoE. Besides, β is a positive parameter used to control the
marginal benefit of the startup delay. ,e first term indicates
the impact of the definition of the user u-requested video on
the overall QoE. ,e second term indicates the impact of the
transmission delay on the overall QoE, where maxl≤lu Du 

represents the maximum transmission delay of all the video
data received by user u.

3.4. Problem Formulation. In this paper, the aim is to
maximize the sum of the QoE of each user that is called
network QoE through jointly optimizing the video version
selection and multicast group beamforming; there holds

Q � 
u∈U

QoEu. (15)

In order to improve the QoE of the IoTuser, an efficient
beamforming strategy can effectively reduce the trans-
mission delay in the wireless transmission process. At the
same time, the eavesdropper should provide the poor
channel conditions designed to hinder its action. On the
premise of ensuring the basic demands of users, providing
users with video quality enhancement services at a low
enhancement cost also helps to improve the QoE of the
network. However, the improvement of video quality will
bring additional interference to the same frequency
transmission. ,erefore, video quality selection and mul-
ticast group beamforming are jointly optimized. ,e op-
timization problem is formulated as follows:

P1 max
w, l

Q, (16a)

s.t. Rg,fl
≤Ru,fl

, ∀u ∈ g, ∀g ∈ G, (16b)

R
req
l ≤Rg,fl

, ∀g ∈ G, (16c)


g∈G

wk,g

�����

�����
2

2
+ v2k2 ≤Pk, ∀k ∈K, (16d)

ΓuE,f<Γtoler,∀uE ∈ UE, (16e)

lu ≥ l
req
u , ∀u ∈ U. (16f)

In problemP1, (16b) is the fairness constraint within the
multicast group, (16c) represents the video bit rate constraint
to ensure the QoS requirements of each, where R

req
l is the bit

rate threshold corresponding to the video quality, (16d) is to
the power constraint of each SBS, (16e) is SINR constraint of
eavesdropper, (16f) means that the quality level of the video
obtained by each user should be not lower than the cor-
responding requested one.

4. Algorithm Design

Since P1 is an MINLP problem, it is difficult to solve by
convex technique directly. ,erefore, it is promising to
decouple the process of video quality selection and that of
multicast group beamforming. First, the video quality se-
lection parameter is fixed as l. ,e optimization problemP1
can then be transformed as

P1,1 max
w,v


u∈U

log2
1 + β
max
l≤lu

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ Du 
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (17a)

s.t. (16b), (16c), (16d), (16e). (17b)

However, the quadratic term of w in constraint (16b)
appears in both the numerator and the denominator,
resulting in its nonconvex nature. On the other hand, since
the right side of (16e) is a constant term, it is still a convex
term, and the artificial noise part v can be solved directly. To
extract the fractional part, we introduce auxiliary variables in
the SINR part of (16b) and modify the original constraint into

Γu ≤
hH

u wgu




2

Iu

, ∀u ∈ g, ∀g ∈ G, (18)


l>lreq

hH
u wg,fl




2

+ 

i∈G∖ g{ }

hH
u wi




2

+ σ2 ≤ Iu, ∀u ∈ g, ∀g ∈ G.

(19)

Consequently, the nonconvex constraint (16b) of the
original problem is replaced by (18) and (21). Nevertheless,
constraint (18) is still a nonconvex constraint. In this regard,
we design an approximate convex lower bound to relax
constraint (18). Let f(wgu

, Iu) � ‖hH
u wgu

‖
2
2/Iu and perform
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Taylor's first-order expansion of f(wgu
, cu) at feasible points

w(t)
gu

and c(t)
u ; constraint (18) can then be replaced by an

auxiliary function as

ψ(t) wgu
, cu ≜

2Re w(t)
gu

 
H
hkh

H
k wgu

 

I
(t)
u

−
hH

u w
(t)
gu





I
(t)
u

⎛⎝ ⎞⎠

2

cu,

(20)

where Re(·) represents the real part and t represents the
number of iterations. For any (w(t)

gu
, I(t)

u ) that satisfies the
constraint, there are f(w(t)

gu
, I(t)

u ) � ψ(w(t)
gu

, I(t)
u ) and

∇f(wgu
, Iu) � ∇ψ(wgu

, Iu). ,erefore, constraint (18) is
transformed into a second-order cone (SOC) constraint as

Γu ≤ψ
(t) wgu

, Iu . (21)

Since the second derivative of (21) is more than zero, the
transformed constraint has the convex property. ,rough it-
eration, the problem can be solved using the CVX tool and
MATLAB. To substitute w with w(t) in problem P1,1, pa-
rameters I(t), Γ(t), and ψ(t) can be obtained. In this way, all
constraints are still satisfied since w(t) is a feasible point.
Further applying I(t), Γ(t), and ψ(t) to solve problemP1,1, the
solution w(t+1) can be further regarded as the input of the
(t+1)-th iteration. In the iterative process, the construction of
ψ(t) requires the same gradient value as the original function,
the objective function value of the t − th iteration must not be
greater than that of the (t + 1) − th iteration, there holds
u∈UQ(t+1)

u ≥u∈UQ(t)
u , and the iterative process is mono-

tonically decreasing. In addition, considering that the system
power is limited, the convergence of the iterative solution can
be guaranteed according to the monotone boundedness the-
orem. When w(t) � w(t+1) holds, the iteration converges and
the optimal multicast group beamforming can be achieved.
Generally, the convergence speed of the optimization problem
is strongly related to the initial beamforming value in the first
iteration, that is, w(0). In what follows, an auxiliary problem is
further formulated to guide how to determine w(0):

P1,2 max
w,v

δ, (22a)

s.t. R
req
l δ ≤Blog2 1 + φu( , ∀u ∈ g, ∀g ∈ G, (22b)

(16d), (16e), (19), (21), (22c)

where δ � minu∈U Ru,l/R
req
l , which is called the rate sat-

isfaction. δ ≥ 1 indicates that the corresponding solution w∗
satisfies (16c) and (16d). ,e solution approach of problem
P1,2 is summarized in Algorithm 1. By setting w0 � w∗,
problem P1,1 can be solved iteratively by convex tools.

In step 3, Algorithm 1 solves a second-order cone pro-
gramming problem, calculated by the interior point method,
and its computational complexity can be expressed as
O(((G + 3)(AkK + 4))3.5). In addition, the computation cost
in each iteration is bounded by O(T1((G + 3)(AkK + 4))3.5),
where T1 is the number of iterations in Algorithm 1.

In the video quality selection process, in order to degrade
the interference from the signal of EL video to other groups,
a heuristic algorithm is designed as follows. For a given user
u, an auxiliary variable zu is introduced to measure the cost
of quality enhancement, which can further help to select the
video quality level. ,e QoS constraint (16c) is then
transformed into (Rg,l − Ru,l)≤ zu, where larger zu results in
more costs to enhance the video quality for user u, and vice
versa. ,erefore, we further formulate the following opti-
mization problem to minimize the sum of zu of each user:

P1,3 min
w,v


u∈UBL

zu,
(23a)

s.t. Rg,fl
≤Blog2

1 + φu( 

R
req
l

+ zu, ∀u ∈ g, ∀g ∈ G, (23b)

0≤ zu, ∀u ∈ U , (23c)

(16b), (16c), (16e), (19), (21), (23d)

where UBL represents the user who initially requested the
low-quality multimedia content. In (23c), the corresponding
enhancement cost of IoT users requesting high-quality
multimedia content are all set to 0. By solving problem P1,3,
the video quality enhancement cost set z can be obtained,
which is further used to select the user in UBL with the
smallest z to provide EL videos to improve the QoE
performance.

Based on Algorithm 1, the complexity of Algorithm 2 is
mainly determined by the user selection process in step 5
and the maximization process of QoE in step 10. T2 and T3
represent the iteration times of the above two steps, re-
spectively, and the computational complexity of Algorithm 2
can be expressed as O((T1 + UBL(T2 + T3))((G + 3)

(AkK + 4))3.5), where UBL is the number of IoT users
requesting low-quality video.

5. Simulation Results

In this section, simulation results are presented and discussed.
Without other highlights, the simulation parameters are set as
follows. ,e simulation scenario includes 7 SBSs with Ak � 2
that are distributed on the vertex and center of a regular
hexagon with a side length of 100m, and 40 IoT users and 3
eavesdroppers that are randomly distributed on a circle with a
radius of 200m. ,e channel gain from SBS k to the user u is
defined as hk,u �

�������������
1/(1 + dk,u/d0)

ρ


hk,u, where the path loss
factor is set as ρ � 3, the standard distance is set as d0 � 50m,
and the noise power is set as 1. According to the transmission
unit size requirements in IEEE 802.11, we set the EL data to
2Mbit, corresponding to 1080 p definition video, and set the
BL data to 1Mbit, corresponding to 720 p video. ,e
remaining simulation parameters are shown in Table 1. ,e
network performance is evaluated in terms of average net-
work rate, multicast group rate, and network QoE.

Figure 3 shows the convergence performance of Algo-
rithm 1 under four different random channel realizations
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(RCR) from the average transmission rate. All the simulation
results are under the condition of secure communication.
Under the interference of artificial noise, the eavesdropper
cannot obtain the content at the lowest decoding rate. ,e
beamforming of the multicast group is initialized to
vH

k,a, wH
k,g,a � rand ×

���������������
Pk/((G + 1) × Ak)


, where ran d is a

random factor within [0, 1]. It is observed that, after the first
5 iterations, the average rate in four different RCR can reach
the 96.72% level obtained in the 20th iteration, which verifies
the convergence performance of Algorithm 1. Moreover, the
convergence performance of Algorithm 1 proposed is in-
sensitive to the channel conditions, which verifies the ro-
bustness of the proposed scheme.

In Figure 4, four multicast groups are randomly selected,
and the rate performance of multicast groups with different
delay costs and intra group video request quality is compared.

Input: Channel condition and QoS threshold of multi-quality video.
Output: Optimal beamforming vector and rate satisfaction.
Step:

(1) Set the t� 0, beamforming vector w(0), v(0) satisfies constraint (16d);
(2) Calculate I(t)

u of each user as follows:

I(t)
u � l>lreq|h

H
u w

(t)
g,fl

|2 + i∈G∖ g{ }|hH
u w

(t)
i |2 + σ2, ∀u ∈ g, ∀g ∈ G

(3) Solve P1,2;
(4) Update w(t+1), v(t+1), r(t+1), Γ(t+1);
(5) δ∗←δ(t);
(6) ←v(t);
(7) w∗←w(t);
(8) If δ(t+1) − δ(t) ≤ ϵ iteration stop. Otherwise, set t←t + 1 and go to Step 2.
(9) Output w∗, v∗ and δ∗.

ALGORITHM 1: Maximize rate satisfaction δ algorithm.

Input: Channel condition, cache transmission delay, delay satisfaction factor and QoS threshold of multi-quality video.
Output: Optimal beamforming vector, optimal version selection set and maximum network QoE.
Step:

(1) Set the t� 0, feasible beamforming vector w(0), v(0), only require low-quality video user set UBL;
(2) Calculate the optimal user rate satisfaction δ∗ and optimal beamforming vector w∗, v∗ by solving P1,2.

(3)If δ∗ > 1
(4) Calculate current optimal QoE Q∗ by solve P1,1;
(5) Calculate the enhancement cost set z by solve P1,3;
(6) Obtain the user index u∗ corresponding to the minimum value in z;

(7) UBL←UBL∖u∗;
(8) lu∗←2;

(9) Calculate network QoE Q′ and beamforming vector w′ by solve P1,1;
(10) If the problem is unsolved or the network QoE drops (Q′ ≤Q∗)

(11) Break.
(12) Else

(13) Update Q∗←Q′, w∗←w′, v
∗←v′, l

∗←l′;
(14) End if
(15) If UBL � ∅ iteration stop. Otherwise, set t←t + 1 and go to Step 5.
(16) Else
(17) ,e solution is not feasible, the current resources cannot satisfy all users.
(18) End if

(19) Output w∗, v∗, l∗ and Q∗.

ALGORITHM 2: Maximize QoE algorithm.

Table 1: Simulation parameters.

Symbol Value
Transmission power of SBS 40 dBm
Bandwidth 10MHz
Number of video contents 100
Cache ratio in each MEC 0.6
Video block size 1Mbit (BL), 2Mbit (EL)
Maximum tolerance SINR of
eavesdropper −10 dB

Delay satisfaction factor 0.2
Marginal effect factor 5

Transmission delay 0.2 (core network)/0.05
(MEC)

Zipf coefficient 1
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In the first five iterations, the proposed scheme tries to find
out the appropriate initial parameters for subsequent opti-
mization. After that, the QoE is maximized iteratively. First,
group 2 and group 4 changed significantly near the fifth and
12th iterations. ,is is because they have high video quality
requirements. Allocating additional resources helps improve
the previous item of QoE, which is more advantageous than
the optimization of delay. For group 4, because there are few
users in the group and the channel conditions are poor, it is
only necessary to maintain a minimum QoS requirement at
the end to save limited resources. Group 1 selects the

multicast group with the most members in the group and
allocates resources to it, helping to improve the efficiency of
beamforming and optimize network QoE. For group 3, al-
though the delay costDf � 0.2, this makes the QoE delay part
have a large room for improvement, so it is still in a slow
rising state. ,e above shows that, with the optimization of
network QoE, the resource scheduling of different groups will
still be adjusted adaptively according to iteration.

Figure 5 shows the trend of network QoE weighted sum.
Although the allocation of resources between different
multicast groups fluctuates in Figure 4, the QoE of the whole
network increases monotonically. ,e allocation of re-
sources will only change the growth rate of network QoE,
which shows the effectiveness of the proposed algorithm for
network QoE optimization.

In Figure 6, the network QoE performance was depicted
under different cache capabilities of SBSs. In order to val-
idate the effectiveness of the proposed scheme, three baseline
schemes, namely, QoE-Max, QoS-Only, and Unicast, are
introduced. ,e QoE-Max scheme maximizes the network
QoE based on multicast group beamforming optimization
only, without considering the enhancement of video quality.
,e QoS-Only scheme only guarantees the basic QoS re-
quirement of video quality of each user. ,e Unicast-QoE
algorithm will transmit multimedia content to users through
unicast cooperative transmission, producing additional in-
terference. ,e cache ratio in Figure 5 indicates the pro-
portion of the content library that an MEC can cache. ,e
network QoE of the four schemes shows an increasing trend,
but there are still some fluctuations due to the uncertainty of
users’ requests for popular content. In addition, as the MEC
cache ratio increases, more space is used to store infre-
quently used content. Furthermore, compared with the
Unicast-QoE algorithm with the worst performance, the
proposed algorithm improves the network QoE by 23.59%
on average. And compared with the QoE-Max algorithm,
which ignores video quality enhancement, the proposed
algorithm improves by 6.68% because the additional video
quality brings users a better experience. During the exper-
iment, the Unicast-QoE algorithm needs to design
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beamforming separately for all users, which will produce
additional resource consumption and interference. In ad-
dition, among the four algorithms, the proposed algorithm
also has the best performance because the proposed algo-
rithm is optimized for video quality and beamforming
simultaneously.

6. Conclusions

In this paper, a QoE-aware video delivery scheme was
studied in multimedia IoT network with potential eaves-
droppers. A joint video quality selection andmulticast group
beamforming scheme were proposed to maximize the
network QoE while preventing data eavesdropping as much
as possible. Extensive simulation results validated the ef-
fectiveness of the proposed scheme in terms of user satis-
faction, multicast group rate, and network QoE [42].
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