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At present, gradient boosting decision trees (GBDTs) has become a popular machine learning algorithm and has shined in many
data mining competitions and real-world applications for its salient results on classification, ranking, prediction, etc. Federated
learning which aims tomitigate privacy risks and costs, enables many entities to keep data locally and train amodel collaboratively
under an orchestration service. However, most of the existing systems often fail to make an excellent trade-off between accuracy
and communication. In addition, they overlook an important aspect: fairness such as performance gains from different parties’
datasets. In this paper, we propose a novel federated GBDT scheme based on the blockchain which can achieve constant
communication overhead and good model performance and quantify the contribution of each party. Specifically, we replace the
tree-based communication scheme with the pure gradient-based scheme and compress the intermediate gradient information to a
limit to achieve good model performance and constant communication overhead in skewed datasets. On the other hand, we
introduce a novel contribution allocation scheme named split Shapley value, which can quantify the contribution of each party
with a limited gradient update and provide a basis for monetary reward. Finally, we combine the quantification mechanism with
blockchain organically and implement a closed-loop federated GBDT system FGBDT-Chain in a permissioned blockchain
environment and conduct a comprehensive experiment on public datasets. ,e experimental results show that FGBDT-Chain
achieves a good trade-off between accuracy, communication overhead, fairness, and security under large-scale skewed datasets.

1. Introduction

Machine learning (ML) has achieved extensive success in
many practical applications. However, a well-trained ML
model heavily depends on massive data. In reality, there may
be sensitive information in the data sets which may lead to
growing concerns about personal privacy and even national
security. And data is considered as a valuable asset and a
critical strategic resource increasingly. All these constraints
greatly motivate federated learning (FL) [1], which enables
multiple entities to collaboratively train a model under an
orchestration service for immediate aggregation and store
data locally. ,e data in FL may be generated at different
contexts. ,is may lead the data distribution to be unbal-
anced or Non-IID. ,e data sets’ scale and quality may be
different. ,ese may lead to different intermediate

computation and communication cost for different parties.
And data is a significantly important asset to organizations,
so a nice FL scheme could stimulate and incent the parties
with high-quality datasets to join the training to form a
better model and guarantee their rewards that match their
contribution in addition to privacy preservation. In this
context, it is necessary to consider factors such as privacy
protection, unbalanced/skewed data distribution, fairness, to
form a closed-loop federated learning system (FLS) [2]. On
the other hand, gradient boosting decision trees (GBDTs)
has become a popular machine learning algorithm and has
shined in many machine learning and data mining com-
petitions [3, 4] as well as real-world applications for its
salient results on classification, ranking, prediction, etc.,
(especially for tabular data mining task) [5]. And several
works have studied the horizontal federated GBDT system
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[6, 7]. ,ey focus on training and publishing a single de-
cision tree among multiple federated parties to compose the
global ensemble model. But in these systems, there are still
some challenges as follows:

(i) Balance of efficiency, learning accuracy, and pri-
vacy-preserving. In most of the existing schemes,
each party trains a single decision tree, and then
shares the tree with the next participating party
[6, 8]. And the global communication cost of
building each tree is a multiple of the corresponding
trainer’s data. Other schemes may adopt crypto-
graphic methods or differential privacy [7]. Cryp-
tographic methods may bring prohibitive overhead.
And the accuracy is relatively lower in the existing
federated GBDT scheme with differential privacy in
skewed data distribution.

(ii) Contribution quantification. Many data owners
may not actively participate in federated learning,
especially when the data owners are enterprises
rather than devices [9]. As mentioned previously, a
nice FL scheme could stimulate parties with high
quality datasets to join the training to train a better
model and guarantee their rewards that match their
contribution. It is also essential to prevent partici-
pants from inflating their contributions. Most of the
existing schemes overlooked this and failed to
provide an outstanding quantifying mechanism.

(iii) Accuracy measurement and verification. In the FL
setting, there is no guarantee that all parties are
honest and trusted. To tackle these issues, [6]
proposed to use MAE to measure the accuracy, and
[8] adopted the blockchain for verification. How-
ever, it leads to additional communication overhead
to achieve higher accuracy. It is necessary to con-
sider two factors in accuracy measurement: (1)
whether the feature with the most information gain
is correctly selected; (2) whether the samples are in
the correct sorting position [10]. To the best of our
knowledge, there is no effective solution to measure
and verify the accuracy contribution of each party.

In response to the above challenges, we propose a closed-
loop federated GBDTsystem FGBDT-Chain which consists of
two components: FV-tree and FQ-chain. More specifically,
FV-tree is our federated GBDT framework. And we combine
FV-tree with blockchain organically and design FQ-chain to
quantify the contribution logic on the smart contract to attain
a decentralized verification and auditability. Our scheme can
achieve a relatively better balance of efficiency, learning ac-
curacy, and privacy-preserving in skewed distribution of data.
Particularly, it can also quantify parties’ contribution for the
global model, provide a value-driven incentive mechanism
that encourages parties with different data sets to be honest,
and suit to large-scale datasets.

Our contributions can be summarized as follows:

(1) We propose FV-tree, a federated GBDT framework
that can achieve constant communication cost and
less precision loss in skewed distributed data.

FV-tree is based on the data-parallel algorithm of the
decision tree to find the global top-2 candidate
features and utilizes private spatial decomposition
(PSD) to capture other parties’ distribution and refits
gradients to vote on the local most informative
feature. We also design a scalable differential privacy
mechanism in this process to enhance privacy-
preserving.

(2) We design a contribution quantifying mechanism
with a metric, namely, split Shapley value and a
decentralized verification endorsement mechanism,
namely, FQ-chain, which can reach a relatively fair
and auditable federated GBDT. It can encourage and
incent organizations with different datasets to train a
better model.

(3) We implement the system FGBDT-Chain in a per-
missioned blockchain environment and conduct a
comprehensive experiment on public datasets. ,e
results show that FGBDT-Chain has high perfor-
mance and can meet the practical application, es-
pecially for large-scale datasets.

,e rest of the paper is organized as follows. Section 2
reviews the related work about federated GBDT systems.
Section 4 introduces the design outline of our system. ,e
technical details of FV-tree and FGBDT-Chain are intro-
duced in Section 5. Section 6 presents the performance
evaluation of our system in terms of accuracy and fairness.
We give a brief discussion and analysis in Section 7. Section 8
summarizes the paper and puts forward the potential re-
search directions in the future.

2. Related Work

In this section, we review the literature on the federated
GBDT and fairness in federated learning.

2.1. Federated Gradient Boosting Decision Tree. Gradient
boosting decision tree (GBDT) and its effective imple-
mentations such as XGBoost [3] and LightGBM [4] are widely
used machine learning both in industry and academic ap-
plications [5, 11, 12]. In distributed GBDT, the training data is
located in different machines and should be partitioned
according to the sample level. Generally, the local histograms
of features are broadcasted to all the parties to obtain the
global distribution. ,en each party chooses the most in-
formative splitting points [13]. Among them, the parallel
voting decision tree (PV-tree) [14] is a representative scheme.
It performs full-granular histogram communication
according to the features selected by each machine, then
calculates the global split point. PV-tree can achieve a very low
communication cost (independent of the total number of
features/samples) in the context of uniform data distribution
and has great scalability in the context of large datasets.

In recent years, with the growing concerns about data
security and privacy, several horizontal federated GBDT
systems have been developed. [6] designed a distributed
GBDT scheme, in which each party trains a differential
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privacy decision tree and uses Mean Absolute Error (MAE)
to evaluate the accuracy of each decision tree. [8] took a
similar approach and extended this learning process to the
blockchain. However, in these tree-based sharing schemes,
the quality of the shared tree is low. To solve this problem,
[7] proposed Sim-FL, in which, each instance gathers similar
instances’ gradients of other parties through a local sensitive
hash (LSH) to learn the distribution of other parties. ,is
weighted gradient boosting strategy can significantly im-
prove the accuracy of each decision tree, and achieve a
primary level of privacy protection. Unfortunately, the
communication overhead in each iteration is proportion to
the number of local instances in the training party, which is
not feasible in large-scale datasets learning. Intuitively, we
summarize the existing federated GBDT system and com-
pare them with our scheme in Table 1.

2.2. Fairness in Federated Learning. Many data owners may
not actively participate in federated learning, especially
when the data owners are enterprises rather than devices [9].
,erefore, the fairness of the federated learning system needs
to be taken into account. In the existing federated learning
research, fairness is mainly realized through an incentive
mechanism.,ere are two main ideas: (i). All parties enjoy a
global model; (ii). According to the contribution of parties,
parties get different model rewards [15].

,e goal of incentive mechanism is to make the party get
a reward commensurate with its contribution. A number of
literature focused on designing incentive mechanisms by
clients’ resources [16] and reputation [17]. Whereas, we
concentrate on the incentive mechanism based on the
contribution of data quality. Because data quality is a key
factor that affects the model. In the scheme based on data
quality contribution, Shapley value [18] has a wide range of
applications, and [15, 19, 20] studied the Shapley Value of
the data point contribution during ML training. In the
training process of federated learning, [21] proposed to
record the intermediate results (i.e. gradients and models),
and then use them to reconstruct the model for approximate
the contribution indexes. ,is approach is efficient and
feasible in horizontal federated learning. Unfortunately,
there is an essential difference between gradient-based
distributed GBDT and Gradient Descent-based algorithms.
Because reconstructed models are not always useful and
internal nodes will not affect the prediction score. ,erefore,
we need a new contribution measurement mechanism for
the scenario without an intermediate model.

In addition, some works use blockchain technology to
record the training milestones of clients and ensure the
security of the incentive mechanism [22–24]. ,ese works
do not promise a good balance of privacy-preserving, effi-
ciency, and learning accuracy to form a practical federated
GBDT.

3. Preliminaries

3.1. GBDT. GBDT is an ensemble model of sequential
training for several decision trees. In each iteration, the

following objective function is minimized to fit the residual
of previous learners [25]:
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To reduce the computational complexity of traversing all
feature values, histogram-based algorithms like [4, 26] use
discrete bins to find the approximate optimal split.,e detail
of the histogram-based algorithm as shown in Algorithm 1.

3.2. Private Spatial Decompositions (PSD). Generally, any
dataset with ordered attributes or moderate to high cardi-
nality (e.g. numerical features such as salary) can be con-
sidered as spatial data. In addition, if a dataset can be
indexed through a tree structure (such as a B-tree, R-tree,
kd-tree etc.), it can be implicitly treated as spatial [27].
Formally, a spatial decomposition is a hierarchical (tree)
decomposition of a geometric space into smaller areas/hy-
perspaces, with data points partitioned among the leaves.
Indexes are usually computed down to a level where the
leaves either contain a small number of points, or have a
small enough area, or a combination of the two. ,ere have
been many approaches to spatial decompositions. Some are
data-independent, such as quadtrees which recursively di-
vide the data space into equal quadrants. Other methods,
such as the popular kd-trees, aim to better capture the data
distribution, and they are data-dependent. [27] gives a full
framework for privately representing spatial data. We use
the PSD to share a coarse distribution summary with other
data owners. And it is both used in collaborative learning
and calculation verification under statistical heterogeneity
scenarios.

3.3. Blockchain. Blockchain [28] is a kind of chained data
structure that combines data blocks in order according to
time sequence. ,e append-only data are ensured that they
are tamperproof and unforgeable through cryptographic
primitives. ,e main advantages of blockchain are decen-
tralization, security, transparency, and traceability. Hyper-
ledger Fabric [29] is a popular and efficient enterprise-level
permissioned blockchain framework. And Fabric also re-
alizes the modularization of consensus mechanism, au-
thentication, and other components, which is more suitable
for business cooperation between enterprise organizations.
In summary, the fabric can provide a decentralized trust
environment for a group of organizations to carry out
complex business transactions for collaborative GBDT
training tasks.
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4. The FGBDT-Chain Framework

,is section describes the overall design of FGBDT-Chain,
including the design objectives and system overview. We
adopt the general assumption of federated learning, in which
one model requester publishes a model request and multiple
parties participant in the collaborative learning task. ,e
problem description is included in Section 3-A. ,e system
summary is shown in Section 3-B.,e main symbols used in
this paper are given in Table 2.

4.1. Design Objectives. We assume that there are M parties,
and each party is denoted by Pm(m ∈ [1, M]). We use Im �

(xm
i , ym

i )  to denote the instance set of Pm, where
xm

i ∈ R
f, ym

i ∈ R. We focus on the collaborative training of
GBDTmodel, in which M parties (data owners) include one
requestor cooperate to implement a federated GBDT
training task. For example, as shown in Figure 1, due to the
different distribution of patients, two private hospitals P1, P2
may prefer accurate test predictions for female and young
patients, respectively [15]. Without relying on unrealistic
public datasets and third-party central servers, they hope to
achieve peer-to-peer collaborative learning and obtain high-
quality models in a trusted environment. More importantly,
they need to be guaranteed that they can get rewards cor-
responding to their own contributions. Out of this as-
sumption, our federated GBDT system tries to meet the
following three objectives:

(i) Model accuracy and efficiency. It is the basic re-
quirement of all parties to build a high-quality
global model in multiple skewed data sets. In ad-
dition, the geographical distance between parties
may be far away, and the intermediate process can
be stored in blockchain for the sake of fairness and
security. ,e communication cost should be strictly
reasonable. For this reason, we propose FV-tree,
which can reduce the communication to a small
range, and obtain good model performance in the
case of skewed data distribution.

(ii) Fairness: As mentioned previously, data is consid-
ered a valuable asset and a critical strategic resource
increasingly. In addition, participants need to invest
tremendous of computation and storage in FL.
Without any revenue, data owners may not vol-
untarily provide data and training resources. To
encourage more parties to participate in a collab-
orative learning program, it is necessary to accu-
rately calculate the cooperative contribution of each
participant. We use the split gain generated by the
party’s updated gradients to calculate the split
Shapley value of each party. In this way, we can
fairly quantify the contribution of each party in the
whole process, and provide the mechanism for the
monetary reward of delayed payment.

(iii) Security: We assume that parties are curious, and
they will not maliciously attack the federated model

Table 1: Compare with existing federated GBDT systems.

Accuracy1 DP2 Shared information3 Communication efficiency4 Blockchained5

[6] ✕ ✓ Model ✓ ✕
[8] ✓ ✕ Model + gradients ✕ ✕
[7] ✕ ✓ Model ✓ ✓
Our scheme ✓ ✓ Gradients ✓ ✓
1,e accuracy of federated GBDTmodel performance well in skewed data distribution. Notice: “✕” representative does not meet the requirement, “✓” meets
the requirements. 2,e system has differential privacy extensibility. 3,e system’s communication architecture, especially the shared training information in
federated GBDT training. 4 ,e communication cost is independent of the number of samples in the local dataset. 5 In the absence of a third-party server
(none of the above systems need it), the blockchain is used as an autonomous platform to coordinate the training process.

Input: I: instance set of the current node, F:feature set.
Output: bestSplit.
forall f in F do.
H← new Histogram();
forall x in I do.
bin← x[f].bin;
H[bin].g←H[bin].g+ x.gradient;
H[bin].n←H[bin].n+ 1;
forall bin in H do.
leftSum, rightSum�CalSumFromSplit(bin);
split.gain� SplitGain(leftSum, rightSum);//(2) ;
bestSplit�ChoiceBetterOne(split, bestSplit);
return bestSplit.

ALGORITHM 1: FindBestSplit.
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unless they can get higher income. �is means that
our system not only needs to avoid leaking the
original data in the learning process but also needs
to provide a necessary veri	cation mechanism. We
also have to eliminate the potential that greedy
participants deliberately exaggerate contribution
through updated information. �erefore, we pro-
pose FGBDT-Chain which can provide an extension
of di�erential privacy, and a decentralized en-
dorsement mechanism to 	lter distorted update
information.

4.2. �e Proposed Architecture. Our proposed system con-
sists of two modules: permissioned blockchain module and
federated GBDT module. �e permissioned blockchain

establishes secure connection channels among all nodes.
FGBDT-Chain is based on the FV-tree training framework,
which includes three stages: distribution preprocessing,
features voting, and gradient histogram aggregation. Per-
missioned blockchain module includes four types of
transactions: model request transaction, feature voting
transaction, gradient histogram upload transaction, and
contribution indexes allocation transaction. �e contribu-
tion indexes assignment is implemented by smart contracts
according to historical transactions. �e stored information
in the permissioned blockchain is shown in Figure 2.

Step 1. In the beginning, a model requester initializes the
permissioned blockchain and speci	es the requirements of
the learning task, such as dataset requirements and model

PSD1

PSD2

PSDm

Party m

Party 2

Party 1
GBDT task

request transaction

Transaction Record

Split
proposal

candidate
gradients

Split record and
reward

Permissioned Blockchain

Figure 1: FGBDT-Chain system overview.

Table 2: List of symbols.

Symbols Meaning
Pm m-th party in federated learning task;
M Number of participating party;
Im Instance set of party Pm;
T Number of decision trees in GBDT;
d Maximum depth of decision tree;
Q Total number of ensemble model split;
hm Pm’s histogram of ordered gradients;
bing, binn �e sum of gradients and counts of each bin in one histogram;
gainq �e split gain of q-th split in the GBDT model;
splitq �e split point of q-th split in the GBDT model, which includes the split feature and split threshold;
psdm Privacy spatial decomposition structure of Pm;
cmq , Cm �ey represent the Pm’s contribution index of the q-th split and the contribution index of total splits respectively;
ϕqm Pm’s split indexes (split Shapley value) during the q − th split;
κqm Pm’s voting contribution indexes during the q − th split;
Wm �e Pm’ distribution weight matrix;
wm∗ �e Pm’ global distribution weight vector;
pkm, skm �e Pm’ key pair for signing and veri	cation respectively;
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parameters. Parties that wish to join the learning task or
receive a request should be authenticated, then upload the
rough distribution summary (i.e., PSD) of their datasets.�e
model requester has the right to refuse a party to become a
federation member according to the observation of the
distribution summary.

Step 2. After a speci	ed number of organizations join the
federated learning task, each party downloads all PSDs, and
establishes the distribution matrix and global distribution
vector. So far, the initialization work is completed.

Step 3. In the stage of collaborative training, each party uses
the local dataset Im and the global distribution vector to
calculate the local most informative features and uploads the
feature index through the voting transaction. At the same
time, all parties can calculate the top-2 features with the
highest number of votes as candidate features according to
on-chained transactions.

Step 4. Parties broadcast the local original gradient histo-
grams of candidate features. After one party receives most
signatures corresponding to his histogram, the histograms
and signature set are written into the transaction. With the
help of the distribution matrix, the veri	cation algorithm
can detect malicious updates in skewed data distribution
(Malicious update refers to the gradient histogram stretched
by greedy participants to improve their contribution
indicators).

Step 5. �e smart contract will calculate the best split point
and allocate contribution indexes according to the historical
transactions. �ese two sub operations can be parallelized
and the complexity is low. In addition, since the update
records are stored in transactions, the contribution indexes
can be calculated after the emergency task training process is
completed.

�e above 3–5 steps will form a loop that continues to
execute until the stop training condition is met. When the
learning task is 	nished, the federated GBDT model and
parties’ update/contribution records are stored in the
blockchain’s transactions. �e whole learning process does
not depend on any single party. In addition, because all the
records created during the training of the decision tree are
tamper-proof, the federated member can be audited at any
time.

5. The Design Detail of FGBDT-Chain

FGBDT-Chain is a collaborative learning framework based
on blockchain for GBDT. We will introduce the framework
in two parts: FV-tree and FGBDT-Chain. Firstly, we will
introduce the PSD-based preprocessing phase, which pro-
vides the basis for our framework (Section 5-A). Secondly,
we will describe the GBDT training framework FV-tree in
detail, which includes tree growth processes based on feature
voting, gradient histograms publishing, and the expansion of
di�erential privacy (Section 5-B). Finally, we introduce
FGBDT-Chain’s fairness assurance, including the fair
guaranteed incentive mechanism based on a novel

Weak learner

Ensemble model

Blockchain Storage

Dataset
requirement,

model
parameters

contribution indexes

P1 PM

Model
request

vote vote candidate
feature

candidate
feature

Contribution
record

Contribution
record

splitq,
{cq1,...,cqM}

splitQ,
{cQ1,...,cQM}h1,

{sig1
2,..., sig1

M}
hM,

{sig1
M,...,

sigMM–1}

P1’s feature
index

PM’s feature
index

feature
voting

gradient
histograms

split and reward
Gradient histograms
Split feature voting

Figure 2: Blockchain-based ledger storage of FGBDT-Chain system.
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contribution measurement algorithm, and the decentralized
verification scheme on the blockchain (Section 5-C).

5.1. Preprocessing Stage. When a party receives the model
request transaction, it first checks the dataset requirements
and filters out the instances that meet the task description in
the local instance, which is expressed as Im. ,en it starts the
preprocessing operations. ,e main idea is to capture the
data distribution of all other parties by generating a rough
distribution matrix Wm ∈ RNm×M and a global distribution
vector wm∗ ∈ RNm . Where Wm

ij is the distribution weight of
Pm’s instance xm

i in party Pj’s instance set Ij, and wm∗
i is the

distribution weight of the instance xm
i in the global instance

set I. In our scheme, wm∗ is an optional term. When dis-
tributions are badly skewed, it will be used in the voting stage
to select the most informative local feature (Section 5-B1),
and Wm is used for verification subsequently (Section 5-C2).

More specifically, party Pm firstly calculates the psdm by
Im, which has been well studied in previous research [27].
Let Vm

l be the value of l-th leaf in psdm. Intuitively, the psdm

is a tree model represents the rough data distribution
summary of Pm, where the value Vm

l is the number of in-
stances corresponding to the hyper-space represented by the
leave node l, and the count value Vm

l has been perturbed by
differential privacy. Party Pm can upload psdm with the
blockchain’s transaction, and download other parties’ psd in
the collaborative learning task. ,en Pm maintains the
distribution weight matrix Wm and the global distribution
weight vector wm∗. ,e detail is shown in Algorithm 2. After
party Pm downloads psdj from Pj, it uses a local instance set
Im to query psdj. Assuming that the query result of i-th
instance (xm

i , ym
i ) is l-th leaf in psdj, then Pm pushes index i

into the set S
j

l , where S
j

l is the set of Pm’s instances falling in
the hyperspace psdj

l . After all instances have been queried,
Wm can be assigned, where Wm

ij � (|S
j

l |i∈Sj

l

)/Vj

l . Finally, after
calculating the distribution vectors Wm

1 , . . . , Wm
j of all other

participants, Pm will further assign the global distribution
vector wm∗, as follows:

w
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i � δ 
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where δ is a parameter of fitting distribution degree, N and
Nj denote the number of instances of global and party Pj

respectively, which is got from the accumulated leaves’ value
of different psd s. In addition, Nj/N represents a fitting
budget of Pj. ,e more instances a party has, the larger
fitting budget needs to be allocated. For Algorithm 2, we
have the following observations. Firstly, the calculation of
PSD only needs one time, and the distributed structure of
tree model will greatly reduce the communication cost
compared with the approach of sending each sample hash
[7]. Secondly, the structure of psd s can be different, which
means parties do not need to communicate in advance to use
a unified structure of psd. In other words, parties can choose
any tree model or inner nodes, whether it is a quad-tree or a

kd-tree. It will not affect other parties to generate their
weight matrix.

5.2. FV-Tree. When the local weight matrix Wm and global
weight vector wm∗ are established, parties can start to enter
the training stage. In the training phase, each party does not
train a complete tree, instead, it sends minimal update in-
formation. ,ere are two types of update information: (i)
parties’ split feature voting and (ii) gradient histogram of
candidate feature which is used to calculate global split
points. In each node split, parties calculate the split feature
with the most informative gain locally and vote on it. ,e
top-2 features with majority votes in the global voting will
become candidate features, and then parties send the gra-
dient histograms of them. According to the above two kinds
of update information, each party can update the global
GBDT model synchronously.

However, this method may produce errors due to the
split feature may be not globally optimal, especially in the
context of decentralized data owners with different distri-
butions/sizes. So, we consider gradient refit to alleviate this
problem.,e basic idea of gradient refit is to adjust gradients
according to the global weights of the instances, then cal-
culate the most informative feature according to the refitted
gradients. When the global candidate features are selected,
the two local original histograms are sent. ,e details of FV-
tree are shown below.

At the beginning of an iteration, party Pm has a local
instance set Im, and the global distribution weight vector
wm∗. First, Pm updates gradients and synchronizes the split
information of each new node. Details are shown in the
Algorithm 3 and Figure 3. For each new node generated in
the decision tree, Pm calculates the local split gain of all the
split points. ,e split gain is calculated as follows:
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When the local split point with the highest split gain is
selected, party Pm will publish the corresponding feature’s
index as a vote. And after receiving all the local votes, every
party can sort features according to the number of votes. So
far, each party can get the ranking of the same features, then
select the top-2 features as candidate features, and upload
the corresponding gradient histograms. It should be noted
that the original uploaded gradients histogram is not the
fitted one. After receiving the histograms from other parties,
each party will traverse all the split points in the aggregated
histograms to find the best split with the highest split gain.
,e gain of each split point is calculated as follows:

Gglobal �
1
2


M
m�1 i∈Im

L
gm

i 
2


M
m�1 I

m
L


 + λ

+


M
m�1 i∈Im

R
gm

i 
2


M
m�1 I

m
R


 + λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where, i∈Im
L
gm

i , i∈Im
R
gm

i , 
M
m�1 |Im

L |, and 
M
m�1 |Im

R | are
calculated from the aggregated histograms. When the node
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Input: PSD model set psd1, psd2..., psdM, instance set Im
Output: distribution weight matrix: W; global distribution vector: w∗
//establish distribution weight matrix
for j← 1 to M do
for i← 1 to Nm do
S← psdj.getLeafNode((xi, yi));
S.push(i);
//set hyperspace′s weight to matrix W
for l← 1 to Lj do
Sj.weight← |S

j
l |i∈Sj

l
/Vjl ;

forall i in Sjl do
W [i][j]← Sjl .weight;
//establish global distribution vector
for i← 1 to Nm do
for j← 1 to M do
w∗ [i] +�W [i][j] × Nj/N;
return W, w∗;

ALGORITHM 2: FVtree:DistributionMatrixEstablish.

PSD1 PSD2 PSDm

instance
set

Partyi

gradients refited gradients
refited countscounts

global
top – 2 features

top – 2
histograms proposal split feature

Permissioned Blockchain

Figure 3: Training process of FV-tree.

Input: local gradients g1, . . . , gNm
, global distribution weight vector wm∗

Output: bestSplit
localHistograms�ConstructHistograms(g1, . . . , gNm

);
localRe	ttedHistograms�ConstructHistograms(g1, . . . , gNm

, wm∗);
//Local Voting
forall H in localRe	ttedHistograms do
splits.Push(H.FindBestSplit())//For details in Algorithm 1;
localVote�Max(splits).getFeatureID();
uploadVote(localVote);
//Global Voting
featureRanking← gather other parties’ localVote;
globalCandidate� featureRanking.Top2ByMajority();
uploadHistograms(globalCandidate, localHistograms);
//Merge global histograms
globalHistograms← gather other parties’ localHistograms;
bestSplit� globalHistograms.FindBestSplit();
return bestSplit;

ALGORITHM 3: FV-tree:FindBestSplit.
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reaches the max depth, it becomes a leaf node and the value
is calculated through the following equation:

Value � −


M
m�1 i∈Im

g
m
i


M
m�1 Im


 + λ

⎛⎝ ⎞⎠. (6)

In the training process of FV-tree, a participant needs to
update information from other parties to split none-leaf node,
and the value of a leaf node is directly generated by the
histograms of its parent node. So, we only need to allocate the
privacy budget to the none-leaf nodes. In the communication
process of FV-tree, local feature voting and histograms ag-
gregation may lead to privacy leakage. For the local best split
point selection, the information gain is used as the utility
function, and the exponential mechanism is used to return the
split point with the largest gain value. Let g∗ be the gradient
with the largest absolute value. By introducing the conclusion
of previous work [13], the sensitivity is
ΔG � ((3λ + 2)/((λ + 1)(λ + 2)))g∗. Before updating histo-
grams, the count of each bin is perturbed by Laplace noise [14].
,e sensitivity of the gradient histogram is 2g∗, and the
sensitivity of the count histogram is 1. To maintain the ef-
fectiveness of boosting, we use the two-level boosting structure
(EOE) to allocate the privacy budget formultiple decision trees
[13], and our method satisfies the ϵ-differential privacy.

Proof. Assume that the privacy budget of a tree is ϵt, and the
max depth of a decision tree is d. Since the nodes in one
depth have disjoint inputs according to the parallel com-
position, each instance will go through at most d − 1 times
node split. Further, each split will be regarded as five queries,
namely, the best split feature voting and twice gradient
histograms and count histograms updating respectively. ,e
privacy budget for each split is ϵsplit � (ϵt/5(d − 1)). ,ence,
the privacy budget of a single decision tree satisfies ϵt-dif-
ferential privacy. In EOE, if there are a total of E ensembles,
the privacy budget of each tree is ϵt � ϵ/E, and the whole FV-
tree training process satisfies ϵ-differential privacy.

In summary, our scheme leverages voting split features
and updating gradient histogram to make a tradeoff between
accuracy, communication cost and security, and we give a
brief discussion in section 7-A. □

5.3. FGBDT-Chain. To attract more institutions with high-
quality data into the federal learning task, it is necessary to
quantify the contribution of each party fairly and provide
incentive mechanisms according to the contribution index.
A widely used approach is to quantify the contribution of
each participant’s local model [9]. However, it is infeasible
when the local model does not exist. For example, in our FV-
tree scheme, there is no local model, and split points are
decided by all parties. We should design a new approach and
mechanism to quantify the contribution of federated parties.
We first define the fairness of the federated GBDT task.

Definition 1. (Collaborative fairness in GBDT) In a col-
laborative GBDT learning task, multiple parties train a
global model together.,e party that provides more valuable

information for the global model will get a higher contri-
bution index. Specifically, fairness can be measured by the
parties’ split gain.

We define what is valuable information as follows.

Definition 2. (Valuable information in gradient-based col-
laborative GBDT): Suppose party P and P’ participate in
distributed GBDT learning. Once the global best split point
is determined, we can informally say that party P provides
more valuable information than P’, if the gradients sub-
mitted by P bring more split gain than the gradients sub-
mitted by P’ on the global split point.

,e growing process of decision tree is to constantly find
the split point which can bring the maximum split gain. ,e
split gain provided by party’s update information for the
global model can reflect the corresponding contribution
because split gain represents the reduced uncertainty in the
selection process of the split point. Formally, let
C≜ P1, . . . , PM  denote a set of M parties. We call a subset B

a coalition of parties if B⊆C. ,e histogram vector of Pm ∈ B

is represented by hm, coalition B’s histogram set is denoted by
HB. And we denote the best splitting point as splitq, the global
gain of splitq is Gq. ,en, we define the utility function UB:

UB ≜G HB; splitq  �
m∈Bbin∈hm

L
bing 

2

m∈Bbin∈hm
L
binn + λ

+
m∈Bbin∈hm

R
bing 

2

m∈Bbin∈hm
R
binn + λ

.

(7)

,e above equation is the histogram form transformed
from (5). Where hm

L / hm
R denote the set of bins on the left/

right parts segmented by splitq, bing and binn denote the
sum of gradients and counts in the corresponding bin re-
spectively. According to the observation of (7), two prop-
erties fulfill the standard assumptions of cooperative game
theory:

Property 1. Histogram of the empty coalition has no utility:
U∅ � 0;

Property 2. Histogram of any coalition B⊆C has nonnega-
tive value: ∀B⊆C, UB ≥ 0;

Proof. ,e above two properties can be proved simply. For
Property 1, when B⊆∅, each bin in HB equals 0, so the
G(HB; splitq) equals 0. For Property 2, because
(m∈Bbin∈hm

L
bing)2 ≥ 0, and nbin is a natural number, the

minimum value of UB is (0/λ) + (0/λ) � 0.
To guarantee that the histograms’ contribution mea-

surement is fair to all M parties, we use Shapley Value, which
is the unique value division scheme that satisfies symmetry,
null player, additivity, and efficiency properties. Next, we
define the contribution of a federated party in a single
split: □

Definition 3. (Split Shapley value) In the q-th node split
splitq of federated GBDT model, given a utility function
U≜G where G is the split gain function of GBDTalgorithm,
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and a histogram set HC≜ hm{ }m∈ 1,M{ }, the split Shapley value
of a federated party Pm ∈ C is defined as:

ϕ hm; U,HC( ≜
1

M


M

j�1

1
M − 1

j − 1
⎛⎝ ⎞⎠



HB⊆HC∖ hm{ }: |HB|�j−1

U HB∪ hm ; splitq(  − U HB; splitq( ( .
(8)

For simplicity, we use ϕq
m denotes the split Shapley value

of Pm at the q-th splitting, it can be called as split contri-
bution index.

In addition to the split contribution, the voting con-
tributions are required to encourage parties to choose the
most informative features. In the q-th split, the voting
contribution κ of Pm is defined as:

κq
m �

0, If Pm’s vote hits the split feature,

Gq, If Pm’s vote does not hit the split feature,
⎧⎨

⎩ (9)

Finally, the party Pm’s total contribution index of the
q-th splitting of the federated GBDTmodel is defined as c

q
m:

c
q
m � ακq

m + ϕq
m, (10)

where κq
m is the voting contribution, α ∈ (0, 1] is a variable

parameter that controls the voting contribution, and ϕq
m is

the split contribution comes from Equation[eq_split]. When
the federated GBDT model training is complete, the con-
tribution of party Pm is Cm � 

Q
q�1 c

q
m, where Q is the total

number of split (number of nonleaf nodes).
In the previous section, we described in detail how to

quantify the contribution of a party. However, it is a
challenge to calculate C when there is no trusted third party
because C is directly related to the interests of each par-
ticipant. To ensure the security of the logic of contribution
measurement, we use a smart contract to retrieve historical
transactions and record the contribution of each party.

Even smart contract can achieve the security of com-
puting process, due to the sensitivity of split Shapley value,
greedy parties can get a higher split contribution ϕ by
tampering with the local histograms. As a concrete example,
it is shown in Table 3. Suppose two parties P1, andP2
submitted their local histogram transactions h1 and h2 where
h1 � 1, 2{ }, 10, 10{ }{ }, h2 � −1, 1{ }, 10, 10{ }{ }. For simplicity,
let λ � 0, we can get G is 0.45, and split contribution ϕ of P1
and P2 was 0.375 and 0.075, respectively. However, if P2
tampers with its gradient histogram h2 by doubling the
magnification, the global G increases to 0.85. Accordingly,
the split contribution ϕ1,ϕ2 is changed to 0.275 and 0.575. It
can be seen that P2 has increased his split contribution a lot.

Based on the above analysis, it is necessary to verify the
updated information in our system to maintain fairness. In
federated GBDT, the only existing verification scheme is to
use local datasets to measure the performance of the updated
model [6, 8]. Because it is difficult to generate public vali-
dation data sets, this scheme is considered as a minimized

method in the federated scenario [30].We inherit this idea of
using a local dataset as the basis of verification. However, we
cannot directly use the performance of the model, the
reasons are as follows: First, updating information in FV-
tree is gradients rather than models. Using gradients to
reconstruct a model requires additional calculation; Sec-
ondly, the verification of model quality cannot fundamen-
tally solve the above problem, because the contribution value
of a histogram will be significantly higher after it is stretched
proportionally. But the quality of the model using the
stretched histogram may not be much different from the
original one. In response to the above problems, we take the
histogram overlap degree as the verification algorithm, in
which the histogram used for verification is constructed by
the distribution matrix W and the local histogram h. And we
integrate this method into the endorsement mechanism of
the permissioned blockchain to implement the FV-tree’s
decentralized verification scheme.

Specifically, as shown in Figure 4, before party Pm

submits a histogram transaction, it first needs to broadcast
the histogram hm to other parties for signature. When
Pj ∈ C∖ Pm  received the signature request of hm from Pm,
the Pj’ local gradients and the distribution vector W

j
m will be

used to construct the refitted histogram h
j∗
m , which denotes

the histogram constructed by Pj to verify hm. For Pj, there is
only its histogram, which can simply denote as h∗m. ,e
details of this process are similar to Algorithm 1, except that
x · gradient, 1 are replaced by gW

j
m,i and W

j
m,i in line 5 and

line 6 respectively. ,en h∗m is used to calculate the over-
lapping degree with hm:

Ver hm, h
j∗
m  � 

bin∈hm

binm
g − binm∗

g





max binm
g , binm∗

g 
⎛⎝

+ 
bin∈hm

binm
n − binm∗

n




max binm
n , binm∗

n( 
⎞⎠,

(11)

where binm
g , bin

m
n denote cumulative gradients and count

respectively. ,e overlapping degree can verify the corre-
lation of bin values and whether they are stretched. When
the overlapping degree is less than the threshold, Pj will sign
the histogram hm, and send sig(hm, skj) to Pm, where skj is a
private key of Pj. When Pm obtains the signatures of most
parties, it will write the histogram and signature set into the
transaction and sends it to orderers, then the histogram
transaction will be packaged into block.
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�e above design is suitable for the overall architecture
of our federated GBDT, which can detect the histogram with
exaggerated contribution, and will not signi	cantly a�ect the
e¢ciency of the system. Firstly, to consider the data dis-
tribution of parties, we can avoid misjudging the correctly
calculated update information as malicious by using the
re	tted histogram to a certain extent, and the stretched
histogram can be easily discovered. For the e¢ciency of the
veri	cation scheme, the whole decentralized veri	cation
process is very similar to Fabric’s high-level transaction £ow
[29]. �e only di�erence is that the party uses the local data
set under blockchain instead of simulating the execution of
the smart contract. In addition, this process is also di�erent
from the processing method of Proof of Quality (PoQ) [8],
where they suggest checking the quality of all models after
block generation. If there is a malicious transaction, the
block needs to be repackaged, which means retraining the
whole GBDT model. In our scheme, orderers can 	lter out
the transactions that are not recognized by the majority of
participants when ordering transactions.

6. Implementation and Evaluation

6.1. Experiment Setup. We implement FV-tree based on
LightGBM (https://github.com/microsoft/LightGBM). For
PSD, we use a data-independent tree model. Each time of the
PSD’s node splitting, we randomly select a feature in the

unused feature set and divide it according to the average of
the global maximum and minimum values (the maximum
and minimum values are speci	ed in the task initialization
transaction), we also treat the label as a feature. �e max-
imum depth of PSD is 8, the maximum value of each leaf
node is 500. Laplace noises are injected into the leaf nodes,
where the privacy budget ϵ � 1. For the GBDT model, the
maximum depth of each tree is 8, the number of iterations is
500, the regulation parameter λ is set to 0.1, and the
maximum number of bin in the feature histogram is 16
(more bin will bring higher accuracy, but this small accuracy
di�erence is not signi	cant for the federated GBDT
framework).

We used three public datasets to evaluate our scheme
(https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/), as
shown in Table 4 And 75% of these datasets are used for
training, the rest are used for testing. To allocate skewed local
datasets, as the realistic scenario requires, we used the
partition method of previous work [31], which allocates the
datasets for each party according to the unbalanced ratio
θ ∈ 0, 1{ }. After allocation, half of parties got (θ∗Nclass0)/M
instances of class 0, and ((1 − θ)∗Nclass0)/M of instances of
class 1, the other parties are just the opposite. �is partition
method well represents the data distribution in the feder-
ation scene. Speci	cally, in addition to label skewed, there is
also feature skewed between local datasets [32]. As shown in
Figure 5, we use kernel density estimation (KDE) to

Table 3: An example of the in£uence of local histogram h on split contribution ϕ.

No tampering with histogram P2 tampered With his histogram

Local histogram h1 1, 2{ }, 10, 10{ }{ } 1, 2{ }, 10, 10{ }{ }
Local histogram h2 −1, 1{ }, 10, 10{ }{ } −2, 2{ }, 10, 10{ }{ }
Gain of global split 0.45 0.85
P1’ split contribution ϕ1 0.375 0.275
P2’ split contribution ϕ2 0.075 0.575

Party 1 Party M OrderParty m

5. Ordering
transactions

7. Validate
and store

1. Send local histograms

2. Verify histograms and sign

3. Collect
signatures

4. Submit histogram transaction

6. Broadcast block

3. Add the collected signatures to the histogram transaction, and commit the transaction when
the number of signatures meets requirement.
7. When encountering a histogram transaction, verify the signature and check the number of
signatures.

Figure 4: Blockchain-based histogram transactions working £ow.
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intuitively show the skew degree of feature distribution
between local and global datasets.

We compare our federated GBDT system with the other
two frameworks: Standalone framework. �is framework
assumes that the parties training integration model only use
their local dataset. �e standalone setting shows the per-
formance of the local training model of the party. In ad-
dition, there are two types of local dataset distributions in the
unbalanced partition. We represent one part of the parties
with more positive samples as Standalone A, and the other
part as Standalone B. Centralized framework: �is frame-
work assumes that there is a trusted server accessing all
parties’ data, and uses global data to train the ensemble
model without any privacy concerns. �e centralized
framework is high-precision, but it is hindered to implement
in practice due to various restrictions. In addition, we also

compare our scheme with other advanced federated GBDT
frameworks in several same settings, such as TFL based on
tree model communication and SimFL based on both tree
model and gradients communication.

6.2. Experimental Results

6.2.1. Voting by Retted Gradients. We 	rst show the ac-
curacy of FV-tree without considering di�erential privacy.
To evaluate the e�ect of gradient re	t, we compare FV-tree
and PV-tree by convergence speed. Without losing gener-
ality, the number of parties is set to 4, and the ratio θ is set to
80%. �e default parameters are used in all frameworks. �e
experimental results are shown in Figure 6. We can observe
the following points. First, FV-tree performs better than PV-
tree and Standalone models in all datasets. And because of

Table 4: Dataset description.

Dataset Cardinality Dimension
a9a 32615 123
SUSY 1000000 18
HIGGS 1000000 28
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Figure 5: Compare feature distributions between local and global datasets by using Kernel density estimation (KDE). (a) a9a feature 4 (b)
HIGGS feature 24 (c) SUSY feature 7.
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the data skew, the accuracy of standalone mode is greatly
reduced. �is is because each party is a�ected by the data
distribution bias in the learning process. And FV-tree uses a
gradient to re	t through PSDs, so it has a greater probability
to select the most informative feature. Second, in the datasets
a9a and SUSY, the centralized framework may lead to
over	tting, while there is no such problem in the schemes
based on FV-tree and PV-tree. Finally, the accuracy of PV-
tree is signi	cantly higher than the Standalone mode. �is
means that when considering di�erential privacy, we can get
a tighter sensitivity without using the gradient re	t.

6.2.2. �e Impact of Unbalanced Ratio θ. To show the in-
£uence of di�erent skew degrees on the FV-tree, we simply
set the number of parties to 2. �e experimental results are
compared with SimFL, an advanced work without di�er-
ential privacy. We observe the in£uence of di�erent un-
balanced distribution degrees on the prediction accuracy, as
shown in Figure 7. We can observe that the accuracy of the
standalone model decreases greatly with the skew of

distribution. Secondly, although the accuracy of our
framework and SimFL can be higher than local training
when the unbalanced ratio is greater than 70%, FV-tree is
much less a�ected than SimFL. �is may be because the
model accuracy is only a�ected by the feature selection in the
FV-tree framework. While SimFL is a�ected by the feature
selection and calculation of leaf weight. �is means FV-tree
is more suitable for skewed data distribution.

6.2.3.�e Impact of the Number of PartiesM. �enumber of
di�erent parties will also a�ect the accuracy of the model.
We set a di�erent number of parties when the unbalanced
ratio θ is set to 80%. �e experimental results are shown in
Figure 8. Firstly, we can observe that FV-tree outperforms
Standalone and SimFL in di�erent number of parties set-
tings, even the test error on dataset SUSY is less than that of
over 	tted centralized model. Secondly, with increasing
number of parties, it does not have too much impact on FV-
tree. �is advantage may also come from the fact that FV-
tree is not a�ected by the calculation of leaf weight.
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Figure 6: Comparison of the convergence speed, where the number of parties is set to 4, and the ratio θ is set to 80%. (a) a9a (b) HIGGS (c)
SUSY.
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6.2.4. �e Impact of Di�erential Privacy. Based on the above
experimental evaluation, FV-tree can achieve almost the
same accuracy in distributed settings as centralized settings.
�en, we test the FV-tree with di�erential privacy. Generally,
we set the number of parties M to 4, and the unbalanced
ratio θ is still set to 80%. To control the consumption of
privacy budget, we set the maximum depth d of a single
decision tree to 3. For dataset a9a, which has a small number
of instances, is set as two ensembles, and each ensemble
contains 20 trees. Dataset SUSY and HIGGS, which have a
large number of instances, are set as one ensemble. To ensure
a strict total privacy budget, PSD is not used. We evaluated
the test error for di�erent privacy budgets ϵ, as shown in
Figure 9. Due to the randomness of di�erential privacy, we
conducted 10 experiments and showed the maximum,
minimum and average values (To be fair, the default pa-
rameter settings are still used in centralized and standalone
models. Because there is no need to consider the con-
sumption of the privacy budget, the iterations T and depth d
can be increased to achieve higher accuracy).

We can observe that the accuracy of the FV-tree can still
be higher than that of local training after using di�erential
privacy on large-scale HIGGS and SUSY datasets. However,
in the a9a dataset, due to the small amount of data, too much
noise is added to the histogram, which reduces the accuracy
of the model, but it is still comparable to the best training
e�ect of local training. �is means that our scheme has a
good performance in large-scale datasets, and can meet the
needs of practical applications.

7. Discussion

7.1. Accuracy Loss and Communication Overhead

7.1.1. Accuracy Loss. �e accuracy loss of the FV-tree comes
from the selection of the best split features. In the balanced
data partition, we assume that the feature values of each
dimension are i.i.d. uniform random variables, and assign
the same number of instances to each party. �en, the
possibility of selecting the best feature is as same as PV-tree
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Figure 7: Comparison of the test errors given di�erent unbalanced ratio θ, where the number of parties is set to 2. (a) a9a (b) HIGGS (c)
SUSY.
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[33]. In the scenario of the skewed data partition, the ex-
periment shows that FV-tree still has high accuracy.
Moreover, in the case of signi	cantly skewed data distri-
bution, we can use the weight distribution calculated by
PSDs to re	t feature distribution, which can improve the
possibility of selecting the best feature. However, the global
distribution weight vector is used may cause high gradient
values, which will make the privacy boundary loose. Under
these circumstances, gradient cutting may be a feasible
choice [34]. In addition, our scheme is not e�ective for small
and continuous feature data sets. �is obstacle is mainly due
to adding a lot of noise to histograms, which reduces the
e�ectiveness of the gradient histogram. �erefore, in small-
scale dataset scenarios, we still need to use other federated
GBDT frameworks.

7.1.2. Communication Overhead. �e communication cost
of our federated GBDT system is constant. First, in the
pretraining phase, assuming that the depth of a PSD is dpsd,

each party has to send one PSD model and receive M − 1
PSD models, so the cost is M(2dpsd − 1). In the training
phase, assuming that there are T trees, and the depth of each
tree is d, 2d− 1 − 1 times node splitting is needed. Because
each inner node needs to communicate three times, in-
cluding one voting and two histograms uploading, where the
voting communication is a real number. And the cost of a
party sending M − 1 times histogram to communicate
histogram is 2(M − 1)nbin. When two 2/3 of the signatures
are received, the transaction can be sent. Let Lsign be the
length of signature, then the cost of receiving the signatures
is 2/3MLsign. In addition, they need to receive other parties’
histograms and sign them, where the cost is
2(M − 1)nbin + (M − 1)LSign.�erefore, the communication
overhead of a histogram aggregation is
(4M − 3)Nbin + ((7/3)M − 1)Lsign. Because there are T
trees, the total communication overhead is
(2d− 1 − 1)[(4M − 3)Nbin + ((7/3)M − 1)Lsign]T, where d,
M, LSign, T,Nbin are constants. So total communication cost
of FV-tree is #O(1), which is less than other #O(|Im|)
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Figure 8: Comparison of the test errors given a di�erent number of partiesM, where the unbalanced ratio θ is set to 80%. (a) a9a (b) HIGGS
(c) SUSY.
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federated GBDTframework [7]. In addition, the storage cost
in the permissioned blockchain can reach an acceptable level
to ensure fairness and tamper-proof.

7.2. Fairness andE�ciency. We regard the growth process of
the decision tree as multiple cooperative games. Shapley
value is used to measure the individual contribution in
cooperation, the fairness of Shapley value is widely recog-
nized. In our design, every node segmentation is fair, and the
details can be obtained from Section 5-C. In addition, be-
cause the bene	ts obtained by the participants each time
directly come from the gain value, it is also fair for the whole
training process. For example, in the early stage of training,
each split will produce a great gain, and each party will get
more contribution value from it. On the other hand, the
computational complexity of split Shapley value is accept-
able. We can see only M is variable through (8), and in
organization-cross federated scenes,M is usually a relatively

small value. Besides, we do not need to traverse all the split
points in histograms to calculate of U, because the global
best split has been determined in splitq.

7.3. Security. It is assumed that all parties will aim at
maximizing revenue and act honestly in the stage of voting
characteristics because in the absence of any data of other
parties, they can only choose the feature with the highest
gain value to vote according to their real data to obtain
voting awards. Similarly, in the phase of communicating
gradient histogram, if the modi	ed gradient histogram is
detected, the histogram transaction cannot be published
because of the need for a similarity test. Hence, a party can
only get the histogram contribution reward if it publishes the
real histograms.

Further, if there are malicious participants in the alli-
ance, our system is still robust. Firstly, suppose that in the
voting feature stage, if multiple malicious participants
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Figure 9: Comparison of the test errors given di�erent total privacy budgets ϵ, the unbalanced ratio θ is set to 80%, where the maximum
depth d of a single decision tree to 3. Dataset a9a is set as two ensembles, and each ensemble contains 20 trees. Dataset SUSY andHIGGS, are
set as one ensemble with 50 trees. (a) a9a (b) HIGGS (c) SUSY.
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conspire to select a feature f′ with less gain to enter the
global candidate features. At the same time, as long as one
honest party selects another feature f, f′ is still likely not to
be the split point, because the gain value of f may be greater
than it. On the contrary, if the gain value of f is less than f′,
it means that, f′ is a good segmentation feature, and di-
viding nodes according to f′, f′ will not cause great harm to
the model. Secondly, in the histogram aggregation stage,
because the gradient histogram of the malicious party needs
to be verified by two-thirds of the parties, it is necessary for
the malicious parties involved in the conspiracy to reach
two-thirds of the total number to make the histogram of the
damage model accepted by the federation.

8. Conclusion

In this paper, we aim to present a closed-loop federated
GBDT system. In our scheme, each party can get a good
performance model and be allocated to a fair contribution
index. At the same time, with the help of blockchain and
decentralized verification mechanism, the calculation of the
contribution index will remain secure, the results cannot be
tampered with, and provide additional functions such as
delayed payment or audit for any need. Besides, the com-
munication overhead is constant which enables our method
to fit federated GBDT tasks with large-scale datasets very
well. Due to privacy constraints, this scheme may not be
suitable for small-scale data sets, which is the direction we
plan to study in our future work. [35].
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