
Retraction
Retracted: Component-Based Software Testing Method Based on
Deep Adversarial Network

Security and Communication Networks

Received 26 December 2023; Accepted 26 December 2023; Published 29 December 2023

Copyright © 2023 Security andCommunicationNetworks.Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Tis article has been retracted by Hindawi, as publisher,
following an investigation undertaken by the publisher [1].
Tis investigation has uncovered evidence of systematic
manipulation of the publication and peer-review process.
We cannot, therefore, vouch for the reliability or integrity of
this article.

Please note that this notice is intended solely to alert
readers that the peer-review process of this article has been
compromised.

Wiley and Hindawi regret that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our Research Integrity and Research
Publishing teams and anonymous and named external re-
searchers and research integrity experts for contributing to
this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] W. Fu and L. Wang, “Component-Based Software Testing
Method Based on Deep Adversarial Network,” Security and
Communication Networks, vol. 2022, Article ID 4231083,
11 pages, 2022.

Hindawi
Security and Communication Networks
Volume 2023, Article ID 9864593, 1 page
https://doi.org/10.1155/2023/9864593

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9864593

RE
TR
AC
TE
DResearch Article

Component-Based Software Testing Method Based on Deep
Adversarial Network

Weiyu Fu 1,2 and Lixia Wang 3,4

1School of Computer Science & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
2Jiangsu Vocational College of Finance and Economics, Huai’an 223003, Jiangsu, China
3School of Business Administration, Henan Polytechnic University, Jiaozuo 454003, Henan, China
4School of Management, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

Correspondence should be addressed to Weiyu Fu; 19800341@jscj.edu.cn

Received 18 July 2022; Revised 5 September 2022; Accepted 16 September 2022; Published 12 October 2022

Academic Editor: Hangjun Che

Copyright © 2022Weiyu Fu and Lixia Wang..is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the continuous updating and application of software, the current problems in software are becomingmore andmore serious.
Aiming at this phenomenon, the application and testing methods of componentized software based on deep adversarial networks
are discussed. .e experiments show that: (1) some of the software has a high fusion rate, reaching an astonishing 95%
adaptability. .e instability and greater potential of component-based software are solved through GAN and gray evaluation.
With the evaluation system, people are dispelled. Trust degree. (2) According to the data in the graph and table, the deep learning
adversarial network solves the vulnerability and closedness of the general network, and the built-in test method with experimental
data reaching an average accuracy rate of 90% is the best test method for this system. With the deep learning adversarial network,
the average test level of component-based software reaches level 7, which makes the new software industry of component-based
software have a long way to go.

1. Introduction

We present an in-depth study of reconstruction strategies
based on CS-MRI and bridge the gap between untrained
traditional methods for processing single image data and
prior knowledge of large training datasets.We also propose a
new conditional generative deep adversarial network model
used in appeal research, and we join forces to sacrifice
enemies and sacrifice creative materials to better preserve
reconstructed textures and contours. Furthermore, we in-
corporate frequency band information to improve image
and frequency range similarity. We conducted a compre-
hensive comparative study of traditional CSMRI recon-
struction methods and recently explored in-depth research
methods. Compared to these methods, our DAGANmethod
provides excellent reproduction and preservation of iden-
tifiable details in images [1]. Deep adversarial networks have
been quite new in recent years, and we demonstrate our

recent improvements to the deep adversarial network
learning event analysis workflow that improve the continuity
and density of estimated fault levels in fault regions. His-
torically, predictions from traditional deep learningmethods
and algorithms have been characterized by a “fuzzy” cloud of
average probability that is well beyond the margin of error.
To address this ambiguity and improve resolution reliability,
we demonstrate image preprocessing using a general
adversarial network (GAN) that refines seismic images for
training and prediction, a honed solution [2]. .e deep
adversarial network provides a different learning method for
(AD), which mainly cures the life problems of the elderly,
mainly from their images, but we do not know whether this
new learning method can be effective. Many research data
are public databases, and the lack of physician participation
in quantitative and comparative trials in these studies may
affect the generational impact and generalizability of GAN
model results. Retrospective studies demonstrate the value

Hindawi
Security and Communication Networks
Volume 2022, Article ID 4231083, 11 pages
https://doi.org/10.1155/2022/4231083

mailto:19800341@jscj.edu.cn
https://orcid.org/0000-0003-4871-7716
https://orcid.org/0000-0002-3246-8367
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4231083

RE
TR
AC
TE
D

of using adversarial networks in classifying AD conditions
and processing AD-related images. Ultimately, this study
demonstrates the improved diagnostic ability and clinical
utility of deep adversarial networks for AD [3]. Virtual tissue
staining using deep adversarial networks provides a realistic
approach to these problems, but the use of deep learning
methods remains challenging due to the very limited
amount of data available for training. Based on the deep
adversarial networks concept, a low-processing training
method was used to generate self-luminous images of rough
areas of ovarian tissue corresponding to hematoxylin-
stained areas of ovarian tissue. With the above approach, we
establish a controlled state for virtual color correction, which
will fine-tune the quality of the finished image in the next
virtual grading step [4]. We introduce a new end-to-end
multiscale temporal edge aggregation (MTPA) network,
which belongs to a class of deep adversarial networks and
which proposes MTPA to reduce the temporal and current
properties of the reference frame..eseMTPA functions are
used to drive individual decoders to overcome lost con-
nections. To achieve realistic and consistent foreground
components, properly scaling the above frame outputs will
give the correct MTPA performance for each decoder input.
.e performance analysis of the proposed method is vali-
dated using CDnet 2014 and the lowest video database [5].
Constructed software is an important part of software de-
velopment. It can provide considerable benefits in the long
run. A high degree of research into it can greatly improve
software functions and reduce human costs. .e reorgani-
zation system is described, the model of the constructed
software is investigated and analyzed, and its characteristics
are evaluated [6]. .e advantages of built-in software are
reusability and interoperability, which raises questions about
its competitiveness and operation. Reforming and adjusting
it through various professional development tools make the
built-in software more convenient. .ese incompatible
standards have different object models, repository models,
and application protocols that are defined. .is incompat-
ibility confuses the market, as ISVs, system integrators, in-
house developers, and end users all struggle to understand
the relative strengths and weaknesses of standards and the
opportunities to be successful in the business. We then
examined the recommended OpenDoc, OLE 2, COM, and
CORBA standards for both technologies [7]. Constructed
software development is recognized as an effective method
to improve the efficiency and quality of software develop-
ment and is widely used to build software systems. However,
current software component technologies mainly focus on
component implementation patterns and runtime interop-
erability because they lack a systematic approach to control
the entire development process. In recent years, software
architecture (SA) research has made great progress. It takes
the component as the basic unit and provides a top-down
approach for component-driven development by describing
the general structure and characteristics of the software
system [8]. .e role of component-based software in cre-
ating an intelligent environment is discussed. A systematic
description of the future knowledge environment of the
campus. .is scenario shows how software components

affect the different stages of development, distribution, and
use in a cognitive environment. .e main research areas are
identified as component architecture, component interface
standards, input systems, and protocol development [9].
Component-based software is the embodiment of assem-
bling software. It integrates their advantages to meet the
heights they could not reach before, including CBD and
related materials to improve software reusability. In addition
to improving software reusability, a component view also
provides a better understanding of architecture, search,
usage, and listing. It is mainly about the correct presentation
of components, which ultimately helps programmers to
reuse software, which is highly desirable when developing
component-based software [10]. Stereotaxic impression
anomalies were examined using different tests with two
stimuli: (1) a random strong display of stereoscopic contours
consisting of a random factor template, and (2) residual
images of different physical contours on the retina. .e
results of these three experiments showed that most indi-
viduals classified as the standard imaging variant functioned
normally under short exposure conditions, which allowed
longer studies to exclude eye movements. .ese results
suggest that the previously reported abnormality in stereo
vision is related to the experimental approach rather than to
the underlying neurological deficit [11]. .e rodent
touchscreen test is an automated, computer-assisted be-
havioral test that allows rodents to graphically display
computer-generated stimuli, and the rodents respond to the
stimuli directly through the nose. .e benefits of this ap-
proach are numerous and well-tested, and the mouse can
make this distinction well with optimized parameters. Taken
together, these experiments optimize the touchscreen
method and demonstrate its utility as a high-throughput
cognitive test in rodents [12]. A time-based transient test
method was developed to rapidly measure array variables
and other frequency-dependent properties of centrifugal and
noncentrifugal loudspeakers. .is method is suitable for
systems with random or intermittent high flow rates. Flow
and flow experiments were performed on laboratory models
of exhaust mufflers, variable channels, and complex channel
systems. .ere is good agreement between theoretical and
experimental results. .ese results not only demonstrate the
feasibility of this experimental technique in various practical
disciplines but also confirm some unverified theoretical
hypotheses through comparison with experimental results
[13]. Two in vitro systems were compared to evaluate the
pharmacological effects of several plants on (AA) trans-
formation; the first system involved the addition of serum
frommice given the herbal medicine, and the second system
involved the direct addition of plant extracts to the fer-
menter middle. Indomethacin, used as a controlled drug,
inhibited AA metabolism in a dose-dependent manner in
both experimental systems. Direct mixing of rhubarb and
ginger extracts in hot water also inhibited AA conversion,
while Huanglian and Baishao granule extracts had no effect
[14].

Symbolic execution is a powerful software testing
method that can catch many types of bugs. However, it has
the problem of destroying the traces, and when using only

2 Security and Communication Networks

RE
TR
AC
TE
D

statements, it still lacks the actual legitimacy of thoroughly
testing the traces according to the correct formula. After
experimentation, this method carefully handles the rela-
tionship between routing and script requests to limit the
unification route discovery [15].

2. Component Software Analysis

2.1. Basic Steps of Component Software Development. In
component-based software development, problem analysis
and modeling are the first steps. .e purpose of software
development is to serve and communicate applications, so
the problem the software is designed to solve must be clearly
assessed. Once the key functions of the software are pre-
dicted, the problem is analyzed in detail and then shaped to
make the domain and model of each software component
more accurate. Better interpretability is manifested by UML
models with higher problem areas and model accuracy.
Solution domain model design: designing a solution website
model is another step in software-based software develop-
ment. After the analysis has determined the problem area,
the problem of the problem area must be solved, which
requires the improvement of a solution area. .e local
problem is accurately modeled and analyzed, and the resi-
dential model is obtained. .e so-called real neighborhood
model refers to the necessary components and architecture
of the system. When developing the domain model of the
solution, the visual interface is checked for recycled material
so that we can determine which components to incorporate
and whether new components can be calculated. Finally, the
rational and scientific design of the decision point model can
guarantee the use of the largest component that matches the
basic parameters of the perfect decision point. Component
development and assembly: in the component-based soft-
ware development process, the third important step is to
create and assemble components. Based on the problem area
and solution area analysis, components are selected from the
component library, and then their interface is extended to fit
the current project. Use newly developed software com-
ponents to store them in a component library to make it
easier to use the software later. For the component to work,
you must also apply it to the current project. After assembly,
the entire system is used for quality control. After the test
results are qualified, the running software can be released.

2.2. 1e Structure of Componentized Software Architecture.
.e basic idea of traditional software architecture is vertical
layering, and the concept of rules and their destruction is
also very useful in component systems. Different from
traditional software architectures, component systems not
only have a vertical structure but also have a multilayered
horizontal structure. .is is mainly due to the uniqueness of
the component system. Unlike classes and units in tradi-
tional software, the smallest unit considered in a compo-
nentized system is a component. A specific entry has no
meaning. It can only be loaded, activated, and communi-
cated in a specific context and must reside in a framework or
ingredient container; the component framework can provide

the necessary protocols for component connectivity while
performing site-specific rules. Smaller systems can often be
implemented using a component structure; large complex
systems require multiple frameworks, and integrating many
components requires a higher-level implementation. A
component is the basic unit that performs system functions,
similar to the actual unit of traditional software, and per-
forms all phases of system operation by combining in-
stances. .e components that make up the main vertical
structure of the system. System components and frameworks
are responsible for management components and collabo-
ration components, respectively, and some software archi-
tectures are two-layer structures, including three-layer
horizontal structures and multilayer vertical structures. .e
horizontal structure is fixed and includes components,
component frames, and system frames. Each horizontal
layer consists of its own vertical structure, the high layer
integrates the lower layer by sharing multiple vertical layers,
the component framework integrates the component layer
by sharing the component communication script layer, and
the system framework integrates the infrastructure by
sharing the platform media.

2.3. Analyze Component Library in Componentized Software.
For efficient management of a large number of component
collections, as well as fast and convenient component storage
and retrieval, there are currently about four types of com-
ponent catalogs: project-oriented, domain-specific, shared-
oriented, and market-driven. .ey are getting bigger, the
target range is getting clearer, and their reuse time is getting
bigger and bigger. Because of the different orientations of the
objects, the component library handles objects differently.
However, a general component library must meet the fol-
lowing requirements: (1) Ease of use: support component
management, including adding, deleting, modifying com-
ponents, unregistering, and unpacking components; (2)
Integrity: including domain integrity and component in-
tegrity, Incorporating a component list into a specific do-
main must cover the entire domain, and the corresponding
information about the component must be complete to
facilitate the search, understanding, and reuse of the com-
ponent; (3) Rationality: the compositional logical organi-
zation of the component list and the classification method
for storing components, reasonably storing ingredients to
facilitate the expansion, maintenance, and restoration of
ingredient lists; (4) Compatibility: components must share
components with other components to a certain extent. .is
requires common and standardized component storage and
management; (5) Availability: both library administrators
and ordinary users can easily use the component library.

2.4. Comparison of Component Software Development and
Traditional Software Development. Traditional software
development technology is a unique development method.
For example, a company always wants to build a huge system
to cover all companies and all subsidiaries that need to use it.
Is this setting the same as the 4G base station setting? In this
model, services “closer” to the central office are harder to use

Security and Communication Networks 3

RE
TR
AC
TE
D

than services that are further away from the central office.
Even for some very specific companies, the system may not
meet the requirements at all, causing many companies to
spend a lot of money on ERP systems with low efficiency. In
fact, their development ideas are centralized, unified, and
fragmented, which inevitably leads to rigidity and fragility
and cannot meet the local needs of individuals.

.e same is true for component-based software devel-
opment. We revolutionized software development and
adopted a downgrade, standardize, and share model. We
decompose functional units into small, indivisible units, and
then expand each unit into practical components. .is
development is based on standard communication and then
assembling these small unit components. .ey are con-
nected into an organic whole by machines like neural
networks. .is method is easier to design, more efficient to
design, and can ensure that each part adopts a separate
method, thereby ensuring the efficiency of the system. At the
same time, each organization transmits data in a shared way,
which not only ensures the independence of each organi-
zation but also ensures the interaction between data and
realizes the connection of all data systems. Constantly
expanding information so that software development itself
becomes possible. As we all know, each component is ac-
tually a component of its processor. .ese microprocessor
components have deepened the understanding of the in-
dustry, and the artificial intelligence that shapes big data over
time. Processing items will be developed and reworked. In
the near future, software development will no longer require
humans, but the software itself can develop the corre-
sponding components as needed. It is then collected in the
body. We know that in the biological world, it is easier for
single-celled organisms to grow and mutate, and the more
complex the organism, the more difficult it is to reproduce.
When we break software down into small components, we
lay the groundwork for our own replication and develop-
ment. And our main engine, like a neural network, organizes
these simple elements into giant creatures that develop
complex scenarios on their own. .e concept of building
software development using component technology will
drive future software engineering to transform traditional
enterprise-style development into standard development
and ultimately automate development.

3. Research on the Model of Componentized
Software under Deep Adversarial Networks

.e GAN model, constraint algorithm, and gray model are
used for the component-based software testing method
based on the deep adversarial network. .is model has a
complete system that records the information of the new,
crown-infected person into the database, including model
optimization technology, even if it is normal to have a little
error. After all, there are too many factors to be considered
in the system. .e psychological characteristics and cog-
nitive characteristics generated by the continuous devel-
opment of international Chinese education in foreign
countries will also be constantly changing and updated. .e
system effectively saves this data in each area.

3.1. Generative Adversarial Networks. GAN uses the idea of
the game duo. .e Internet is full of creators and dis-
criminators trained by dissidents. .e generator “tricks” the
discriminator by generating virtual images similar to the
training data from the input images. .e difference is to
distinguish the real data from the generated and returned
virtual data and use its evaluation results for the generator.
.e generator is recycled according to the results to create
more realistic images, such that the generator and the dif-
ferentiator are balanced, and the target action GAN can be
described as follows:

min maxV(D, G) � Ex−pdaata(x)
[lg D(x)]

+ EZ−P(Z)[lg(1 − D(G(Z)))].
(1)

Formula (1) represents GAN, where the whole formula
represents the relationship between the discriminator and
the generator, X represents some data generated by the
generator, and pdaata(x) indicates the existence of these data.
.e first part of the formula is the discriminator, and the
second part is the expression of the generator. Only when
they reach a stable state, we can use the deep adversarial
network normally. So, we have to strengthen this aspect of
construction to avoid system instability.

Among them, X represents the input data, pdaata(x)

represents the location of the data, Z represents noise, and
P(Z) is the location of the adversarial network. .is entire
formula indicates that the decider D can accurately capture
the generated image, when D(G(Z)). .e closer it is to 0, the
smaller its result is; when D(G(Z)). When it is closer to 1, its
result is the largest, and finally, when D(G(Z)) it is equal to
0.5, the network reaches an equilibrium state. When bal-
anced, it will automatically generate two deep adversarial
network models for componentized software, which are
expressed as follows:

3.2ProbabiliP(x) � ε 1 +
1

1 − β
 + lg D(x), (2)

P(y) � ε 1 +
1

1 − η
 + lg D(y). (3)

Equations (2) and (3), respectively, represent the deep
adversarial network model of componentized software..ey
are not in a relationship of peaceful coexistence but are
engaged in constant confrontation and friction in the system
so that they can continue to evolve. Generate new images
and constantly judge to improve the functions between
them, so that the system can be continuously improved and
the security and smooth running of the system can be
continuously strengthened.

Generative recurrent adversarial network, the goal of
CGAN is to cross-modify X-domain image data and Y-
domain image data, which includes two mapping functions:

G � x⊆y|f xi(� maxf yi(,

F � y⊆x|f yi(� maxf xi(.
(4)

It also includes two discriminators:

4 Security and Communication Networks

RE
TR
AC
TE
D

H � DH ⊆K|f hi(� min maxV(H, K) ,

J � DJ ⊆L|f ji(� min maxV(D, L) .
(5)

.e discriminator output causes the H generator to
transform h into the K domain. Similarly, the output J
generator is transformed to L in the j domain. In the whole
system, CGAN also introduces two loop attenuators:

Fx � x⊆y|f xi(� minf yi(,

Fy � y⊆x|f yi(� minf xi(.
(6)

.e so-called cycle means that after the image moves
from the source domain to the destination domain, it can
also return from the destination domain to the source do-
main..is formula determines the instability in the previous
cycle; that is, if the image passes through the G generator
from the X area and then generates F, it can still be converted
into the root domain after the controller. Finally, these
formulas are classified and summarized to summarize the
recurrent deep adversarial network model of component
software in the big data environment as follows:

P(M) � η 1 +
1

1 + β
 + log D(M)

M⟶∞
ln M,

P(N) � η 1 +
1

1 + η
 + log D(N)

N⟶∞
ln N.

(7)

3.2.1e Amount of Loss during the Cycle. In the comparison
of componentized software deep adversarial networks, only
using adversarial loss will lead to the problem that the
network cannot retain its content and data during trans-
formation. At this time, we solve this problem by intro-
ducing the principle of unity. For all images in the X region
in the deep adversarial network, the conversion cycle is made
into the original image, which is achieved by the following
formula:

x⟶ G(X)⟶ F(G(X)) ≈ x. (8)

At the same time, the conversion cycle of all images in
the y area into the original imagesG and F should also satisfy
this following principle:

y⟶ F(Y)⟶ G(F(Y)) ≈ y. (9)

Summarizing the above principles yields the following
general formula:

κcyc(G, F) � ϕx−pdata(x)
‖F(G(x)) − x‖1

+ ϕy−pdata(y)
‖G(F(y)) − y‖1 ,

(10)

where G(x) and G(y) represent the tool that acts on the
pregenerated image and the tool that acts on the post-
generated image, x is the image in the X area, y is the image
in the Y area, ‖F(G(x)) and G(F(y)) both are new and
improved image displays. .e image displayed by the deep

adversarial network system has brightness and color, and all
have color and brightness loss representation. .e color loss
function has been implemented. By allowing the unit to
generate an image with the same color distribution as the
blurred color image, it minimizes the error between the
blurred image and the reproduced blurred image. .e
corresponding function is expressed as follows:

ℓcolor �
p

∠ G(F(y))P, yp . (11)

Where p is a pixel, ∠(,) indicates that the angle between
the two colors is calculated, y is the colorless image in the
area Y, G(F(y)) is the reconstructed image without color, by
adjusting the reconstructed image and the colorless image.
.e sum of the errors of each pixel in the image can solve the
problem of color distortion during image editing. In the
same way, the brightness of the image displayed by the deep
adversarial network system can be expressed as follows:

ℓbrightness �
t

∠ G(F(y))t, yt(. (12)

We refer to the mapping loss between adversarial net-
works as feature loss. After adding the feature loss, the G
generator adds Y-domain image input to the original input
to improve the image quality of the componentized software
in the adversarial network. .e feature loss formula is
expressed as follows:

κi dt(G, F) � ϕx−pdata(x)
‖F(x) − x‖1

+ ϕy−pdata(y)
‖G(y) − y‖1 ,

(13)

where x is the image in the X area and y is the image in the Y
area, G(y) and F(x) represent the generators of the Y area
image input and the X area image input, respectively. All
losses from the improved adversarial network. .e formula
is expressed as follows:

L G, F, DX, DY(� LGAN G, DY, X, Y(,

+ LGAN F, DX, Y, X(,

+Lcolor + λLcycle(G, F) + uLidt(G, F).

(14)

Equation (14) is the summation of all losses in the
componentized software deep adversarial network system,
including adversarial loss, color loss in images, uniformity
loss across multiple cycles, and each of their characteristic
losses. .ese are not all loss statistics; these are the obvious
and representative losses we proposed. We mainly focus on
these few to roughly solve the confrontation loss generated
in the system, and other inconspicuous losses also occur, so
it does not have a big impact. After solving these problems,
the system will be smoother and easier to use.

In, LGAN is against loss, Lcolor is the color loss, Lcycle is the
cyclic uniformity loss, Lidt is the feature loss, and λ and u are
two kinds of parameters. λ.e value of uwill not change, but
its value will affect the stability of the entire system, so we
need to discuss the value of u differently in the future.

Security and Communication Networks 5

RE
TR
AC
TE
D

3.3. DeepAdversarial NetworkModel Optimization. In order
to deal with the various problems that appear above, we will
solve them one by one. .ese problems can be roughly
divided into five categories, and we use two methods to
optimize them.

① Introduce the constraint algorithm, which is specially
adjusted by professionals for color, brightness, and
confrontation loss. .e formula of the algorithm is
expressed as follows:

s(u, v, z) � e
− q tui − tvi

tmax−t
tmin

+ log z(i). (15)

Formula (15) represents the mathematical expression
after optimization of color, brightness, and adver-
sarial loss, in which the definition of max and min
and the expression of the log function are introduced.
.is formula is a constraint condition as a whole, and
u, v, and z are the subject objects that need to be
optimized. After debugging by professionals, these
three problems occur in the component software
systems of the deep adversarial network. Although it
cannot completely solve the problem, it is not a
problem to relieve and release the pressure of the
system. In the future, continuous improvement and
tuning are required.
Among them, u, v, and z represent the overall object
of color, brightness, and adversarial loss, respectively;
|tui − tvi| and tmax− ttmin represents the constraints,
and with these constraints, the problems arising from
these points can be clearly solved.

② Introduce the precalculation recommendation
function, and you will know it when you hear the
name of this function. We plan to erase these two
problems before they appear. Will the data be ob-
tained through repeated deductions in the system in
advance? Will it have a bad impact? If a problem is
found, it will be discarded in advance. .e data flows
into the next step.

CAIC � −ln L(a) + c ×(1 + ln K). (16)

3.4. Evaluate the System. .e evaluation of the deep
adversarial network model is based on the gray system
theory model, which identifies the evaluation of the deep
adversarial network model by combining testing, the fuzzy
evaluation method, and gray system theory, and adopts
consistency monitoring. .e weight formula of the analysis
index is

Ce �
CEn

REn

, (17)

where CEn represents the nth order matrix evaluation
consistency index, CEn/REn represents the n-order recip-
rocal matrix consistency evaluation, if CEn ≤ 1. .e final
result is generally correct. Otherwise, the result is not
credible. Create a separate factor evaluation matrix, given as
follows:

T �

t11 t12 · · · t1n

t21 t22 · · · t2n

⋮ ⋮ ⋮ ⋮

tm1 tm2 · · · tmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

WhereTi � (ti1, ti2, · · · , tin) indicates the result obtained
from the evaluation of the i-th factor. Calculate the gray
connection, and determine the order between the connec-
tion points, the formula is

pij(e) �

min
i

min
k
Δi(e) + pmax

i
max

k
Δi(e)

Δi(e) + pmax
i

max
k
Δi(e)

, (19)

Ωi(k) � Aj
′(p) − Ai

′(p)

. (20)

Equation (19) is a systematic evaluation of deep
adversarial networks, and (20) is a systematic evaluation of
componentized software, where (19) is a systematic evalu-
ation of deep adversarial networks, and (20) is a systematic
evaluation of componentized software, where indicates
various data in the deep adversarial network, i indicates that
the introduced data can be replaced by a lot of data, that they
can obtain the connection order of the input data through a
series of changes and calculations, and finally, according to
the size of the connection order calculated by them. It can be
known that based on the evaluation results of these deep
adversarial network models and the systematic evaluation
results of the piecemeal software, the higher the relational
sequence shows, the better the evaluation of the deep
adversarial network model, and vice versa, the worse the
evaluation of the deep adversarial network model.

Where ρ represents the coefficient of the resolution, Aj
′

represents the initial value of A like, pij indicates the order of
connections between them. According to the size of the
connection order, the evaluation conclusion of these deep
adversarial network models can be known. .e higher the
connection order shows, the better the evaluation of the deep
adversarial network model is. On the contrary, the worse the
evaluation of the deep adversarial network model.

4. Analysis of Component-Based Software
Testing Methods in Deep
Adversarial Networks

4.1. Deep Adversarial Network Technology. Deep adversarial
networks are a brand-new concept. It may be called by other
names, such as the generation system for higher-level op-
ponents. At the heart of the web is conflict. Two networks
compete with each other, one for sample generation and the
other for pattern analysis. .ese models are trained using
other optimization methods, and both models can be im-
proved to the point of being “indistinguishable between real
and fake.” Now that we understand the concept of adver-
sarial networks, we need to know how to use it in deep
learning. In most cases, adversarial networks represent
unsupervised learning. In order to develop better deep
adversarial networks, we need to do the following: (1)

6 Security and Communication Networks

RE
TR
AC
TE
D

integrate actual data deeper and evaluate different data
expansion patterns as positive modes; (2) consider all kinds
of error information and turn more error information into
errors; and (3) according to the error settings in the previous
step, improve the accuracy of bad data. Figure 1 provides a
corresponding explanation for why the deep adversarial
network has many benefits.

Although the general learning method cannot solve very
advanced problems, it is currently the most suitable social
method. Many of our technologies are still very general, and
we are far from reaching their advanced level. Shallow
learning is better than general learning. To be a little more
advanced, it can simply calculate and optimize itself. It is
suitable for some software companies that need to calculate.
It is widely used in today’s world and technology, and deep
learning is very deep. .e general formula or solution
problems should not apply to it; its cost is high, and its future
is of high value.

According to the data results in Figure 1, it can be
concluded that the deep learning network is very strong
except for the low application rate. .e reason for the low
application rate may be that many industries in the current
society have not developed enough to require advanced
confrontation .e network is used to solve the problems
encountered. At present, the most basic network system is
still on the market.

According to Table 1, it can be seen that these three
models have their own strengths and are used in different
scenarios. .e discriminant model gives a picture, deter-
mines what the picture is, and generates the model to give
many pictures of dogs so as to generate a new dog picture
(not in the original picture). .e GAN model will combine
their two models to generate a confrontation network.

4.2. Component Software Analysis. Due to the increasing
sophistication and complexity of software systems, software
development regulations are becoming more and more
stringent. At the same time, software development orga-
nizations have higher and higher requirements for software
development costs and development cycles. After the object-
oriented analysis method and software development, the
componentized form of software development has become a
new development trend. Integrating third-party compo-
nents into specific practical applications, and then properly
building a fixed application software system, has a huge
impact on software integration and reuse and has become a
very popular technology in today’s software field. Research.
Furthermore, before using these components, correspond-
ing tests are carried out and their accuracy is confirmed in
practice. .e development steps of component-based soft-
ware are uniformly expressed in the form of Table 2, which is
more clear.

According to Table 2, we can see all the processes of
componentized software development at a glance. For
componentized software, it means that when developing a
software system, the process is regarded as a software de-
velopment method based on architectural principles and the
correct use of assembly forms. Assemble components to

develop software systems. Also, even their approximate time
spent is listed, which can be said to be very detailed. When
compared to traditional software, constructed software
follows the current trend. From Internet performance to the
ability to support server operation, it can meet the needs of
human life and work and has made great contributions to
the development of software engineering. Because the new
structural system of the software cannot replace the func-
tions of traditional software, the traditional software in-
dustry must be reformed so that software development
stakeholders can quickly analyze software performance,
make coordinated changes to the overall software perfor-
mance at runtime, and perform adjustments cycles of the
software system. As for software development, since the
development procedures are not uniform, the application
programs can be integrated and the component software
used by the design. Once released, software developers can
separate software components from real life. In a sense, the
way of thinking about software components can be trans-
ferred to software development, and the content of the
appeal can be summarized as a bar chart in Figure 2 to
illustrate.

As can be seen from Figure 2, component-based software
has many advantages, which are incomparable with tradi-
tional software, laying the foundation for innovation in the
computer software industry and driving industry innova-
tion. However, componentized software also has security
problems. For example, component-based software is still
mainly in research and development, and component
technology in the computer software industry still has a long
way to go. Table 3 establishes the interface tests of the
components.

According to the data analysis in Table 3, in the ex-
perimental component model, the preconditions determine
what is true to ensure that the corresponding interface
operations can be executed. Postconditions describe the
result of the correct execution of the action. Calling an
interface operation when the preceding conditions are not
met will cause the following conditions to fail, and if the
result matches, the current result is correct. If they do not
match, there is an error in the current check step, and it
needs to be redefined until it is correct.

Accuracy Application
rate

confrontation evolution futuristic

Target

deep learning
shallow learning
general learning

0
10
20
30
40
50
60
70
80
90

100

pe
rc

en
ta

ge
 (%

)

Figure 1: .ree comparisons.

Security and Communication Networks 7

RE
TR
AC
TE
D

4.3. Application of Deep Adversarial Networks in Compo-
nentizedSoftware. At present, there are not many tests in the
market, let alone software-related test methods. After adding
the deep adversarial network, the new thing of component
software can be developed qualitatively; although it is a new
thing that has only appeared in recent years, people saw its

potential and made several corresponding testing methods
for it.

In the research on testing methods of componentized
software, the deep learning method is the best, and the
average of five test results can reach 7 grades, which is far too
many grades for several of themethods..eworst normative

Table 2: Component-based software development process.

Component software development
steps Content Time (%) Characteristic

.e first stage Problem domain analysis and building related
models 25 Modeling analysis, cornerstone

Second stage Answer and analyze the domain 15 Building model systems,
reusability

.e third phase Building and combining components 35 Test effect
Fourth stage Evolve the entire system 25 Stages of evolution, applicability

structural
characteristic

transformative renewal of
ideas

Safety
performance

compatibility

Distinguishing samples

component so�ware
traditional so�ware

0
10
20
30
40
50
60
70
80
90

C
on

tr
as

t (
%

)

Figure 2: .e difference between the two.

Table 1: Analysis of deep adversarial network models.

Deep adversarial
networks Advantage Shortcoming Application

GAN model .e director of the two sets It is easy to make mistakes in the game and cause
the system to crash

Data
augmentation

Discriminative model Easy to learn, average performance Just calculate the interface and solve the problem
roughly

Creative arts,
stylized

Generative model Fast convergence, learning distributions,
estimating variables Learning complex Image generation

Table 3: Test component interface.

Statute content Illustrate
Name Interface name
Constraint Constraint component interface properties
Enter Enter the information required by the system
Output Information returned to the caller
Send .e party to be tested issues a request description
Read Read the external public information of the system
Change Change external public information
Rule System algorithm rules
Assumed Assume states and conditions that guarantee the result of the system to be true
Result .e interface operation is correct only if the condition is true

8 Security and Communication Networks

RE
TR
AC
TE
D

test result is the worst. .is test method is to simply check
the basic parts or functions in the componentized software,
so its index data will not be very high.

According to Figure 3, the result can be drawn. .e
protagonist is the component software because its various
tests occupy high scores, which just show the correctness of
the application of the deep adversarial network in the
component software, which greatly improves the software.
.e function of the system and the ability to not be afraid of
any test, the whole system was tested and divided into five
categories for discussion, so that it does not take too much
time and there is no need to discuss too much. For these five
test methods, we also analyzed and made tabular data results
in order to better select the best test method (SSIM is
structural consistency, and PSNR is noise ratio).

According to the data results in Table 4, it can be
concluded that the best way to test the data results is the
built-in test, which mainly tests the components and
component sets in the componentized software in the deep
adversarial network. .e difference between a software
system and a traditional software system lies in the definition
and assembly of this component.

According to Figures 4–6 after a series of tests (different
data ranges), as you can see in Figure 5, integration tests are
much less tested on different data ranges than traditional
tests, and that’s what the built-in testing method does.
Figure 6 shows built-in tests have shorter execution times
than traditional test builders to test different ranges of data
because built-in tests provide parallelism and custom-
izability. All in all, the built-in tests can provide 100%
coverage of interface method calls in less time and use a
smaller number of test cases than we would like to see. .e
operation of the deep adversarial network in the system
allows the system to generate new adversarial network data,
and these new data are drawn through some special mon-
itoring and statistical methods. .ese uncertain factors may
be of great use in the future, and now it is necessary to save
statistics on these data.

In Figure 7, five new data have been generated. We can
see their complexity. .eir generation time is not regular.
We currently have no tracking method to know how these
new data are generated and their after generation. What is
the role? .is problem has always existed. We must con-
stantly reform the system to solve this problem and avoid
system problems.

According to the data in Figure 7, the laws of this new
data cannot be found, because it is generated by the friction
between the confrontation networks. We cannot fix how
often they collide or what effect will be produced after the
collision. Faced with this new data, it is not possible to carry
out systematic analysis on him now, and we only store them
in a specific domain to prevent their random loss from
causing system disorder. Finally, the test method in the
system needs to be tested again to ensure the stability of the
system.

According to the data in Figure 8, it can be concluded
that the built-in test method is the most stable in the running
state, with an average of 90%, which reflects the excellence of
its test method in this system..is is incomparable to several

Table 4: Results of performance indicators of different test
methods.

Testing method SSIM PSNR
Based on normative testing 0.629 9.52
Built-in tests 0.748 16.81
Metadata test 0.725 14.75
Structural testing 0.651 15.25
Proof strategy 0.695 16.05

traditional testing methods
Built-in test methods

0

20

40

60

80

100

120

co
ve

ra
ge

2 3 4 51

Algebra

Figure 4: Change curve of coverage rate of two test methods.

0
1
2
3
4
5
6
7
8
9

Based on
normative

testing

Built-in tests metadata
test

Structural
testing

proof strategy

Test Methods (Grades 1-10)

deep learning
GAN model
discriminative model

generative model
build so�ware

Figure 3: Data of several test methods.

19900
40000

60000
80000

99900

9900
19900

29900
40000

50000

1000-20000 20001-40000 40001-60000 60001-80000 80001-100000

nu
m

be
r o

f t
es

ts

data range

traditional testing methods
Built-in test methods

Comparison of the number of tests for the two methods

Figure 5: Quantity curves of two test methods.

Security and Communication Networks 9

RE
TR
AC
TE
D

other methods, but one thing we need to pay attention to is
100% accuracy in nm based on normative tests. Other test
results were within expectations.

5. Conclusion

.e subject is the component-based software testing method
based on deep adversarial networks, in which the steps of
component-based software development, the analysis of
component-based libraries, and the difference between
component-based software and traditional software are

discussed, and the software experiments are conducted
under deep adversarial networks. Model research mainly
studies the growth of component software and the estab-
lishment of its overall system with the help of an adversarial
network, and it uses several different testing methods to
analyze it in all aspects for this new type of software. .e
highest test method is the built-in test, which is excellent in
all aspects and can fully cope with today’s various tests.
However, it is not certain in the future, so we must always
maintain an attitude of continuous improvement to face it.
.is is the long-term plan.

With the continuous updating and application of soft-
ware, the current software problems are becoming more and
more serious. In response to this phenomenon, we have
integrated deep adversarial networks and component-based
software to find solutions. Under the vigorous research of
enterprises and people, a better way to test software will
definitely be devised, and component-based software with a
deep adversarial network will be more complicated, but if it
is successfully experimented with, it will open up a whole
new industry. But before that, it is just an imaginary state, so
we have to identify whether this new technology has the
ability to be used normally through a large number of test
methods. At this time, we need to conduct experiments to
explore this problem.

Data Availability

.e experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

.e authors declared that they have no conflicts of interest.

References

[1] G. Yang, S. Yu, H. Dong et al., “DAGAN: deep de-aliasing
generative adversarial networks for fast compressed sensing
MRI reconstruction,” IEEE Transactions on Medical Imaging,
vol. 37, no. 6, pp. 1310–1321, 2018.

[2] P. Lu, M. Matt, and B. Seth, “Using generative adversarial
networks to improve deep-learning fault interpretation net-
works[J],”1e Leading Edge, vol. 37, no. 8, pp. 578–583, 2018.

[3] C. Qu, Y. Zou, Q. Dai et al., “Advancing diagnostic perfor-
mance and clinical applicability of deep learning-driven
generative adversarial networks for Alzheimer’s disease,”
Psychoradiology, vol. 1, no. 4, pp. 225–248, 2021.

[4] X. Meng, X. Li, and X. Wang, “A computationally virtual
histological staining method to ovarian cancer tissue by deep
generative adversarial networks,” Computational and Math-
ematical Methods in Medicine, vol. 2021, pp. 1–12, Article ID
4244157, 2021.

[5] P. W. Patil, A. A. Dudhane, and S. Murala, “Deep adversarial
network for scene independent moving object segmentation
[J],” IEEE Signal Processing Letters, vol. 28, no. 99, 2021.

[6] K. K. Lau and Z. Wang, “Software component models,” IEEE
Transactions on Software Engineering, vol. 33, no. 10,
pp. 709–724, 2007.

Based on
normative

testing

Built-in tests metadata
test

Structural
testing

proof strategy

Operating status

nm
bg
cl

0

20

40

60

80

100

120

Av
er

ag
e a

cc
ur

ac
y

(%
)

Figure 8: Average accuracy.

1000-20000 20001-40000 40001-60000 60001-80000 80001-100000
data range

Two test methods test time

traditional testing methods
Built-in test methods

0
5

10
15
20
25
30
35

Ru
nn

in
g

tim
e (

S)

Figure 6: Operation times of two test methods.

0 5 10 15 20 25 30
Samples/Class

sofmax+cross
cosine loss
cosine loss+one-hot

fine-tuned sofmax
cosine loss+semantic

0
10
20
30
40
50
60
70
80

Te
st

Ac
cu

ra
cy

 (%
)

Figure 7: Changes in the generation of new data.

10 Security and Communication Networks

RE
TR
AC
TE
D

[7] R. M. Adler, “Emerging standards for component software,”
Computer, vol. 28, no. 3, pp. 68–77, 1995.

[8] M. Hong, F. Chen, and Y. Feng, “ABC: an architecture based,
component-oriented approach to software development[J],”
Journal of Software, vol. 14, no. 4, pp. 47–55, 2003.

[9] C. Herring and S. Kaplan, “Component-based software sys-
tems for smart environments,” IEEE Personal Communica-
tions, vol. 7, no. 5, pp. 60-61, 2000.

[10] N. S. Gill, “Importance of software component character-
ization for better software reusability,” ACM SIGSOFT -
Software Engineering Notes, vol. 31, no. 1, pp. 1–3, 2006.

[11] R. Patterson and R. Fox, “.e effect of testing method on
stereoanomaly,” Vision Research, vol. 24, no. 5, pp. 403–408,
1984.

[12] T. J. Bussey, T. L. Padain, E. A. Skillings, B. D. Winters,
A. J. Morton, and L. M. Saksida, “.e touchscreen cognitive
testing method for rodents: how to get the best out of your
rat,” Learning & Memory, vol. 15, no. 7, pp. 516–523, 2008.

[13] T. Y. Lung and A. G Doige, “A time-averaging transient
testing method for acoustic properties of piping systems and
mufflers with flow,” Journal of the Acoustical Society of
America, vol. 73, no. 3, pp. 867–876, 1983.

[14] M. Umeda, S. Amagaya, and Y. Ogihara, “Effects of certain
herbal medicines on the biotransformation of arachidonic
acid: a new pharmacological testing method using serum,”
Journal of Ethnopharmacology, vol. 23, no. 1, pp. 91–98, 1988.

[15] R. Wang, S. Liu, and Y. Sato, “SIT-SE: a specification-based
incremental testing method with symbolic execution,” IEEE
Transactions on Reliability, vol. 70, no. 3, pp. 1053–1070, 2021.

Security and Communication Networks 11

