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In the research of searchable encryption, fne-grained data authorization is a convenient way to manage the search rights for users.
Recently, Liu et al. proposed a fne-grained searchable scheme with verifcation, which can control the search authorization and
verify the results. In this paper, we frst present a forgery attack against Liu et al.’s scheme and then propose a novel scheme of
verifable data search with fne-grained authorization in edge environment. Based on the key aggregate mechanism and Merkle
hash tree, our proposed scheme not only achieves fle-oriented search permission management but also implements the cor-
rectness and completeness verifcation of search results. In addition, with the assistance of edge server, resource-constrained users
can easily perform the tasks of search and verifcation. Finally, we prove our scheme is secure based on the decision l-bilinear
Dife–Hellman exponent problem. Te performance analysis and experiment results demonstrate that our proposed scheme has
lower computation, communication, and storage costs contrast to the existing schemes.

1. Introduction

With the high growth of Internet technique, cloud storage
and computing services have been used extensively to
business and individuals [1]. While cloud services bring
convenience to people, there are still many problems to be
solved, such as the security and retrievability of data [2]. To
satisfy these requirements, the primitive of searchable en-
cryption (SE) [3, 4] is proposed; as a promising technology,
SE allows users to search encrypted data while protecting the
privacy. Traditional SE schemes are always deployed in cloud
environment (such as [5–7]), which are more suitable for the
users of personal computer, that the clients can deal with
computationally intensive works, such as encrypting and
decrypting fles and confguring a large number of attributes.

In the era of mobile Internet, terminal users are de-
veloping towards diversifcation. In addition to computer,
more and more people are using mobiles, tablets, wearables,
and other devices to perceive and receive data. Constrained
by limited resources, these devices cannot bear complex
computations and tasks.Terefore, it is urgent to fnd amore

friendly environment for resource-constrained terminals.
Recently, edge computing has been proposed as a new
paradigm [8, 9]. It confgures the storage, computing, and
network devices between the users and cloud, which assists
users to complete tedious tasks, or sink the cloud service
functions to a favorable position, providing the real-time
data processing and intelligent analysis nearby. Apparently,
edge computing can not only reduce the burden of terminals
and decrease the service response latency but also avoid the
congestion of core network. Terefore, deploying SE tech-
nology in edge environment may have wider applications.

SE technology includes symmetric encryption retrieval
[3] and public key encryption retrieval [4], in which the
public key encryption retrieval is mostly utilized for multiple
users. In the multiuser scenario, users can share data and
cooperate and communicate with each other, which is
suitable for most mobile applications. For instance, in a
music sharing platform, the user who publishes data is called
publisher, and the user who purchases and applies data is
called data user. In this system, the data users can buy the
music content from publisher, and the users change
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dynamically, so does the purchased content. In previous
studies [10–12], data authorization is user-oriented,
where the users can be authorized or revoked completely.
In practical applications, more fne-grained management
of data authorization is required. For example, when a
user purchases new content or the purchased content
expires, then the publisher must distribute a new au-
thorization or revoke the previous search rights. Tere-
fore, fle-oriented search permission management should
be introduced.

In an outsourced storage environment, sometimes the
user needs to deal with a malicious server. For example, the
server storage data is corrupted, or the server saves com-
puting resources during the peak time. In these situations,
the server may not want to process the whole database when
responding to queries. From the perspective of users, they
pay for the data and then always expect to receive guaranteed
services. Terefore, the function of data verifcation for user
is required when necessary. Recently, some schemes (e.g.,
[13, 14]) have been proposed to verify the search results.
However, these schemes can only verify the correctness of
return data but not the completeness. If the cloud returns an
insufcient number of fles, the user cannot discover it.
Later, Liu et al. [15] proposed a searchable scheme to verify
the completeness of search results. Unfortunately, this
scheme involves forgery attack so that the users cannot
correctly verify the completeness of search results.

In this paper, we propose an efcient verifable data
search with fle-oriented authorization scheme in edge
computing, in which the publishers can distribute fne-
grained search permissions, and the data users can search the
favorite data and verify the correctness and completeness of
results with the assistance of edge server. Our contributions
are as follows:

(i) We analyze and show an attack against Liu et al.’s
scheme [15].

(ii) We propose a novel privacy-preserving fle-oriented
search scheme in edge computing. Based on the key
aggregate mechanism, our proposed scheme im-
plements fne-grained authorization and facilitates
the distribution of massive data search rights.
Trough the design of Merkle hash tree, it achieves
the correctness and completeness verifcation of
search results. In addition, with the assistance of
edge server, the resource-constrained users can
easily query the data and verify the search results.

(iii) We optimize the costs of the proposed scheme. In
the keyword ciphertext process, it uploads one
Bloom flter value instead of all the encrypted
keywords, and then the communication and storage
costs are related to the number of fles, instead of the
keyword number.

(iv) Based on the decision l-BDHE problem, we prove
our scheme can meet the secure features. Perfor-
mance evaluation and experiments demonstrate
that our scheme is more practical and efcient than
the available schemes.

Te rest paper is organized into seven sections. Te
related studies and reviews are described in Section 2. Te
relevant knowledge is introduced in Section 3. Section 4
discusses the attack of Liu et al.’s scheme. Section 5 states the
details of our proposed scheme. Ten we show the re-
quirements analysis in Section 6 and the performance
evaluation in Section 7. Te last section is a summary.

2. Related Work

To address the issues of data searchability and privacy
preserving, Song et al. [3] proposed the primitive of
searchable symmetric encryption, which can search the data
with encryption form. Later, Boneh et al. [4] proposed the
Public Key Searchable Encryption (PKSE) and applied it to
mail system. Since then, PKSE has become a research
hotspot, and many solutions have been proposed such as the
proxy reencryption PKSE [16], attribute-based PKSE [17],
certifcateless PKSE [18], and PKSE based on primes [19].
However, these schemes are suitable for the personal
computer clients, which are computation-intensive and
unfriendly to resource-constrained terminals.

To reduce the computing and storage overhead in the
client side, Guo et al. [20] proposed a keyword search en-
cryption framework under the edge environment, which
ofoads the computation-intensive tasks of the sensor to the
edge server. However, they only propose a framework
without a specifc implementation. Chen et al. [21] presented
a privacy-preserving searchable encryption scheme in the
edge computing, which designs an S-HashMap index
structure and supports the fuzzy search of multikeywords.
Yet in their scheme, the user needs to calculate all keyword
indexes and generate index access tree, which requires a
large amount of computation. Scheme [22] puts forward a
PKSE solution based on the witness system in cloud-edge
computing to resist the keyword guessing attack, while the
scheme can only resist the external attackers but not the
internal attackers like the curious cloud server. Wang et al.
[23] proposed an image retrieval scheme with mobile edge
computing, which introduced a cloud-guided image feature
extraction method, thus reducing network trafc and im-
proving retrieval accuracy, but this solution cannot be ap-
plied to keyword search scenario. Scheme [24] proposed a
user-centered data search framework, which uses the edge
computing to make intelligent prediction of the user’s search
pattern, tailoring the search space so as to reduce the
processing time. However, the framework is user-centered
and is not suitable for the numerous fles sharing scenario.

In the scenes of numerous searchable fles sharing (such
as [25–27]), the data owner can distribute the fle-oriented
retrieval rights to other users. In these schemes, the data
owner uses diferent keys to encrypt diferent documents
and shares the corresponding keys to the legitimate user.
Obviously, such a keymanagementmechanism has high cost
in aspects of communication and storage, and the size of
search token increases with the number of share fles.
Scheme [28] introduced a proxy server to transform the
user’s search token into a instance, so as to reduce the key
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cost of user side. However, this method does not funda-
mentally solve the problem of inefcient key management.
To solve the key management overhead problem, Cui et al.
[29] presented a key aggregate searchable encryption in the
cloud storage environment. In this scheme, the client can
search for multiple fles with one single key shared by the
data owner. However, Zhou et al. [30] referred that the
scheme [29] sufered from keyword guessing attack. Later, Li
et al. [31] proposed a multiowner key aggregate searchable
encryption scheme that the user can submit one single
trapdoor to search across multiple data owners’ fle records.
Yet the scheme does not consider the dynamic search right
management.

For the verifcation mechanism, Zhang et al. [32] pro-
posed that a scheme can verify the single keyword search
ranking results of the data uploaded by multiple users.
However, all the users need to share the sorting data in-
teractively to obtain the fnal ranking order, which reduces
the practicability. Jianfeng Wang et al. [33] proposed a
method to verify the query results of multiple keywords,
which is suitable for the large scalable database, but this
scheme uses an accumulator to implement verifcation and
makes it difcult for mobile clients to bear the computing
overhead. Recently, schemes [13, 14] have been proposed to
verify the aggregate search results, but these schemes can
only verify the correctness but not the completeness. A
scheme [15] is proposed which can verify the completeness
of results; however, it sufers from forgery attack so that the
users cannot correctly verify the completeness of search
results.

3. Preliminaries

3.1. Bilinear Pairing. Let two multiplicative cyclic groups G
andG1 have the identical order p, bilinear pairing e is a map:
G × G⟶ G1 which has the attributes as follows:

(1) Bilinearity: For a, b ∈ G and m, n ∈ ZP, we have
e(am, bn) � e(a, b)mn

(2) Computability: Tere is an efciency algorithm to
calculate e(a, b) for any a, b ∈ G

(3) Nondegeneracy: Let ϑ be a generator of G, then
e(ϑ, ϑ)≠ 1

3.2.MerkleHashTree. TeMerkle hash tree (MHT) is a data
structure based on the hash function which is a hash binary
tree. InMHT, each leaf node stores the hash value of the data
block, and each nonleaf node’s value is calculated by hashing
its children.

In MHTconstruction, we frst calculate the hash value of
each data, and then fll them as the lowest leaf nodes. Next,
we establish the upper layer, and the value of each node in
this layer is calculated by hashing its left and right children.
Ten we continuously establish the upper layer until the
root.

MHT is recursively calculated layer by layer through
hash computation, while hash is a one-way function; that is,
the value of the parent node can only be calculated by its

children, and the value of the child node cannot be deduced
from the parent node. Terefore, when the value of the root
node is determined, the correctness of all other nodes’ value
can be guaranteed, namely the change of any node’s value
will cause the value of root node to be diferent.

For example, a data set D � d1, d2, d3, d4􏼈 􏼉 is input, then
the output of MHT(D) is the root node’s value Lroot, then we
show the construction in Figure 1. First, we compute the
hash value Li � H(di)i� 1,2,3,4{ } for each leaf node, then cal-
culate the nonleaf nodes’ values L5 � H(L1L2) and
L6 � H(L3L4), and at last, we output the root node’ value
Lroot � H(L5L6).

3.3. Bloom Filter. Bloom flter is a data structure used to
represent collections, and it has three operations as follows:

(1) BFInit: Tis operation creates an empty Bloom flter,
which is a l-bit array with value 0

(2) BFAdd( H1, . . . , Hk􏼈 􏼉, bf, s): Tis operation adds an
element s to the Bloom flter bf. It frst hashes the
element with k functions as Hi(s) � φi ∈
0, 1, . . . , l − 1{ }, and then sets the φi-th bit value to 1

(3) BFQuery( H1, . . . , Hk􏼈 􏼉, bf, s): Tis operation
queries whether the element s is a membership data.
It frst computes the k hash functions to s, and then
checks whether all the corresponding bits are equal
to 1. If it holds true, s is a membership data; oth-
erwise, s is not in the collection.

3.4. Keyed Hash Function. Te keyed hash function is a
verifcation and encryption mechanism used by commu-
nication entities, and it ensures the integrity and conf-
dentiality of message data, and its security depends on the
hash function. Te keyed hash function inputs a message
and a key and then outputs a hash value used for data
authentication and integrity verifcation.

In this paper, we use the keyed hash function HMAC
[34] to process keywords, and the calculation method is as
follows:

HE(m) � H(E⊕opad‖H(E⊕ipadm)‖), (1)

where m is a message, E is the key which is a 64 bits string, H
is a hash function, opad and ipad are strings composed of
several “0x5c” and “0x36,” respectively, ⊕ represents XOR
operation, and ‖ represents join operation.

3.5. Complexity Assumption. Te complexity assumption is
defned as follows:

(1) Decision l-bilinear Dife–Hellman exponent (De-
cision l-BDHE) problem: Te problem [35] in
group G is worked as below. Given a vector of 2l + 2
elements (h, ϑ, ϑa, ϑa2

, . . . , ϑal

, ϑal+2
, . . . , ϑa2l

, Z) as
input, where h, ϑ ∈ G, Z ∈ G1, and ϑai

for i �

1, 2, . . . , l, l + 2, . . . 2l{ }, note that ϑal+1
is missing, and

a had not given. Ten decide if Z � e(ϑ, h)al+1
or Z is

a random value in G1. For a polynomial time
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adversary Ad, the advantages obtained from the
problem are defned as

ADV
Decisionl−BDHE
Ad �

Pr A h, ϑ, ϑa
, ϑa2

, . . . , ϑal

, ϑal+2
, . . . , ϑa2l

, Z � e(ϑ, h)
al+1

􏼒 􏼓 � 0􏼔 􏼕

−Pr A h, ϑ, ϑa
, ϑa2

, . . . , ϑal

, ϑal+2
, . . . , ϑa2l

, Z≠ e(ϑ, h)
al+1

􏼒 􏼓 � 0􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (2)

(2) Decision l-BDHE assumption: For the adversary Ad
with any polynomial time t, the advantage to De-
cision l-BDHE problem is defned as
ADVDecisionl−BDHE

Ad ≤ ε, then we say that the (t, ε, l)

-BDHE problem is difcult to be solved.

4. Discuss of Liu et al.’s Scheme

4.1. Liu et al.’s Scheme. We simply describe Liu et al.’s
scheme [15] as follows:

(1) Init (1λ, n): Te system initializes parameters de-
scribed below.

(a) Generates a bilinear map group system
B � (p,G,G1, e(·, ·)) and sets n as the maximum
number of documents

(b) Randomly picks g ∈ G and a ∈ Zp and com-
putes gi � gai , for i � 1, 2, . . . , n, n + 2, . . . 2n

(c) Selects one-way hash functions
H0: 0, 1{ }∗ ⟶ G , H1: G1⟶ 0, 1{ }m and
H1′, . . . , Hk

′: 0, 1{ }∗ ⟶ 0, . . . , m − 1{ }

(2) KeyGen: Te data owner chooses a random c ∈ Zp

and sets the private key sk � c and public key v � gc

(3) Encrypt (i, Wi): For the i-th document
(i ∈ � 1, . . . , n{ }), the data owner does those as given
below.

(a) Generates a Bloom flter for this document’s
keyword set by computing BFi � BFGen
( H1′, . . . , Hk

′􏼈 􏼉, Wi)

(b) Picks a random t ∈ Zp, M ∈ G1 and then
computes the ciphertexts and sends to cloud:
(c1, c2, c3, c4) � (gt, (v · gi)

t, H1(M)⊕BFi, M ·

e(g1, gn)t) and cw � e(g, H0(w))t/e(g1, gn)t

(4) Share (S): For subset S⊆ 1, . . . , n{ }, the data owner
computes Ka � 􏽑j∈Sg

c
n+1−j and sends to user

(5) Trapdoor (w): Te user generates the trapdoor Tr �

Ka · H0(w) and sends to the cloud
(6) Retrieve (Tr, S):

(a) Te cloud tests the trapdoor for all fles in S, and
Test: cw � e(Tr · 􏽑j∈S,j≠ign+1−j+i, c1)/e (􏽑j∈S
gn+1−j, c2)

(b) Te cloud generates the verifcation proofs as

proof i � p1, p2, p3( 􏼁 �
c4 · 􏽑j∈S,j≠ign+1−j+i, c1􏼐 􏼑

e 􏽑j∈Sgn+1−j, c2􏼐 􏼑
, c1, c3.

(3)

(7) Verify (w, proof): Te user verifes the results as
follows:

M′ � p1 · e Ka, p2( 􏼁, BFi
′ � H1 M′( 􏼁⊕p3, BFverify

· H1′, . . . , Hk
′􏼈 􏼉, BFi
′, w( 􏼁 � 1.

(4)

4.2. Analysis. Liu et al.’s scheme realizes that an authorized
user can retrieve multiple encrypted fles by one shared key
and verifes the completeness of search results, but we fnd
that the user cannot correctly verify the completeness of
search results. In their scheme, the verifcation proof is
calculated and transmitted by the cloud, and then it has the
opportunity to forge the proof, which the users could not
detect.

Let us look at a specifc case. Suppose authorized subset
S � f1, f2, . . . , fs􏼈 􏼉, with the user queries keyword w, then

Root Lroot= MHT ({di})

n5
n6

n4n3n1 n2

L1=H (d1) L2=H (d2) L3=H (d3) L4=H (d4)

Figure 1: Merkle hash tree.

4 Security and Communication Networks



the honest cloud will return the complete search results I �

( f1, f2, . . . , ft􏼈 􏼉), (t≤ s), and the verifcation proofs are

proof i � p1, p2, p3( 􏼁 �
c4 · 􏽑j∈S,j≠ign+1−j+i, c1􏼐 􏼑

e 􏽑j∈Sgn+1−j, c2􏼐 􏼑
, c1, c3. (5)

For each i ∈ S (3), subsequently the user could check
whether the return fles are correct when receive the proofs (4).

However, if the cloud forges the proofs, we get

proof i �
p1, p2, p3( 􏼁, i ∈ S − I′( 􏼁,

p1, p2, p3( 􏼁, i ∈ I′,

⎧⎨

⎩ (6)

and returns the result (I − I′) to the user, which can also
pass the user’s verify algorithm, where p3 is a fake value as
long as it is not equal to p3, and I′ � f1, f2, . . . , fk􏼈 􏼉(k≤ t)

is the fle set lost by the cloud.
For each i ∈ I′, the user computes

M′ � p1 · e Ka, p2( 􏼁, BFi � H1 M′( 􏼁⊕p3, (7)

and verifes

BFverify H1′, . . . , Hk
′􏼈 􏼉, BFi, w( 􏼁≠ 1. (8)

Because p3 is forged by the cloud server, and BFi will be
an incorrect value, so (4) would not hold true.While for each
i ∈ (I − I′), p3 is correct, so (4) holds true. Tus, the user
believes that the search result (I − I′) is complete.

Terefore, Liu et al.’s scheme cannot correctly verify the
completeness of search results.

5. System Model and Definitions

In this section, we frst present the model and defnition,
then describe the requirements.

5.1. System Model. Te system model is shown in Figure 2,
which contains four entities: publisher, cloud server, edge
server, and data user.

(i) Publisher. When the publisher has the shared data, it
encrypts the data and outsources to the cloud. After
the purchase action, the publisher distributes the
corresponding keys to user and edge for the data
query and verifcation.

(ii) Cloud Server. Te cloud stores the uploading data
and responds on the query. Te cloud is not fully
trustworthy.

(iii) Edge Server. Te edge assists users with the query
and verifcation operation. It is trusted and like a
front-end server on the user side.

(iv) Data User. Te users purchase data and obtain the
search authorization, who can query data with the
assistance of edge server.

5.2. Formal Defnition

(1) Init (1λ, n)⟶ PP:Tis algorithm is operated by the
publisher. Te algorithm inputs a security parameter

λ and the maximum fle number n and then outputs
the system public parameters PP

(2) KeyGen (PP)⟶ (E, sk, PK): Tis algorithm is run
by the publisher. Te algorithm inputs the param-
eters PP and then outputs hash key E, publisher’s
secret key sk, and public key PK

(3) Encrypt (PP, PK, W)⟶ (C, BF, Lroot): Tis algo-
rithm is run by the publisher, and it inputs pa-
rameters PP, public key PK, and keyword set W and
then outputs the ciphertext set C, Bloom flter value
set BF, and the root node value of a Merkle hash tree
Lroot

(4) Authorization (PP, sk, id, S)⟶ (Aid, Kid): Tis
algorithm is run by the publisher. Te algorithm
inputs parameters PP, secret key sk, user’s public
identity id, and a subset S(S⊆N) and then outputs
the authorization key Aid and identity key Kid

(5) Trapdoor (E, Aid, w, Kid)⟶ Tr: Te algorithm is
operated by the data user and edge server. It takes the
authorization key Aid, hash key E, keyword w, and
identity key Kid as the input and then outputs the
trapdoor Tr

(6) Search (PP, C, BF,Tr)⟶ (I, PF(S)): Tis algo-
rithm inputs parameters PP, the ciphertext set C,
Bloom flter value set BF, and trapdoor Tr and then
outputs the search result I and verifcation proof
PF(S)

(7) Verifcation (PP, I, PF(S), BF, Lroot)⟶ (1/0): Tis
algorithm takes public parameters PP, search result I,
verifcation proof PF(S), and publisher’s public
key (BF, Lroot) as the input and then outputs 1 if
the result is correct and complete; otherwise, it out-
puts 0

Defnition 1. Our proposed scheme includes the below
seven algorithms.

5.3. Requirements

5.3.1. Security. In our proposed scheme, the system should
satisfy indistinguishability against selective-fle chosen
keyword attack (IND-SF-CKA) security [30].

We used a game between a Challenger Cha and a
polynomial-time Adversary Ad to defne the model of IND-
SF-CKA.

(1) Initial. Ad publishes the fle set S∗ to be attacked.
(2) Setup. Cha builds the system and generates the public

parameter and then sends the parameters and key-
word space W to Ad.

(3) Process 1. Ad carries out a series of Authorized and
Trapdoor queries as follows:

Authorized query: Ad sends any fle set S to Cha
which cannot have any intersection with S∗ and
receives the keys (Aid, Kid) computed by Cha
through the algorithm Authorize (PP, sk, id, S).

Security and Communication Networks 5



Trapdoor query: Ad can adaptively enquire to Cha
with any keyword w ∈W in S and then Cha runs
the algorithm Trapdoor (E, Aid, w, Kid) to generate
the trapdoor Tr and sends it to Ad.

(4) Challenge. When Ad wants to fnish Process 1, it
generates two keywords of the same length in plain
text (w0, w1) ∈W. Cha randomly selects u ∈ 0, 1{ }

and i ∈ S∗ and then operates the Encrypt algorithm
to output the challenge ciphertext cw∗ � Encrypt
(PP, PK, wb) and sends cw∗ to Ad.

(5) Process 2. Ad continuously sends the queries of
Authorize and Trapdoor algorithms as in Process 1,
the limit is the Authorize queries of S cannot have
any intersection with S∗, and the Trapdoor query of
w0 or w1 cannot be in S∗.

(6) Guess. Ad guesses the value of u and outputs u ′. Ad
wins the game if u ′ � u. Set that Ad’s advantages
over this game is

Advscheme
Ad � Pr u′ � u􏼂 􏼃 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (9)

Defnition 2. Teproposed scheme is IND-SF-CKA secure if
Advscheme

Ad is negligible.

5.3.2. Consistency. Besides the security, the proposed
scheme should satisfy the consistency when using the
trapdoor for query [36].

Pr Search Trapdoor E, Aid, w′, Kid( 􏼁,Encrypt(PP, PK, w)( 􏼁 � 1􏼂 􏼃 � 0. (10)

Defnition 3. For all distinct keywords w, w′∈ 0, 1{ }∗, the
trapdoor with w′ and the cipher text for encrypting w is
consistent if and only if the following probability holds true.

T algorithm Search is always rejected when the keyword
w′ contained in Trapdoor is diferent from the keyword w in
Encrypt.

Cloud Computing

Files

Identity key

Search result
& Proof

 Personal key
 Publisher

Query

Query

Users

Edge Computing 

Result

Verify1 

Verify2

Figure 2: System model.

6 Security and Communication Networks



5.3.3. Correctness and Completeness. Te proposed scheme
should satisfy that the search result is correct and complete,
which is defned as follows based on the defnition in [37].

(1) Correctness: w ⊂ f1∧w ⊂ f2∧ . . .∧w ⊂ ft

(2) Completeness: (f1 − Q)∩ (f2 − Q)∩ . . . ∩ (fs−

Q) � ∅, where Q � f1 ∩f2 ∩ . . . ∩ft

Defnition 4. For authorized fle set S � 1, 2, , . . . , s{ } and a
keyword w for the query, the search result with
I � f1, f2, . . . , ft􏼈 􏼉 is correct and complete when the below
two terms are true.

Te correctness condition ensures that the search result
contains keyword w, and the completeness condition
guarantees the search result which includes all fles con-
taining keyword w. When the search result is correct and
complete, the Verifcation algorithm would output 1; oth-
erwise, it would output 0.

5.4. Te Proposed Scheme

5.4.1. Overview. In scheme [15], the fundamental reason why
the cloud can launch forgery attacks is that the verifcation
process requires cloud to participate in calculation, and the
fow is “publisher computing -> cloud computing ->user
computing, so the users will not know whether the cloud has
forged proof. In our design, we changed the verifcation fow
to “publisher computing -> public proof ->user computing,”
And the cloud does not participate in computing but only
forwards the data. Besides, in the phase of “public proof,” we
use the Merkle hash tree to ensure that the proof is not
tampered with by the cloud, thus guaranteeing the correctness
and completeness of search data.

Secondly, in the index encryption phase of existing re-
searches [13–15, 29–31], they encrypt every keyword associated
with each fle and then upload them. Consequently, the search
function needs to match whether the query value is equal to
each keyword, which will greatly afect the search efciency. In
our design, we store each fle’s keyword set in a Bloomflter; that
is, only one string is uploaded for one fle. Hence, during the
keyword processing, the communication and storage cost is
greatly reduced, and the overhead is related to the number of
fles but not to the number of keywords.

Tirdly, in the existing works [13–15, 32, 33], the veri-
fcation process are mostly based on the cloud computing
environment, and users need to perform generous calcu-
lations to verify, which is unacceptable for some resource-
constrained clients. In this paper, the edge server is intro-
duced to assist users in search and verifcation, which greatly
reduces the computation overhead for users and make them
more comfortable.

5.4.2. Construction. Based on the defnition described in 5.2,
we propose a concrete construction as follows:

(1) Init (1λ, n)⟶ PP: Te publisher generates the
public parameters as given below.

Generates a bilinear map system B � (p,G,G1, e

(·, ·)), where p is the order of G and 2λ ≤p≤ 2λ+1.
Sets n as the maximum number of fles and then the
complete fle index set N � 1, . . . , n{ }.
Picks a random generator ϑ ∈ G and a random
number a ∈ Zp and computes ϑi � ϑai

, for
i � (1, 2, . . . , n, n + 2, . . . , 2n).
Chooses a collision-free hash function used for the
Merkle hash tree: H0: 0, 1{ }∗ ⟶ G.
Chooses l as the maximum length of Bloom flter,
and k independent universal hash functions:
H1, . . . , Hk: 0, 1{ }∗ ⟶ 0, 1{ }l.
Chooses a keyed hash function H: 0, 1{ }∗ ⟶ G.

Ten the system public parameters are

PP � B, ϑ, ϑ1, . . . , ϑn, ϑn+2, . . . , ϑ2n􏼈 􏼉, H0, H1, . . . , Hk􏼈 􏼉, H( 􏼁key. (11)

(2) KeyGen (PP)⟶ (E, sk, PK): Te publisher gen-
erates a random string E as the hash key and chooses
a random number c ∈ Zp as the secret key, then the
public key is

PK � υ � ϑc
. (12)

(3) Encrypt (PP, PK, W)⟶ (C, BF, Lroot): Te pub-
lisher encrypts the fles and keywords as follows:
Firstly, for each fle index i ∈ N, we get those as
follows:

Generates an empty Bloom flter BFi � BFInit.
Randomly chooses an integer t ∈ Zp and computes
two encryption auxiliary values:

ci,1 � ϑt
,

ci,2 � υ · ϑi( 􏼁
t
.

(13)

For the keywords wij􏽮 􏽯(j ∈ 1, . . . , x{ }) contained
by the i-th fle, we get

Ten set BF � BFi􏼈 􏼉, i ∈ N.
Secondly, the publisher generates a MHTwith n leaf
nodes to guarantee the correctness of the fle aux-
iliary values. Ten the MHT is built as follows:
Each leaf node’s value is a hash of two auxiliary
values such as

Li � H0 ci,1ci,2􏼐 􏼑, i ∈ N. (14)

Each nonleaf node’s value is a hash of its two chil-
dren nodes and then the root node’s value Lroot can
also be determined.
Finally, the publisher uploads C � ci,1, ci,2􏽮 􏽯(i ∈ N)

to the cloud and adds BF and Lroot to his/her public
key as

PK � υ, BF, Lroot( 􏼁. (15)

Note that the cloud can rebuilt the MHT since it has
the encryption auxiliary values C.
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(4) Authorization (PP, sk, id, S)⟶ (Aid, Kid): For
user’s public identity id and authorization fle subset
S⊆N, the publisher computes as

Aid � idc
,

Kid � 􏽙
j∈S

ϑc

n+1−j

Aid

,
(16)

and then sends the authorization key (E, Aid) to user
and identity key Kid to edge.

(5) Trapdoor (E, Aid, w, Kid)⟶ Tr: For the keyword w

, the user generates the search query Q and sends to
edge server as

Q � HE(w) · Aid. (17)

When the search query is recieved, the edge frst
verifes the user’s public identity, then uses the
corresponding identity key to compute the trapdoor,
and sends to cloud:

Tr � Kid · Q. (18)

(6) Search (PP, C, BF,Tr)⟶ (I, PF(S)): On receiving
Tr, the cloud server does the following works.
Firstly, for each fle index i ∈ S:

Computes the corresponding ciphertext for the i-th
fle as

cwi �
e Tr · 􏽑j∈S,j≠iϑn+1−j+i, c1,i􏼐 􏼑

e 􏽑j∈Sϑn+1−j, c2,i􏼐 􏼑
. (19)

Gets the matching result of the i-th fle through the
Bloom flter as

If testi � 1, the fle fi is added to the result set I.
Secondly, the cloud server constructs the verifcation
proof PF(S) as follows:

Auxiliary values C � ci,1, ci,2􏽮 􏽯, i ∈ S.
Merkle hash tree proof is denoted as pf(S):

where path(i) is a list of nodes that denotes the path
from leaf node i to the root node of Merkle hash tree.
Let nodeN−S be a list of leaf nodes excluding subset S.
If there are sibling nodes in nodeN−S, then the sibling
nodes are replaced by their parent nodes, which is
denoted as nodemin

N−S. While Lnodemin
N−S

is the list con-
taining the hashes of the nodes in nodemin

N−S, which
can calculate Lroot with the hashes of the nodes in set
S, then the verifcation proof is

PF(S) � (C, pf(S)). (20)

Finally, the cloud sends the search result and proof
(I, PF(S)) to the edge.
Take the case of n= 8 as an example, as shown in
Figure 3. Assume S= 1, 2, 8{ } and search result I

= f2, f8􏼈 􏼉, then the verifcation proof is generated as
follows:

Auxiliary values: C � (c1,1, c1,2), (c2,1, c2,2),􏽮

(c8,1, c8,2)}.
Te path(i) from the node i to the root node is
generated such that

Leaf node i � 1, path(i � 1) � (1, 9, 13, root)
Leaf node i � 2, path(i � 2) � (2, 9, 13, root)
Leaf node i � 8, path(i � 8) � (8, 12, 14, root)

Ten nodemin
N−S is computed as

nodemin
N−S � nodemin

n1 ,...,n8{ }− n1 ,n2 ,n8{ }

� nodemin
n3 ,n4 ,n5 ,n6 ,n7{ } � n10, n11, n7􏼈 􏼉.

(21)

Finally, we get

pf(S) � path(i)􏼈 􏼉, i ∈ S, L, nodemin
N−S􏼐 􏼑

� path(1), path(2), path(8)􏼈 􏼉, L10, L11, L7􏼈 􏼉( 􏼁.

(22)

(7) Verifcation (PP, I, PF(S), BF, Lroot)⟶ (1/0):When
the search proofs are recieved, the edge server does
the following work.

Firstly, for each fle index i ∈ S, the edge computes Li′ �

H0(‖ci,1ci,2‖), recovers Lroot′ based on pf(S), and then
verifes if Lroot′ � Lroot. If holds, then C is correct. Otherwise,
it is ⊥.

Secondly, for i ∈ S, the edge computes the auxiliary
verifcation value as

cwi �
e Tr · 􏽑j∈S,j≠iϑn+1−j+i, c1,i􏼐 􏼑

e 􏽑j∈Sϑn+1−j, c2,i􏼐 􏼑
, i ∈ S. (23)

Finally, the edge sends the search result I and auxiliary
verifcation value CW � cwi􏼈 􏼉, i ∈ S to user.

After receives the auxiliary verifcation value, the user
can verify the search result:

verifyi � BFQuery H1, . . . , Hk􏼈 􏼉, BFi, cwi( 􏼁, i ∈ S. (24)

If for each i ∈ I, verifyi � 1, and for each i ∈ (S − I),
verifyi � 0, and then it outputs 1, which means the search
result is correct and complete. Otherwise, it outputs 0.

6. Requirements Analysis

6.1. Security. Wewill prove that our scheme is IND-SF-CKA
secure under the standard model based on the Decision l

-BDHE assumption. Te security is verifed by the below
theorem.

Theorem 1. If the decision l-BDHE problem is hard to solve,
then our proposed scheme satisfes the IND-SF-CKA security.

Proof. Suppose there is an Adversary Ad which can destroy
the IND-SF-CKA security of the proposed scheme, then a
Challenger Cha can build an Algorithm D to solve the
decision l-BDHE problem. Tis contradicts our hypothesis
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that the decision l-BDHE problem is hard to solve; thus, it is
proved that the scheme is IND-SF-CKA secure.

Suppose D is given as an instance of decision l-BDHE
problem, which includes a bilinear pairing system e: B �

(p,G,G1, e(·, ·)) and parameters ϑi � ϑai

, for
i � (1, 2, . . . , l, l + 2, . . . , 2l), where a is unknown. Ten D is
further given as h ∈ G, Z ∈ G1. At last, the input is
(h, ϑ, ϑa, ϑa2

, . . . , ϑal

, ϑal+2
, . . . , ϑa2l

, Z), and D needs to decide
if Z � e(ϑal+1

, h) or Z is a random value in G1.
D simulates the Challenger Cha to begin a game with Ad

as follows:

(1) Initial: D receives the fle set S∗ that Ad wants to be
challenged. Ten D gets the parameters
(h, ϑ, ϑa, ϑa2

, . . . , ϑal

, ϑal+2
, . . . , ϑa2l

, Z) of the decision
l-BDHE problem.

(2) Setup: D generates some other parameters and then
provides them with the given parameters to Ad as
follows:

(1) Chooses a hash function H: 0, 1{ }∗ ⟶ G.
(2) Sets W as the keyword space.
(3) Randomly chooses r ∈ Zp, a fle index i ∈ S∗, and

sets PK � ϑr/ϑi, where ϑi is from the given pa-
rameters ϑai

, which is corresponding to the
chosen class i, then the sk is r − ai which is
unknown.
Ten D sends (B, ϑ, ϑa, ϑa2

, . . . , ϑal

, ϑal+2
, . . . ,

ϑa2l

, HW, PK) to Ad.

(3) Process 1: Ad carries out a series of adaptive queries:

Authorize query: Ad can query any fle set S, where
S∩ S∗ � 0. Ten D computes

Aid � id
c
,

Kid � 􏽙
j∈S

ϑc−ai

n+1−j � 􏽙
j∈S

ϑc
n+1−j/ϑn+1−j+i􏼐 􏼑

Aid

,

(25)

and sends (Aid, Kid) back.

Trapdoor query: Ad can query any fle set S and any
keyword w, where S∩ S∗ � 0, w ∈W. Ten D
generates Tr � Aid · HE(w) · Kid, and sends Tr to
Ad.

(4) Challenge: When Ad determines to fnish Process 1,
it sends two equal length keywords (w0, w1) ∈W to
D, which cannot be the same as the Trapdoor query
of Process 1 before. Ten D performs the following
operations:

(1) Randomly picks a coin u ∈ 0, 1{ }.
(2) Sets h � ϑt, where t is unknown, thus

Here, PK � ϑr/ϑi, then C ∗ � (c1 � h, c2 � hr, cw �

e(HE(wu), h)/Z) is sent to Ad. Notice that if Z �

e(ϑal+1
, h), then cw � e(HE(wb), h)/e(ϑal+1

, h), and
C∗ is a valid ciphertext of encrypting the keyword wu

with the class i. Otherwise, Z is a random element in
G1.

(5) Process 2: Similar to Process 1, Ad continues to
conduct Authorize and Trapdoor queries, and D
adopts the same strategy to reply.

(6) Guess: Ad guesses the value of u and outputs u ′. If
u ′ � u, then D outputs 1, which means
Z � e(ϑal+1

, h). Otherwise, the output is 0 implies Z is
a random value in G1.

(7) Probability analysis: If Z � e(ϑal+1
, h), then C∗ is

valid. Otherwise, Z is a random value in G1, and C∗

is an invalid ciphertext. In such case, the advantage of
Ad is equal to 1/2. If Ad successfully implements
IND-SF-CKA to the scheme by the advantage of ε
as Pr[u ′ � u − 1/2]≥ ε, then D can solve the decis-
ion l-BDHE problem by the advantage
ADVDecisionl−BDHE

D � |Pr[D(h, ϑ, ϑa, ϑa2
, . . . , ϑal

,

ϑal+2
, . . . , ϑa2l

), Z, 0] − Pr[D(h, ϑ, ϑa, ϑa2
, . . . , ϑal

, ϑ
al+2

, . . . , ϑa2l

, Z≠ e(ϑ, h)al+1
) � 0] |≥ ε � e(ϑ, h)al+1

).
However, this is contrary to Defnition 2, so Ad
cannot implement IND-SF-CKA to the scheme by
the advantage of ε.

Mroot

n13

n10
n11

n14

n15n9

n1 n2 n3
n4 n5 n6 n7 n8

L1=H0 (c1,1||c1,2) L2=H0 (c2,1||c2,2) L8=H0 (c8,1||c8,2)

Figure 3: Merkle hash tree.
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Terefore, the proposed scheme satisfes the IND-SF-
CKA security.

6.2. Consistency. Proof.If Hkey is collision-free, then there
must be diferent keywords (w, w′) ∈W so that
HE(w)≠HE(w′). According to equations (3)–(5), we can
get

cwi �
e Tr · 􏽑j∈S,j≠iϑn+1−j+i, c1,i􏼐 􏼑

e 􏽑j∈Sϑn+1−j, c2,i􏼐 􏼑
,

�
e Aid · HE(w) · Kid · 􏽑j∈S,j≠iϑn+1−j+i, ϑ

t
􏼐 􏼑

e 􏽑j∈Sϑn+1−j, υ · ϑi( 􏼁
t

􏼐 􏼑
,

�
e 􏽑j∈Sϑ

c

n+1−j · HE(w) · 􏽑j∈S,j≠iϑn+1−j+i, ϑ
t

􏼐 􏼑

e 􏽑j∈Sϑn+1−j, υ
t

􏼐 􏼑 · e 􏽑j∈Sϑn+1−j, ϑ
t
i􏼐 􏼑

,

�
e 􏽑j∈Sϑ

c
n+1−j, ϑ

t
􏼐 􏼑e 􏽑j∈S,j≠iϑn+1−j+i, ϑ

t
􏼐 􏼑e HE(w), ϑt

􏼐 􏼑

e 􏽑j∈Sϑn+1−j, υ
t

􏼐 􏼑 · e 􏽑j∈Sϑn+1−j, ϑ
t
i􏼐 􏼑

,

�
e HE(w), ϑ( 􏼁

t

e ϑ1, ϑn( 􏼁
t .

(26)

Theorem  . If Hkey is a collision-free hash function, then the
proposed scheme is consistent.

Ten for the same keyword, the cloud uses Trapdoor Tr
to generate thematching ciphertext cwi, which is equal to the
encrypted keyword generated by the publisher, then

Pr Search
Trapdoor E, Aid, w, Kid( 􏼁,

Encrypt(PP, PK, w)
􏼠 􏼡 � 1􏼢 􏼣 � 0. (27)

Terefore, the proposed scheme is consistent.

6.3. Correctness and Completeness

Theorem 3. If (H1, . . . , Hk) are random and the Bloom
flter has a low false-positive rate, then the user can verify
whether the result is correct and complete.

Proof. Correctness: In Teorem 2, our scheme is proved to
be consistent.Ten (27) can be used to ensure the return fles
are correct. Suppose the Bloom flter has a low false-positive
rate, when (27) is equal to 1, it means the i-th fle contains the
keyword w: w ⊂ fi.

Completeness: In our scheme, for the fle set
S � f1, f2, , . . . , fs􏼈 􏼉, and given a query keyword w from a
user, the cloud returns the search result
I � f1, f2, . . . , ft􏼈 􏼉, (t≤ s). With equations (7) and (8), if for
each i ∈ I, it satisfes verifyi � 1, and for each i ∈ (S − I), it
satisfes verifyi � 0, then (f1 − Q)∩ (f2 − Q)∩ . . . ∩ (fs −

Q) � ∅, where Q � f1 ∩f2 ∩ . . . ∩ft, so that the search
result is complete; that is, the cloud server returns all fles

that include the keyword w and does not return the fles that
do not include the keyword w. Otherwise, it is incomplete.
Meanwhile, the correction of the encryption auxiliary value
is guaranteed by the Merkle hash tree, which the cloud
cannot forge.

Terefore, the user can verify whether the result is
correct and complete.

7. Performance

7.1. Performance Analysis. In this section, we compare the
other two related schemes [14, 15, 29] in terms of various
costs so as to analyze the performance. We defne the below
notations in Table 1.

7.1.1. Functionality. We show the function comparison in
Table 2, and we can see that all schemes realize the function
of fne-grained authorization. In the verifcation function,
scheme [14] can only verify the correctness, and scheme [15]
can verify the correctness and completeness but exists se-
curity defect, and scheme [29] does not consider the veri-
fcation module, while our scheme implements all the
verifcation in the cloud-edge environment.

7.1.2. Computation Cost. Te comparison results of com-
putation cost for several schemes are shown in Table 3, and it
demonstrates that our scheme has less computation over-
head than schemes [14, 15] on the whole.

In the phases of Init, KeyGen, Extract, and Trapdoor, all
four schemes have the same efciency, which is because the
parameters and data generated are alike. Note that the hash
computation overhead is O(1), which is far more cheaper
than others, so we did not include it to the statistic.

In the Encrypt phase, our scheme generates 2n pa-
rameters and nr ciphertexts, which is the same as scheme
[29].While scheme [14] needs to generate 3n parameters and
nr ciphertexts, and scheme [15] generates 4n parameters and
nr ciphertexts, so the Encrypt process overhead of our
scheme is less than schemes [14, 15].

In the Search phase, the overhead of our scheme is the
same as scheme [29] and is less than schemes [14, 15].

In the Verifcation phases, the user overhead of our
scheme is less than schemes [14, 15], which is because the
edge server undertakes most calculations.

Ten, the total computational cost of our scheme is less
than schemes [14, 15].

7.1.3. Communication Cost. Table 4 shows the communi-
cation overhead comparison as it can be seen that our
scheme has less communication overhead than other
schemes overall.

In the Encrypt phase, our scheme has less cost than other
schemes and that is because our scheme uploads only one
Bloom flter value for one fle, and other schemes need to
upload all the encrypted keywords.Ten the communication
cost of our scheme for keyword cipher text processing is
related to the number of fles but not to the number of
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keywords. Note that the number of fles is n and the number
of keywords in each fle is k, then our scheme only needs to
pass n Bloom flter values and 2n elements in G to the cloud.
While scheme [29] needs to transmit 2n elements in G and
nr elements in G1, scheme [14] needs to transmit 2n + nr

elements inG and nr elements inG1, and scheme [15] has the

the biggest overhead which needs to transmit 2n elements inG,
(n + nr) elements in G1, and n elements of Bloom flter.

In the Trapdoor phase, all schemes have the same
communication overhead.

In the Search phase, all four schemes need to return n

-bits search results, and scheme [14] still needs to transmit
two auxiliary values (np + nrq) for verifcation, and scheme
[15] still needs to transmit three auxiliary values (np + nq +

nl) for verifcation, while our scheme needs two auxiliary
values (2np +

���
nm

√
).

Since the scheme [29] has no verifcation function, the
communication cost of our scheme is higher than scheme
[29] but is less than schemes [14, 15].

7.1.4. Storage Cost. We display the storage cost comparison
in Table 5, which demonstrates that our scheme has less
storage overhead than other two schemes in general.

In the publisher/data owner side, all schemes store one
key, and then they have the same cost with p.

In the user side, our scheme stores two keys, and other
schemes only need to store one key.

In the cloud side, our scheme has less storage cost than
other three schemes. In our scheme, the cloud server only
needs to store one Bloom flter value for one fle, while other
two schemes need to store all the encrypted keywords.
Terefore, the cloud’s storage cost in our scheme is only
related to the number of fles and others are related to the
number of keywords. Ten our scheme needs 2n elements in
G and n elements of Bloom flter to store, while scheme [29]
stores 2n elements in G and nr elements in G1, scheme [14]
stores (2n + nr) elements in G and nr elements in G1, and
scheme [15] stores 2n elements inG, (n + nr) elements inG1,
and n elements of Bloom flter.

Terefore, our scheme has less storage cost than other
three schemes.

7.2. Experimental Results. To assess the actual performance,
we carry out the comparison experiments with schemes
[14, 15, 29]. We use the latest JPBC library to deploy the ar-
chetypes of these schemes. Our experiments run on a computer
with Intel Core i5-6550CPUworking in theWindows 7 system.
We used the Enron database as the source, which extracted 10
thousands documents, 6 thousands keywords, and 80 thou-
sands keyword-document pairs, of which most fles matched
fewer than 10 keywords. We selected the Type-A pairing to
complete the specifc algorithm, and then experimented with
diferent number of fles and keywords within four schemes.
Te experiment results are consistent with our performance
analysis, as shown in Figure 4.

In the Init and Authorization phases, all schemes have
the same computation cost, which is liner increasing with
the number of fles, as shown in Figures 4(a) and 4(c).

In the KeyGen and Trapdoor phases, all schemes have
the same operation time for diferent numbers of fles, as
shown in Figures 4(b) and 4(e).

In the the Encrypt and Search phases, our scheme has the
same operation time as scheme [29], which is less than
schemes [14, 15], as shown in Figures 4(d) and 4(f).

Table 1: Notations.

Notation Meaning
MulG Multiplication manipulation in G or G1
ExG Exponentiation manipulation in G or G1
ExZp

Exponentiation manipulation in Zp

pair Pairing operation
H Hash operation
n Total fle number
r Te average number of keywords per fle
l Te length of an element in Bloom flter
m Te length of Merkle hash tree node
p Te size of an element in G

q Te size of an element in G1

Table 2: Functionality comparison.

Scheme Fine-grained
authorization Completeness Environment

Scheme [14] Yes Yes/no Cloud
Scheme [15] Yes Security defect Cloud
Scheme [29] Yes No/no Cloud
Our scheme Yes Yes/yes Cloud-edge

Table 3: Computation cost comparison.

Scheme Init KeyGen
Scheme [14] 2n(ExZp

+ ExG) ExG

Scheme [15] 2n(ExZp
+ ExG) ExG

Scheme [29] 2n(ExZp
+ ExG) ExG

Our scheme 2n(ExZp
+ ExG) ExG

Scheme Authorization Encrypt
Scheme [14] nExG 4nr · ExG + 3n · MulG + 2nr · pair
Scheme [15] nExG (3n + nr)ExG + (2nr + n)pair
Scheme [29] nExG (2n + nr)ExG + 2nr · pair
Our scheme (n + 1)ExG (2n + nr)ExG + 2nr · pair
Scheme Trapdoor Search
Scheme [14] MulG (2n + 1)MulG + ExG + 4n · pair
Scheme [15] MulG 6n · MulG + 4n · pair
Scheme [29] MulG 3n · MulG + 2n · pair
Our scheme MulG 3n · MulG + 2n · pair
Scheme Verificationuser Verificationuser
Scheme [14] n · MulG + n · pair
Scheme [15] n · MulG + n · pair —
Scheme [29] — —
Our scheme n · H 3n · MulG + 2n · pair

Table 4: Communication cost comparison.

Scheme Encrypt Trapdoor Search
Scheme [14] 2np + nrq + nrp p n + np + nrq

Scheme [15] 2np + nq + nrq + nl p n + np + nq + nl

Scheme [29] 2np + nrq p n

Our scheme 2np + nl p n + 2np +
���
nm

√
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Table 5: Storage cost comparison.

Scheme Publisher User Cloud
Scheme [14] p p 2np + nrq + nrp

Scheme [15] p p 2np + nq + nrq + nl

Scheme [29] p p 2np + nrq

Our scheme p 2p 2np + nl
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Figure 4: Continued.
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In the Verifcation phase, Figure 4(g) shows that the user
side of our scheme has less computational time than schemes
[14, 15], which is because the edge completes most of the
calculations, and the user only need to hash to get the
verifcation results. Note that scheme [29] cannot achieve the
verifcation function.

To sum up the experiments, the overall operation time of
our scheme is lower than schemes [14, 15] with all processes.

8. Conclusion

In the edge computing environment, we proposed a new
scheme of verifable data search with fne-grained autho-
rization, which not only realizes fle-oriented search

authority management but also verifes the correctness and
completeness of results. In addition, with the assistance of
edge server, clients with limited resource can easily carry out
the tasks of search and verifcation. Besides, we proved that
our scheme is verifable and secure, and the secure model did
not rely on the RandomOracle. To assess the practicability of
the proposed scheme, we implemented it and conducted
experiments in a simulated environment. As expected, our
scheme efectively reduced the computation, communica-
tion, and storage costs. In the future, we intend to focus on
the dynamic management of users and fles, as well as the
further authorization to prevent the key abuse. Also, we want
to instantiate the data sharing model with the blockchain
technology.
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