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Encrypted network traffic is the principal foundation of secure network communication, and it can help ensure the privacy and
integrity of confidential information. However, it hides the characteristics of the data, increases the difficulty of detecting
malicious traffic, and protects such malicious behavior. ,erefore, encryption alone cannot fundamentally guarantee information
security. It is also necessary to monitor traffic to detect malicious actions. At present, the more commonly used traffic classification
methods are the method based on statistical features and the method based on graphs. However, these twomethods are not always
reliable when they are applied to the problem of encrypted malicious traffic detection due to their limitations. ,e former only
focuses on the internal information of the network flow itself and ignores the external connections between the network flows.,e
latter is just the opposite. ,is paper proposes an encrypted malicious traffic detection method based on a graph convolutional
network (GCN) called GCN-ETA, which considers the statistical features (internal information) of network flows and the
structural information (external connections) between them. GCN-ETA consists of two parts: a feature extractor that uses an
improved GCN and a classifier that uses a decision tree. Improving on the traditional GCN, the effect and speed of encrypted
malicious traffic detection can be effectively improved and the deployment of the detection model in the real environment is
increased, which provides a reference for the application of GCN in similar scenarios. ,is method has achieved excellent
performance in experiments using real-world encrypted network traffic data for malicious traffic detection, with the accuracy,
AUC, and F1-score exceeding 98% and more than 1,300 flows detected per second.

1. Introduction

Network traffic classification technology is receiving in-
creasing attention because of the quality of service (QoS) and
network security issues. Network traffic classification is the
basic role of network management. It can identify distinct
protocols and applications in a network and is widely used
such as for QoS and anomaly detection. Traffic classification
is the core component of emerging QoS support products
and automated QoS architecture. However, because of
continuous network expansion and innovation in com-
munication technology, network traffic presents the char-
acteristics of complexity and diversification. Information
security is ensured through the encryption of data packets in
network traffic, and over 90% of network traffic is now
encrypted [1]. While encryption can ensure the confiden-
tiality and integrity of information, it can hide the

characteristics of data, increase the difficulty of detecting
malicious traffic, and protect such behavior. An attacker
cannot only guess a user’s access trace with high likelihood
but can exploit encryption to hide the attack and avoid
detection [2]. Zscaler, a cloud security company, predicts
that attacks on encrypted traffic that bypass traditional se-
curity controls will increase by 260% in the next five years
[3]. ,erefore, encryption alone cannot fundamentally
guarantee information security. It is also necessary to
monitor traffic to detect malicious actions.

Malicious traffic detection is essentially a traffic clas-
sification problem whose methods are based on ports,
payloads, statistical features, and graphs. ,e traditional
port-based method relies on checking standard ports used
by applications. However, it is not always reliable because
not all current applications use standard ports [4]. Deep
packet inspection (DPI) methods based on payload have
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become popular alternatives [5, 6]. DPI can identify an
application by verifying the signature in the packet payload,
thus avoiding the problem of a dynamic port. However,
payload-based methods cannot identify encrypted traffic,
and checking the payload can give rise to privacy issues.
Methods based on statistical features calculate the features
of data packets and input them to machine learning al-
gorithms such as decision tree (DT) and support vector
machine (SVM) for classification [7–9]. Because analysis
based on ordinary machine learning algorithms depends on
feature engineering, researchers have considered deep
learning algorithms such as the convolutional neural net-
work (CNN) [10, 11] and recurrent neural network (RNN)
[12]. However, these methods focus on the internal in-
formation of network traffic, ignoring external connections
between network flows. Graph-based methods classify
network traffic based on the host behavior or a local
structure in the traffic trajectory graph and can solve
problems of dynamic ports and traffic encryption.

Much work has demonstrated that the graph structure
can be used to classify traffic [13, 14], but the graph-based
method only focuses on the external connections between
network flows.,e graph neural network has attracted much
attention [15, 16], as it allows attention to be focused on
information of the structure, nodes, and edges. As far as the
author knows, there is currently little work on the classi-
fication of encrypted traffic with graph neural networks.
Existing work only uses graph neural networks to classify
normal encrypted traffic into different types, and its ap-
plication in the detection of encrypted malicious traffic has
not yet beenmade. In this work, we propose a high-efficiency
encryption malicious traffic detection method based on a
graph convolutional network (GCN). ,e powerful per-
formance of GCN is that it can train node information and
structural features between nodes at the same time. In the
task of detecting encrypted malicious traffic, considering the
structural characteristics will improve the detection effect,
but it will also greatly reduce the detection speed. ,is will
cause the detection model to fail to meet the deployment
requirements in the real environment. We improved the
GCN through a detailed analysis of the GCN model ar-
chitecture, which reduced the training time of the GCN
while ensuring the performance of the GCN. ,e improved
GCN is used as a feature extractor to simultaneously train
traffic statistical features and the graph structure of the traffic
trajectory, and a DT is used as a classifier to detect encrypted
malicious traffic. Experiments were carried out on the actual
encrypted network traffic, and the results confirmed that our
method effectively improves the effect and speed of the
encrypted malicious traffic detection model.

,e main contributions of this work are as follows:

(i) We propose an encrypted malicious traffic detection
method based on GCN that considers both the
statistical features of network flows and structural
information between them, which strengthens
people’s understanding of the problem of encrypted
malicious traffic detection

(ii) To improve the traditional GCN, the effect and
speed of encrypted malicious traffic detection model
are effectively improved, and the deployment of the
detection model in the real environment is in-
creased, which provides a reference for the appli-
cation of GCN in similar scenarios

(iii) Our model achieves excellent results on the real-
world network traffic data for encrypted malicious
traffic detection, and it outperforms several state-of-
the-art methods

,e rest of this article is organized as follows: related
work is reviewed in Section 2. Section 3 introduces the
notation and problem definition, background, and the
proposed method, named Encrypted Malicious Traffic De-
tection Based on Graph Convolution Network (GCN-ETA).
Experiments are discussed in Section 4 to demonstrate that
this method has an excellent performance in encrypted
malicious traffic detection. Our conclusions are summarized
in Section 5.

2. Related Work

Much research has addressed the use of internal features
(such as the port number) to classify network traffic. ,e
wide use of encryption has diminished the effect of tradi-
tional network traffic classification methods [17]. In recent
years, there have been frequent attacks on encrypted traffic.
,erefore, studying how to classify encrypted traffic and
strengthening network security protection is an urgent
problem to be solved. In fact, although the encryption
technology hides the payload of the data packet, side-
channel data such as the size and direction of the packet can
still be obtained from the encrypted connection. To solve this
problem, some researchers have combined statistical fea-
tures (side-channel data like packet size and direction) of
traffic with machine learning to classify network traffic
[18, 19]. Taylor et al. [20] used a new machine learning
strategy to identify similar encrypted network traffic be-
tween applications. ,e general workflow of this type of
method is as follows: first, manually design traffic statistical
features, then extract and select these features from the
original traffic, and finally, use a classifier (traditional ma-
chine learning classifier [21, 22] or deep learning classifier
[23]) to classify the traffic. In addition to such methods,
other researchers also use the powerful feature extraction
capabilities of deep learning methods to directly classify the
original traffic [24–26]. Liu et al. [25] applied RNN to the
problem of traffic encryption classification and proposed the
FS-Net model. However, FS-Net still needs to preprocess the
original traffic. Bahaa et al. [26] used word embedding layer,
convolutional neural network, and bidirectional recurrent
neural network to directly classify the original traffic and
proposed a new DPI method (nnDPI). nnDPI does not
require experts to extract features related to network traffic,
and its performance has been proved to be superior to other
traffic classification methods of the same type [24].
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,e above methods only focus on the internal infor-
mation of the network flow itself and ignore the external
connection between the network flows. Some researchers
have examined network flows based on their external links
and classified them based on graphs (host behavior). Such
methods need to build a traffic trajectory graph, where nodes
represent Internet Protocol (IP) hosts, edges represent
network traffic, and labeled edges are used to infer unlabeled
edges. Graph-based methods have been successfully
implemented for network traffic representation [13, 14].
Gallagher et al. [13] have found that the network traffic at the
application layer has link homogeneity. A network trajectory
graph is constructed, with nodes as IP hosts and edges as
network flows. Labels are inferred for unlabeled flows based
on the application labels of neighboring flows. Graph-based
methods may be referred to as host behavior-based methods
in many other pieces of research [27, 28]. Karagiannis et al.
[28] classified network traffic by analyzing host behavior in
the transport layer. By comparing behavior information with
stored application signatures, it can identify the applications
a host is running but cannot identify their subtypes.

In general, the most commonly used methods of the four
types of traffic classification are methods based on statistical
features and methods based on graphs. However, the de-
tection of encrypted malicious traffic based only on statis-
tical features or only based on graphics still has limitations.
,e former only focuses on the internal information of the
network flow itself and ignores the external connections
between the network flows. ,e latter only focuses on the
external connections between the network flows and ignores
the internal information of the network flows themselves.
,e proposal of methods such as GCN [29] has inspired
researchers to consider a flow’s information and the external
connection between flows when classifying traffic. Zheng
et al. [30] applied GCN to network traffic classification for
the first time and proposed the model GCN-TC. Shuang
et al. [31] classified encrypted traffic, using GCN to dis-
tinguish virtual private network (VPN) and conventional
encrypted traffic, and classified traffic into categories such as
files and emails. Researchers have applied GCN to common
traffic classification tasks (such as distinguishing protocols
used for traffic or VPN traffic) but have not yet considered
encrypted malicious traffic detection.

3. Methods

In this section, we first introduce the symbols and problem
definition, including the detailed description of the research
problem and the definition of the traffic trajectory graph.
Secondly, we introduce GCN and our proposed method,
GCN-ETA, where GCN-ETA is composed of the improved
GCN and the DT algorithm.

3.1. Symbols and Problem Definition. A network flow is a
unidirectional flow sent from a source IP address to a
destination IP address within a period of time. All packets
have the same five-tuple of the source port number, desti-
nation port number, protocol number, and source and

destination IP addresses. Graph-based methods use traffic
trajectory graphs to classify network flows. Normally, nodes
in these graphs are IP hosts, and edges are network flows
between them. A trajectory graph is utilized to find link
homogeneity. Flows with the same IP host may share a
category, in which case network traffic classification be-
comes edge classification. To use the GCN framework, we
use a new traffic trajectory graph [30], as shown on the right
of Figure 1. In the new traffic trajectory graph, a node
represents network flow, and an edge represents that nodes
on both its ends share an IP address. ,erefore, we convert
the encrypted malicious traffic detection task into a mali-
cious node detection problem by constructing this new
traffic trajectory graph.

We define such a graph as G � (V, A), where V is the
vertex set consisting of nodes v1, . . . , vn , and A ∈ Rn×n is a
symmetric (typically sparse) adjacency matrix. Element aij

of the adjacency matrix is the weight of the edge between
nodes vi and vj, and aij � 0 indicates that there is no edge
connection between the two nodes. We define the degree
matrix D � diag(d1, . . . , dn) as a diagonal matrix whose
each diagonal entry is the row-sum of the adjacency matrix
di � jaij.

Each node vi in the graph has a corresponding d-di-
mensional feature vector xi ∈ Rd. ,e eigenvectors of all n

nodes form a complete eigenmatrix
X � [x1, . . . , xn]T ∈ Rn×d. Each node belongs to one of C the
classes and can be labeled with a C-dimensional one-hot
vector, yi ∈ 0, 1{ }C.

According to the above definition, we assume n network
flows, each with d-dimensional features, flow feature matrix
X ∈ Rn×d, and traffic adjacency matrix A � (aij)n×n, where
aij � 1 when there are flows i and j with shared IP hosts, and
otherwise, aij � 0. As shown on the right of Figure 1, the
neighbors of flow 1 include flows 2, 3, 4, and 5, so
a12 � a13 � a14 � a15 � 1.

3.2. GCN. ,e GCN [29] is a multilayer neural network that
can run directly on a graph. It guides the embedding vector
of a node according to the attributes of neighbor nodes. It
learns the new feature representation of each node, and uses
this as the input of a linear classifier for node classification.
,e GCN can capture the information of first-order
neighbors through a layer of convolution operations. When
multiple GCN layers are stacked, information about a larger
area can be integrated. For the k-th graph convolutional
layer, the matrices H(k− 1) and H(k) represent the input node
and output node representation, respectively, of all nodes.
Naturally, the initial node representation is the original
input feature H(0) � X, which represents the input of the
first graph convolutional layer. For a single-layer GCN, the
new d′-dimensional node feature matrix H(1) ∈ Rn×d′ is as
follows:

H
(1)

� ReLU SXθ(1)
 . (1)

,e “normalized” adjacency matrix with added self-loop
is as follows:
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S � D
− 1/2 A D

− 1/2
, (2)

where A � A + I, with degree matrix D. θ(1) ∈ Rd×d′ is a
weight matrix used for linear transformation of the
smoothed hidden feature representation. As mentioned
earlier, multiple GCN layers can be stacked to capture
higher-order domain information:

H
(k)←ReLU SH

(k− 1)θ(k)
 . (3)

For node classification, the last layer of the GCN uses the
classifier to predict the label. Define the predicted category of
n nodes as Y � (yic)n×C ∈ Rn×C, where yic represents the
probability that node i belongs to category c. ,e class
prediction Y of a K-layer GCN can be written as follows:

YGCN � softmax SH
(K− 1)θ(K)

 , (4)

where softmax(x) � exp(x)/
C
c�1 exp(xc) acts as a nor-

malizer across all classes.
Suppose we construct a two-layer (K � 2) GCN, the

overall forward propagation formula is as follows:

Y � f(X, A) � softmax SReLU SXθ(1)
 θ(2)

 , (5)

where θ(2) ∈ Rd′×f. Finally, we calculate the cross entropy
loss function for all labeled nodes:

L � − 
l∈YL



f

m�1
Ylm ln Ylm, (6)

where YL is the set of node indices that have labels and θ(1)

and θ(2) can be obtained by training using gradient descent.

3.3. GCN-ETA. GCN-ETA consists of a feature extractor
and a classifier (see Figure 2). Firstly, the improved GCN is
used to represent and learn the structural information and
attribute information contained in the flow trajectory graph
and to obtain the representation vector of each node in the
graph. ,en take the representation vector as input and use
the DT classification algorithm to identify malicious traffic
nodes and normal traffic nodes in the graph. Figure 3 shows
the schematic layout of malicious traffic detection using
GCN and GCN-ETA, respectively.

3.3.1. Feature Extractor. A GCN can act as a feature ex-
tractor to find a better feature representation of a sample,
similar to CNN and RNN. Using a CNN or a similar model
as a feature extractor trains the model to a certain state and

takes its intermediate output as the input of downstream
tasks [32, 33]. ,is takes much time. Considering the time
spent on feature extraction, certain simplifications will
minimize the time of this process when using a GCN model
as a feature extractor.

,e analysis of GCN reveals that the linear transfor-
mation weight matrix θ(k) to be trained between layers is one
of the main factors increasing the complexity and redun-
dancy of the model. We assume the linear transformation
between the GCN layers is not important, and most of the
benefits of the model are explained by the local smoothing of
the nodes. ,erefore, we set the output size of each layer to
be compatible with the input size and fix the linear trans-
formation weight matrix θ(k) to be trained between the layers
as the identity matrix.

Similar to GCN, at the beginning of each layer of our
feature extractor, the feature hi of each node vi must be
averaged with the feature vector of its neighbors in the local
domain:

h(k)

i ←
1

di + 1
h(k−1)

i + 
n

j�1

aij
�������������

di + 1(  dj + 1 

 h(k−1)
j . (7)

We can update the entire graph as a simple matrix
operation. ,e simultaneous update of all nodes in equation
(7) can be summarized as a simple sparse matrix
multiplication:

H
(k)←SH

(k− 1)
. (8)

Intuitively, this step locally smooths the hidden repre-
sentation of each node along the edge of the graph.

After local smoothing, the smoothed hidden feature
representation for each GCN layer is linearly transformed by
learning the weight matrix θ(k). A nonlinear activation
function such as ReLU is applied pointwise before out-
putting feature representation H(k). According to our as-
sumption (θ(k) is the identity matrix), to reduce the
complexity of the model, the feature representation output
of the k-th layer of our feature extractor is as follows:

H
(k)←ReLU H

(k)
I ←ReLU SH

(k− 1)
I , (9)

where H(0) � X, S represents the “normalized” adjacency
matrix with added self-loop, and I is the identity matrix. ,e
number of layers K of the feature extractor is a self-defined
hyperparameter, so the final output of the original node
feature after the K-layer feature extractor is as follows:

1 6
9 Transform 2
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Figure 1: Traffic trajectory graph (index indicates network flow). (a): the node is the IP address, and the edge represents the network flow.
(b): the node represents the network flow, and the edge represents that nodes on both ends have a common IP.
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X � S · ReLU SH
(K− 1)

I I � S · ReLU SH
(K− 1)

 . (10)

3.3.2. Classifier. Because the DT algorithm has the advan-
tages of high efficiency, easy interpretation, and less time
complexity, combined with our goal of achieving high-ef-
ficiency encrypted malicious traffic detection, the DT is
selected as the classifier. Nodes processed by the feature
extraction module are handed over to the classifier for
identification.

,e classification module uses a DT, a tree-structured
inductive learning classifier, to create a classification model
from unordered training data. Different from deep learning,
a DT is a white-box model that can quickly identify and
classify data. In order to generate a classification tree, the
decision tree needs to find the best node and the best
branching method.,e measure of this “best” index is called
impurity. ,ere are two options for the impurity index,
namely Entropy and Gini coefficient. In actual use, the ef-
fects of Entropy and Gini coefficient are basically the same,

but calculating the Gini coefficient is faster than calculating
Entropy. ,erefore, we use the Gini coefficient as the im-
purity index to select the optimal partition feature. For a
dataset T, this is as follows:

Gini(T) � 
C

c�1
pc 1 − pc(  � 1 − 

C

c�1
p
2
c , (11)

where C is the number of data categories, and pc is the
probability that a sample point belongs to the c-th category.
For binary classification, if the probability that a sample
point belongs to the first class is p, then its Gini coefficient is
as follows:

Gini(T) � 2p(1 − p). (12)

Intuitively, Gini(T) reflects the probability that two
samples with inconsistent categories are randomly selected
from T. ,erefore, a smaller value indicates higher purity of
T, and a greater probability that the data belong to the same
category.
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4. Experimental Results and Analysis

We evaluate GCN-ETA (our code is published at https://
github.com/zhengjuan1996/GCN-ETA) (K� 2) through
experiments. We must determine whether our model can
achieve a better, faster detection effect of encrypted mali-
cious traffic. We use Pytorch to implement GCN-ETA, and
its experimental platform configuration is shown in Table 1.

4.1. Dataset. We used a dataset from malware and normal
software collected from February to June 2020 [34]. ,e
Qianxin Technology Research Institute’s Tianqiong Sandbox
collected the traffic generated by running these applications.
Black and white samples were encrypted traffic generated by
malicious and normal software, respectively (all exe types).
,e traffic content consisted of TLS and SSL data packets
generated on port 443.

,e dataset contained 10,000 packet capture (pcap) data
files, consisting of equal volumes of black and white traffic.
Wireshark was used to split the file into the unidirectional
flow (the flowwith the same source port number, destination
port number, protocol number, and source and destination
IP addresses), as shown in Table 2. When dealing with
imbalanced datasets, classification models will be restricted
by the data distribution itself to learn more about the
majority class and disregard the minority class. As the
imbalance of data category distribution restricts models’
recognition performance for a few categories of targets, we
adjusted the ratio of black and white samples to 1 :1 to avoid
data imbalance.

We chose the five most basic single flow statistical
features to represent network flows, as shown in Table 3.

4.2. Baselines

(i) LR: based on the statistical features of the network
flow, logistic regression was used directly as the
classifier

(ii) BernoulliNB: based on the statistical features of the
network flow, BernoulliNB was used directly as the
classifier

(iii) DT: based on the statistical features of the network
flow, DT was used directly as the classifier

(iv) XGBoost: based on the statistical features of the
network flow, XGBoost was used directly as the
classifier

(v) nnDPI [26]: the classification is based on the byte
information of the data packet of the original
encrypted traffic

(vi) GCN-TC [30]: based on the statistical features of
the network flow and the traffic trajectory graph, a
2-layer GCN was used as the classifier

(vii) GCN+DT: a 2-layer GCN was used to extract
features of the network flow, and DT as the
classifier

(viii) GCN+RF: a 2-layer GCN was used to extract
features of the network flow and random forest as
the classifier

(ix) GCN+XGBoost: a 2-layer GCN was used to ex-
tract features of the network flow, and XGBoost as
the classifier

(x) GGCN+KNN: a 2-layer GCN was used to extract
features of the network flow and k-nearest
neighbors as the classifier

,e machine learning classification algorithms used grid
search to adjust parameters, and the deep learning models
involved were trained to the optimal state.

4.3. Experimental Evaluation Indices. We evaluate our
proposed method GCN-ETA from two perspectives, namely
detection effect, and detection speed.

4.3.1. Detection Effect. Treating black samples (malicious
traffic) as positive instances and white samples (normal
traffic) as negative instances, the model detection effect was
evaluated according to accuracy and the F1 − score:

accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 − score � 2 ×
precision × recall
precision + recall

.

(13)

Among them, TP represents the number of positive
classes that are correctly predicted, TN represents the
number of negative classes that are correctly predicted, FP
represents the number of positive classes that are incorrectly
predicted, and FN represents the number of negative classes
that are incorrectly predicted. In addition, we also use the
ROC curve and AUC to evaluate the effect of the model. ,e
ROC curve can reflect the classification ability of the model.
Its abscissa is the false positive rate (FPR), and its ordinate is
the true positive rate (TPR). ,e AUC is the area under the
ROC curve enclosed by the coordinate axis.

4.3.2. Detection Speed. To evaluate the model detection
speed, we used the number of network flows detected per
second:

]flow �
Ntest

ttotal
, (14)

where Ntest is the number of samples in the model test set
and ttotal is the total time (in seconds) to complete model
training and output the prediction results.
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4.4. Analysis of Results. We compared our method with
multiple benchmark models in terms of detection effect and
speed. Fivefold cross-validation is used to prevent models
from overfitting and verify their robustness. Table 4 shows
the distribution of the experimental data. Based on the
results in Table 5, we conclude that GCN-ETA is competitive
and that our model can achieve a relatively better and faster
detection effect when detecting encrypted malicious traffic.

We performed classification based on the statistical
features of the network flow when training ordinary ma-
chine learning classification models. Since only simple
processing (such as normalization) of statistical features was
performed, ordinary machine learning classification models
could have certain advantages in detection speed. As shown
in Table 6, the common machine learning classification
model with the fastest detection speed was BernoulliNB, but
its detection effect was not satisfactory. Compared with
BernoulliNB, the accuracy and the AUC of GCN-ETA were
about 19% higher, and the F1 − score was about 18% higher.
,e general machine learning classification model with the
best detection effect was XGBoost, but its detection effect
was still not as good as GCN-ETA. Because the encrypted
traffic conceals the characteristics of the data, the detection
effect of the nnDPI model that directly classifies the traffic
based on the packet byte information is not good (the ac-
curacy, the AUC, and the F1 − score were both lower than
70%). In addition, nnDPI only performs simple processing
on traffic data packets (such as removing the part including
the source IP and destination IP), so the redundant data
packet byte information makes the detection speed of nnDPI
slower than other models (less than 1).

,e feature dimension of nodes in our dataset was small
(only five features), so we guessed that the detection effect of

GCN-TC might not be good. Because GCN-TC is essentially
a two-layer GCN model, and it only used softmax as a
classifier in the last layer.,e experimental results confirmed
our guess. It can be seen fromTable 5 that the detection effect
of GCN-TC was even worse than that of XGBoost, the
accuracy and the AUC were about 3% lower, and the F1 −

score was about 4% lower. Because GCN can train node
information and the connections between nodes at the same
time, we propose using GCN as the feature extractor, and
some machine learning algorithms as the classifier. It can be
seen from Table 7 that this is feasible. In our experiments, the
implementation of this idea improved the detection of
malicious traffic. ,e accuracy and F1 − score of
GCN+XGBoost, GCN+RF, GCN+KNN, and GCN+DT
were all above 97%, and their AUC were over 96%. Both
indicators were higher than GCN-TC by about 14%, both
were higher than XGBoost by more than 10%, and the
detection speeds of the four models were similar. Of the four
models, GCN+RF had the best detection effect. It can be
seen from Figure 4 that the detection effect of GCN-ETA and
GCN+RF is not much different. But the detection speed
]flow of GCN-ETA was nearly 19 times that of GCN+RF.

From the whole experiment, we can also see the effect of
each step of GCN-ETA improvement. Firstly, replace the
classification layer on the basis of GCN-TC (essentially a
two-layer GCN model) to obtain GCN+XGBoost,
GCN+RF, GCN+KNN, and GCN+DT, which signifi-
cantly improves the detection effect. Secondly, on the basis
of GCN+DT, the weight matrix to be trained between the
GCN layers is fixed to the identity matrix to obtain the GCN-
ETA, which significantly improves the detection speed while
maintaining the detection effect. Compared with ordinary
machine learning classification models with a faster

Table 1: Experimental platform configuration.

Lab environment Parameter configuration
Operating system Windows 10
CPU Intel(R) Core(TM) i7-10750H CPU
Programming language Python3.8
Deep learning framework Pytorch1.6
Statistical feature extraction tool Wireshark

Table 2: Dataset distribution.

Samples Pcap files Flows Experimental samples
White 5000 26501 26501
Black 5000 89205 26501
Total 10000 115706 53002

Table 3: Statistical features.

Feature name Feature description
Duration Duration of flow
Number of in-packets Number of packets transferred from server to client
Number of out-packets Number of packets transferred from client to server
Size of in-packets Total volume of bytes transferred from server to client
Size of out-packets Total volume of bytes transferred from client to server
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Table 4: Experimental dataset distribution.

Nodes Edges Classes Features Train/test
53002 92694142 2 5 42402/10600

Table 5: Test accuracy (%), F1 − score (%), AUC (%), and ]flow after 5-fold cross-validation.

Model Accuracy F1 − score AUC ]flow
LR 73.55± 0.39 76.18± 0.22 73.55± 0.26 58994
BernoulliNB 79.86± 0.44 80.31± 0.43 79.85± 0.47 129224
DT 83.26± 0.67 83.81± 0.68 83.24± 0.50 2061
XGBoost 86.39± 0.26 87.10± 0.24 86.39± 0.85 111
nnDPI 65.31± 0.35 69.03± 0.33 65.80± 0.16 <1
GCN-TC 83.12± 0.70 83.34± 0.46 83.55± 0.97 28
GCN+XGBoost 97.65± 0.33 97.63± 0.33 97.52± 0.80 68
GCN+RF 98.61± 0.11 98.59± 0.11 98.34± 0.85 70
GCN+KNN 97.37± 0.29 97.36± 0.29 96.94± 0.83 71
GCN+DT 98.38± 0.07 98.37± 0.17 98.02± 0.94 72
GCN-ETA 98.65± 0.09 98.63± 0.09 98.59± 0.65 1333

Table 6: Test accuracy (%), F1 − score (%), AUC (%), and ]flow after 5-fold cross-validation.

Model Accuracy ↑ F1 − score ↑ AUC ↑ ]flow
LR 73.55± 0.39 76.18± 0.22 73.55± 0.26 58994
BernoulliNB 79.86± 0.44 80.31± 0.43 79.85± 0.47 129224
DT 83.26± 0.67 83.81± 0.68 83.24± 0.50 2061
XGBoost 86.39 ± 0.26 87.10 ± 0.24 86.39 ± 0.85 111
nnDPI 65.31± 0.35 69.03± 0.33 65.80± 0.16 <1
GCN-ETA 98.65 ± 0.09 98.63 ± 0.09 98.59 ± 0.65 1333
Sorted in ascending order of accuracy, F1 − score, and AUC.
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Figure 4: Model mean ROC curve after 5-fold cross-validation.

Table 7: Test accuracy (%), F1 − score (%), AUC (%), and ]flow after 5-fold cross-validation.

Model Accuracy F1 − score AUC ]flow ↑

GCN+XGBoost 97.65± 0.33 97.63± 0.33 97.52± 0.80 68
GCN+RF 98.61 ± 0.11 98.59 ± 0.11 98.34 ± 0.85 70
GCN+KNN 97.37± 0.29 97.36± 0.29 96.94± 0.83 71
GCN+DT 98.38± 0.07 98.37± 0.17 98.02± 0.94 72
GCN-TC 83.12± 0.70 83.34± 0.46 83.55± 0.97 28
GCN-ETA 98.65 ± 0.09 98.63 ± 0.09 98.59 ± 0.65 1333
Sorted in ascending order of ]flow.
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detection speed, GCN-ETA, had a better detection effect.
Among similar models with a good detection effect, GCN-
ETA had the fastest detection speed, as shown in Figure 5.
We believe this has three main reasons: (1) using GCN as the
feature extractor to train network flow statistical features
and traffic trajectory graphs at the same time; (2) replacing
the GCN classifier to better capture differences between
classes; (3) increasing the speed due to the simplified model
having no parameters to be trained.

5. Conclusion

We proposed the GCN-ETA encrypted malicious traffic
detection method, which is better and faster due to the use of
GCN to simultaneously train the graph structure and sta-
tistical features. We simplified GCN to a graph-based pre-
processing module for feature extraction and then connected
the DT classifier. Results of experiments on actual network
traffic confirmed that GCN-ETA has a better and faster
detection effect than the ordinary machine learning classifi-
cation model. GCN-ETA achieved excellent performance in
experiments, with both the accuracy, the AUC, and F1-score
exceeding 98%, and more than 1,300 flows detected per
second, and its detection speed is nearly 19 times that of the
same detection effect model.,e following conclusions can be
drawn from the analysis of the experimental results: ,e
powerful representation learning ability of GCN may mainly
come from feature smoothing, and its interlayer linear
conversion (which GCN-ETA does not preserve) is the main
factor that increases complexity and redundancy. ,is is also
the main reason for the excellent performance of GCN-ETA.
However, two issues remain to be resolved and will be
addressed in our future work: (1) We use a combination of
neural network (GCN) and nonneural network (DT)methods
for encrypted malicious traffic detection. We will try to re-
place the latter with a suitable artificial neural network and
explore a unified neural network method; (2) ,e inter-
pretability of the model is also important, and we will try to
improve the neural network from this perspective [35, 36].

Abbreviations

QoS: Quality of service
IP: Internet protocol
VPN: Virtual private network

TLS: Transport layer security
SSL: Secure sockets layer
pcap: Packet capture file storage format
DPI: Deep packet inspection
DT: Decision tree
LR: Logistic regression
SVM: Support vector machine
CNN: Convolutional neural network
RNN: Recurrent neural network
GCN: Graph convolutional network
FS-Net: Liu et al. [25] applied RNN to the

problem of traffic encryption
classification and proposed the FS-Net
model

nnDPI: Bahaa et al. [26] used word embedding
layer, convolutional neural network, and
bidirectional recurrent neural network to
directly classify the original traffic and
proposed a new DPI method (nnDPI)

GCN-TC: Zheng et al. [30] applied GCN to network
traffic classification for the first time and
proposed the model GCN-TC

GCN+DT: A 2-layer GCN was used to extract
features of the network flow, and DT as
the classifier

GCN+RF: A 2-layer GCN was used to extract
features of the network flow and random
forest as the classifier

GCN+XGBoost: A 2-layer GCN was used to extract
features of the network flow, and
XGBoost as the classifier

GGCN+KNN: A 2-layer GCN was used to extract
features of the network flow, and
k-nearest neighbors as the classifier

GCN-ETA: Encrypted Malicious Traffic Detection
Based on Graph Convolution Network
(our model).

Data Availability

,is research used a dataset from malware and normal
software collected from February to June 2020. ,e Qianxin
Technology Research Institute’s Tianqiong Sandbox col-
lected the traffic generated by running these applications.
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Figure 5: Overall performance of model testing effect (accuracy and F1 − score) and speed.
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Black and white samples were encrypted traffic generated by
malicious and normal software, respectively (all exe types).
,is dataset is a public dataset, and the link to the dataset is
https://datacon.qianxin.com/opendata/maliciousstream.
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